On the collection of robot-pose Ground-Truth, for indoor scenarios, in the RAWSEEDS project

Today's Special!

- Benchmarking of SLAM
- SLAM Evaluation and GT
- RAWSEEDS ... what's that?
- Vision & Laser GT Systems
- The Days in GTRoom
- Open Issues & Conclusion
- Discussion ... this is up to you!

Why SLAM Benchmarking

- Benchmarking of a fully fledged robotic application might be complex and hard to tackle as a whole ...
- Simultaneous) Localization And Mapping is one of the easiest activity to benchmark in robotics ... provided:
 - We can establish proper metrics for SLAM
 - The community agrees on the use of such metrics
 - The community appreciate the effort for using it
- SLAM can be considered an enabling capabilities for many complex tasks in autonomous robots

How do we evaluate SLAM?

- To set up a benchmark for SLAM we need to define a way to asses the performance of a SLAM algorithm
 - Quantitative measures of map/path quality, w.r.t. ground truth
 - Performance variation as map size grows
 - How realistic/pessimistic/optimistic is the estimation error
- Each measure is referred to ground truth!
- Can't we get along without ground truth?
 - Large loop recognition and closure
 - 0

. . .

A Tricky Trick for Ground Truth

- *"Benchmarking Urban 6D SLAM"* (Wulf et al. Benchmarking Workshop @ IROS 2007)
 - Highly accurate RTK-GPS receivers can not be used in outdoor urban areas
 - Surveyed maps can be obtained from the national land registry offices
 - Monte Carlo Localization can be used with such accurate maps to estimate ground truth positioning from the data and a manual supervision step to validate the MCL results.
- Isn't there a simpler solution?

A Simulated Solution

- *"Towards Quantitative Comparisons of Robot Algorithms: Experiences with SLAM in Simulation and Real World Systems"* (Balaguer et al. Benchmarking @ IROS 2007)
 - Simulators can be available for free (almost)
 - Ground Truth is perfect and easy to collect ;-)
 - Experiments are "easy" to replicate

- Simulation seems to be the solution for benchmarking problems <u>"however real life differs from simulation</u>"
- Simulation is useful during the lifecycle of a scientific idea, but, at some point, robots need to get real ...

Robots Get Real!

- When robots become real, things get more cumbersome for development and benchmarking as well
 - Algorithms should be compared on the same real situations
 - Data should be provided for comparison (also the results!)
 - Ground truth should be collected and provided as well
- Publicly available Datasets become the solution
 - Freshly grained real data for all ;-)
 - Results are easy to replicate provided a Good Experimental Methodology is used
 - However most of them have no ground truth :-(

Ground Truth Galore!

- Quantitative measurements w.r.t. ground truth are subject to the precision of ground truth collecting device:
 - What is the reasonable precision we need in ground truth?
 - When facing indoor mapping, executive drawings might be a reasonable ground truth, but what about the robot path?
 - What is the accuracy required for the task (of course navigation is different from turning an handle).
 - Do we need RTK-GPS Ground Truth in outdoor SLAM?
- Can't we get along without ground truth?
 - Large loop recognition and closure
 - Indirect ground truth computation ...

Here It Comes RAWSEEDS ...

- Robotics Advancement through Web-publishing of Sensorial and Elaborated Extensive Data Sets
 - EU Funded Project 045144 in the VI Frame Program from 1st of November 2006 to July 2009
 - A Specific Support Action to collect and publish a benchmarking toolkit for (S)LAM research
- Involved Institutions:
 - Politecnico di Milano (Italy Coordinator)
 - Università di Milano-Bicocca (Italy Partner)
 - University of Freiburg (Germany Partner)
 - Universidad de Zaragoza (Spain Partner)

Benchmarking Beyond Radish

RAWSEEDS goal is to publish:

- Extended multi-sensor data sets for the testing of systems on real-world scenarios
- Benchmarks and methodologies for quantitative evaluation and comparison of algorithms/sensors
- Off-the-shelf algorithms, with demonstrated performances, to be used for research bootstrap and comparison.
- RAWSEEDS will create a website from which researchers and companies will be able to download these benchmarks, contribute new material and communicate with each other.

www.rawseeds.org

RAWSEEDS Sensor Suite

Use of an extensive sensing suite

- B/W + Color cameras (mono/stereo)
- 3D cameras (SVS by Videre)
- LRFs (SICK 2D)
- Omnidirectional camera (V-Stone)
- Sonar belt
- Other proprioceptives (e.g., odometry, Inertial Measurement Unit)
- ... but what about ground truth?
- Vision-based GT System
- Laser-based GT System

Vision-based GT System

Use a camera network to localize the robot

- Good: Independent sensor
- Bad: Requires (painful) setup/calibration
- Doubt: Might not be accurate enough

