

Dept. of Electronics and Information

1928

- At present DEI:
 - Offers 500 courses for Bachelor and Master degrees in 6 of the 9 Politecnico Schools.
 - Supports research and teaching through more than 30 research labs and
 15 teaching labs
 - More than 600 people: 157 faculty members, 45 administrative and technical staff, 105 post-doc, 134 Ph.D students, 83external professors.

Artificial Intelligence and Robotics Lab

- Laboratory active since 1973
- 11 senior researchers, 10 Phd Students, more than 60 Master theses/year
- Master Track with more than 10 AI&R courses
- Industrial and agency funded projects
- Main research areas:
 - machine learning and intelligent data analysis
 - autonomous robots
 - artificial vision and sensors
 - autonomous agents
 - knowledge-based systems

Autonomous Robots Design

Development of robots

- Robotic arms
- Wheeled robots
- Bio-inspired robots (humanoids)
- Haptic interfaces

Applications

- Service robots
 - material delivery
 - guidance
 - surveillance
 - support to impaired people
 - sensor networks ...

Edutainment

- Robocup (soccer robots)
- Lego robots for education

Bio-inspired Robots

- Robots inspired to nature both for movement generation and control
 - Humanoid arm and hand
 - Humanoid legs
 - Haptic glove with force feedback
 - Quadruped
 - 0

Control architecture for mobile robots

- Modular architecture to integrate
 - Behavior management
 - Sensor fusion
 - Strategy management
 - Multi-robot coordination
- Module reuse and specialization
- Rapid development

Behavior Management System

Yes! Another behavior based architecture ;-)

Behaviors as fuzzy rule bases

Hierarchical informed composition

 High level programming of rather complex behaviors ...

... but winning may require more ...

CANDO

GoToTarget(.)

Sensor networks with mobile robots

- In many applications of sensors networks a key point becomes: "who goes where"
- Main issues:
 - Mapping: acquiring spatial models (maps) of physical environments
 - Localization: determining the pose of robots in a map
 - Target determination: identifying potentially interesting target poses
 - Task allocation: (sub)optimally assigning target poses to robots
- We developed control strategies for single and multiple robots to acquire maps of environments.
- Applications: environmental monitoring, surveillance, ambient intelligence, ...

World modeling

- Sensors (Sonars, artificial nose, infrared, laser, ...)
- Computer vision:
 - Frontal view
 - Stereovision
 - Omnidirectional vision

Computer vision

- Motion blur analysis
- Tracking of objects
- Object detection and visual measurement

3D camera motion understanding from blurred image

Trajectory reconstruction from blurred images

What is RAWSEEDS?

- EU Funded Project in the VI Frame Program from the 1st of November 2006 to April 2009
- A Specific Support Action to collect and publish a benchmarking toolkit for (S)LAM research
- Involved Institutions:
 - Politecnico di Milano (Italy Coordinator)
 - Università di Milano-Bicocca (Italy Partner)
 - University of Freiburg (Germany Partner)
 - Universidad de Zaragoza (Spain Partner)

Benchmarking Beyond Radish

Nowadays we feel the lack of tools and methods to <u>compare</u> and <u>evaluate</u> market strength products. To aim at this we foster publishing of:

- Extended multi-sensor data sets for the testing of systems on real-world scenarios
- Benchmarks and methodologies for quantitative evaluation and comparison of algorithms/sensors
- Off-the-shelf algorithms, with demonstrated performances, to be used for research bootstrap and comparison.

The RAWSEEDS Activities

- Definition and collection of benchmarks and methodologies for the assessment/comparison of algorithms for (S)LAM
- Creation of a website from which researchers and companies will be able to download these benchmarks, contribute new material and communicate with each other.
- Dissemination of knowledge about the RAWSEEDS benchmarks and the website

www.rawseeds.org

Benchmarks Problems & Solutions

The RAWSEEDS Toolkit is obtained by the combination of Benchmark Problems (BP) and Benchmark Solutions (BS).

Benchmark Problems aim at testing algorithms and include detailed:

- Description of the task
- Multi-sensor Data Set related to the task
- Evaluation Methodology and Tools agreed by the community

Benchmarks Problems & Solutions

Benchmark Solutions (BS) extend BPs with:

- Description of the algorithm for solving the BP and possible implementation (src or binary)
- Algorithm output on the BP dataset
- Evaluation (using the BP methodology)

You can contribute with:

- Discussion on the RAWSEEDS forum
- The definition of evaluation methodology
- A solution (BS) for a Benchmark Problem

RAWSEEDS Sensor Suite

- Use of an extensive sensing suite
 - B/W + Color cameras (mono/stereo)
 - 3D cameras
 - LRFs (2D)
 - Omnidirectional camera
 - Sonars
 - GPS and D-GPS
 - Other proprioceptives (odometry, gyros)

RAWSEEDS Scenarios

- Different scenarios and robot platforms
 - Indoor (e.g., office building, house, etc.)
 - Outdoor publics roads
 - Outdoor moderately rough terrain & parks

RAWSEEDS Solutions

- State of the art solutions for the tasks will be provided such as:
 - Ground truth and planimetry
 - Occupancy grids and 2D maps
 - Full 3D maps

RAWSEEDS Today

- Done with the platform setup
 - Indoor
 - Outdoor
- Location Selected
 - Indoor
 - Campus
 - Outdoor
- Definition of Ground truth
 - Ubisense for indoor position
 - RTK-GPS for outdoor position
 - Executive design of environments

RAWSEEDS Measures

- Localization performance
 - Positioning with respect to executive plant
- Mapping performance
 - Accuracy measured with respect to laser measures of predefined landmark
- SLAM performance
 - Error in positioning before loop closure
 - Map accuracy after loop closure
 - Localization error in your map for new trajectory
- What about real-time?
 - "I got this real time algorithm that gives you a random map in zero time. Its quality to time ratio is infinite!" J.D. Tardos

Contact RAWSEEDS

Please get in touch with us! We need also YOUR contribution.

