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Abstract— RAWSEEDS (Robotics Advancement through Web-  « limited spatial range and/or field-of-perception;
publishing of Sensorial and Elaborated Extensive Data Sets) isa , noise;
project funded by the EEC to produce high-quality datasets, il ; .
to be used in mobile robotics benchmarking. A key issue in » sensibility t.o spurlo.us effects;
producing high-quality datasets is the procurement of Ground o low dynam|c range, .
Truth, so to allow a fair comparison between different ap- Systematic errors or drift effects;
proaches. RAWSEEDS focuses on benchmarking of Simultaneous « failures.
Localization and Mapping (SLAM) as a mobile robotics enabling
technology, and it is vital the procurement of a reliable Ground These imperfections are significant for any sensor, evetlycos
fdatasets from the ones already publicly available. In particular, o qansors decrease. Unfortunately, there is a push fog usi
or the robot pose in indoor scenarios, no external devices . .
are available for the absolute localization of the robot and to Cheap sensors, motivated by economical constrafeiden-
overcome this issue we devised two solutions. On one hand, wesive market analyses show that a complex sensing system for
have an approach fully independent from the robot sensors; on a mobile robot cannot cost more that 108)$or a consumer-
the other, we base on the on-board Laser Range Finders, likely |eye| robot” [5]. The algorithms for solving the mapping

more accurate, for benchmarklng_the suentlflc_propos_als th_at do and localization problem become much more complex when
not require LRF streams. The project was required by its officers

and reviewers to provide a validation of the robot pose Ground Multiple sensors are used (as is usually done to partiaiy-co
Truth collection system(s), i.e., an experimental evaluation of pensate for the intrinsic limitations of each sensor), beea

their performance; the results of such activity are presented in they need to include a process of sensor fusion between data
this paper. coming from different sensors [6] [7]. Sensor fusion is most
difficult when different kinds of sensors are employed (e.g.
. INTRODUCTION cameras and sonars), which is exactly what is generally ttone

Progress in the field of robotics requires that robots gafixplore different aspects of the environment and to expleit
the ability to operate with less and less direct human cgntr§apabilities of different sensor technologies [8]. Cheapssrs
without detriment to their performance and, most impofant (Such as the ones that many robotic applications are forced
to the safety of the people interacting with them. A key factd® employ for cost reasons) have very low performance and
for a rapid progress in this field is a substantial advancemé®. paradoxically, need the most sophisticated algorittass
in the performances of robots associated to the concepttd¢ data they generate must be subject to complex elaberatio
autonomy. Among the many facets of autonomy, we consid@id interpretation procedures. The ability to use cheagosen
that moving safely in the environment, and being able @d nonetheless build high-performance robotic produsts i
reach a goal location is the basic ability that a robot mudpsolutely necessary for the diffusion of mass-market iobo
necessarily possess to operate autonomously. This reguifPpPlications. However, the use of sophisticated algosthm
in particular, the robot to be capable to localize itself fie t does not necessarily have a significant impact on the final cos
environment: this is usually done by building on some forifif @ robotic product, as the main economic and conceptual
of internal representation of the environment, i.e., a naayg] €ffort is required for the development and test phases of
locating the position of the robot and its goal on the map. Aripe algorithms, while the implementation can usually refy o
mobile autonomous robot must have the abilities needed ifgxpensive hardware. Presently the tools needed to desigjn
perform activities of mapping and self-localization or SuA develop such algorithms are not available to the vast nigjori
(Simultaneous Localization And Mapping) [1], [2], [3], [4] of the (actually or potentially) interested groups: theeatiye
Obviously, these abilities are not sufficient to ensure that Of RAWSEEDS is to overcome this obstacle by realizing and
robot is also able to execute a task, but they can be thoughaking freely available such tools.
of as a necessary conditions for a mobile robot to be capableThe RAWSEEDS project, funded by the European Com-
of effective autonomous behavior. mission as part of thé'* EU Framework Program, focuses