Marker Detection/Localization

- Artoolkit Plus: publicly available software, capable to recognize and localize one out of a large set of markers:
 - Simple Id-encoded markers
 - Automatic thresholding
 - Vignetting compensation
 - MATLAB camera calibration toolbox
 - "Robust Planar Pose" algorithm

Marker Positioning

Camera Network Calibration (I)

- Each camera is calibrate with Jean-Yves Bouguet's "Camera Calibration Toolbox for MATLAB"
- Only partial "field of view" overlapping, not always possible to lay down a set of Checkboards …

Camera Network Calibration (II)

We use a "double pattern" approach ... and averaging

- Automatic checkerboard detection
- Checkerboard pairing
- **Roto-translation composition** Ο Camera 2 Camera 1 Calibration Pattern 2 Calibration Pattern 1 Pattern Frame 2 Pattern Frame 1

What about precision?

 With an 8 meters chain obtained chaining 4 cameras (Prosilica GC-750, 640x480)

Laser-based GT System

Use single scan-match w.r.t. reference frame/scan

- Good: SICK lasers are quite accurate (and we have 2 of them)
- Bad: Might require (initial) manual alignment
- Doubt: this is not an independent sensor/measuring system

Scan-matching Galore

Tested 2 scan-matching procedures

- Scan-matching¹ with odometry as initial guess (one SICK is used)
- GA Scan-matching, no need for initial guess (both SICK used)
- Always useful to manually check and re-init ... also for GA

1. Single Scan-Match performed by ALU-FR using the method proposed by Censi @ ICRA 2004.

GT Validation Procedure

Validation should allow the evaluation of the GT systems;

- Homogeneous in nature to the ones provided by the GT systems
- Obtained with different approaches
- Trustable ... and we only trust ourselves

- Use quantitative (laser quality) hand-measuring
 - Find the position of some world points w.r.t. reference frame
 - Find the position of a few points on the robot w.r.t. to these points
 - Combine these measurements into a robot pose (Kalman filter)
 - Compare this measurements to the GT systems output.

The Days of GT Room ...

• We set up a GT room for validation

- Set up reference frame in random position (walls are not aligned)
- Calibrate the camera network and reference it to the global frame
- Measured fixed world points w.r.t. the global reference system

... more Days in GT Room ...

- Then we collected the measurements
 - We moved the robot in 26 fixed positions
 - For each of them grabbed the camera network shots and marked down the robot position
 - Then we measured the distance of these point from world points

... even more Days in GT Room...

Then we computed the 26 poses in the world reference together with their uncertainty by means of a Kalman filter

... and finally results!

After averaging all and taking confidence intervals ...

- All method respects (on average) the 0.1m requirement
- Vision GT is biased in the depth (no surprise at all)

a vera qe

0.03287

 Laser GT turns out less accurate than expected

m a x o f

abs

values

Err

0.1844

0.1623

0.129

All winners, with few interesting points ...

GT LRF Scanmatching

standard

d e via tio

n Err

0.09042

a vera qe

Err

0.04228

Discussion: GT Vision Set Up

- While collecting the datasets camera network can move (or someone might think this would be a great joke!)
- We shot a couple of images before and after and used 2 simple procedure to double check:

Discussion: ARToolKit & RPP

- Camera network calibration seemed to be good, where are we introducing errors?
- We compared the error between standard chessboard location and ARToolKit accuracy

Good for detection, but might be improved in RPP alg.

estimation of marker #15 stats				chessboard estimation stats		
a verage Err	standard deviation Err	maxof abs values Err		a ve ra ge Err	standard deviatio n Err	maxof abs values Err
0.0215	0.0693	0.1022	X	0.0029	0.0152	0.0280
0.0549	0.0376	0.0883	у	-0.0001	0.0083	0.0147
		•			MAR CO	APAR

Discussion: Synchronization

- We performed a test on Camera network and robot loas synchronization (i.e., the datasets)
- Cross-correlation between odomet and GT Vision orientation @ 10Hz
 - Maximum delay camera 1: 20ms
 - Maximum delay camera 2: 2s
 - Maximum delay camera 3: 20ms
 - Maximum delay camera 4: 2s
- If we check if the robot is detected
 - Maximum delay camera 1: 140ms (3)
 - Maximum delay camera 2 340ms (2)
 - Maximum delay camera 3: 20ms (2)
 - Maximum delay camera 4: 80ms (3)

Discussion: GT Laser Accuracy

- Laser accuracy was quite disappointing so we tried to scan-match using the measured GT roto-translations
 - We were not able to align all scans properly
- We have only conjectures so far
 - We pushed to much the limit of SICK laser precision
 - The "flat floor" assumption does not hold and this limits scan-matching precision
 - 0
 - They all lead to unavoidable limits of the GT Laser approach ...

On the collection of robot-pose Ground-Truth, for indoor scenarios, in the RAWSEEDS project