Perhaps the main problem in SLAM is the fact that datan sensor fusion, localization, mapping and SLAM in au-
processed by the robot come from sensors affected by mdaagomous mobile robotics. The project will provide a compre
imperfections, such as: hensive Benchmarking Toolkit, including high-quality riul



sensorial data sets, well defined Benchmarking Problems)(BEhe key to the acceptance of RAWSEEDS datasets, in order to
based on the data sets, state-of-the-art Benchmarkingg@wu go beyond Radish [9], which is the current state-of-thewart
(BSs) in the form of algorithms, software, methodologied arsupporting comparison of algorithms. Radish is a community
instruments for the assessment of the BSs. initiative, and is a repository of datasets, provided on a

« A Benchmark Problem (BP) is defined as the union o¥oluntary base by research groups. Unfortunately, thesdtga
(i) a detailed and unambiguous description of a task; (€ not provided with Ground Truth, whose procurement is
an extensive, detailed and validated collection of multkertainly not a trivial task, for a research group that is jus
sensorial data, gathered through experimental activity, finning its robot to collect data for paper publishing. The
be used as the input for the execution of the task; (jii) #5age of GT-less datasets is implicitly limiting the conipam
rating methodology for the evaluation of the results of th® What a human could infer from the dataset itself. An
task execution. The application of the given methodolog‘?famlOIe that cannot be computed, basing on the streams from
to the output of an algorithm or piece of softwardhe onboard sensors, is a quantitative measure .of the robot
designed to solve a Benchmark Problem produces a Bgf€ (unless we run one of the BS under evaluation).
of scores that can be used to assess the performance ghen speaking about GT we can distinguish two set of
the algorithm or compare it with other algorithms. unknowns, which are relevant for the autonomous navigation

« A Benchmark Solution (BS) is defined as the union of@sks, i.e., for the RAWSEEDS project: those representiag th
() a BP; (i) the detailed description of an algorithmmap. and those representing the robot pose. While executive
for the solution of the BP (possibly including the sourcgr.awings, of the places where the datasets will .be _colllected
code of its implementation and/or executable code); (iifftight be reasonable as Ground Truth for mapping in indoor
the complete output of the algorithm applied to the BFSCenarios, the robot pose requires an original solutioneto b

(iv) the set of scores of this output, obtained with théeveloped. . _
methodology specified in the BP. In this paper we present two different procedures for indoor

The main use of a BP is to allow testing existing (or in th(g;round Truth acquisition: an external (with respect to the

course of development) algorithms. On the other hand, a é%bm) camera network, providing a robot pose esumatg&;hat
: L . _independent from the robot sensors, and the manual alignmen
can be very useful in many ways, as it will be possible to:

i i i (followed by an automatic optimization procedure) of laser

- compare the results obtained by the algorithm includegans acquired by the robot sensors. The first should be pre-
in the BS with another BS; . ferred whenever we are interested in an independent measure

« use the output of the algorithm included in the BS {0 g¢hent of SLAM performance with respect to the onboard robot
pre-processed input data for higher level algorithms to Rnsors; the second one is supposed to give better perfeeman
tested, e.g., path planners; but it implies two drawbacks: the manual inspection of airsc

» use the algorithm included in the BS as a "building blockgjignments, and its being based on one of the robot sensor
to design a multi-layer system for the processing of sensgteams.

data; . . _ ) ) The accuracy required for such pose GT has been roughly
« use the algorithm included in the BS (and, if availableset t9 0.1m, as in the original project plan and also as

the source code of its implementation) as a source for thgantioned by the project reviewers, so it has been more or
design of new, more sophisticated algorithms. less agreed.

For what concerns the datasets on which BPs are built,The originally planned approach for the RAWSEEDS
a noticeable issue is the so-called Ground Truth. If we speoject, for the collection of the robot pose GT, was to
the robot problem as an estimate problem, i.e., estimate b#fse on a commercial UWB localization system. Such system
the unknown map of the environment, and of the robot posesuld have fulfilled the requirement of independency from
passed by the robot during its motion in the environmenty théhe robot sensors, while being ready-for-use, being amheff-
Ground Truth is the set of real values of the unknowns @helf product. Unfortunately, it turned out that such appto
better, a very good approximation of it, as the real values avas not viable, because its maximum attainable accuracy was
not accessible, both for statistical and philosophicatoea. a little bit beyond our threshold altogether with the effort
It is vital that the GT values are believed to be trust-ablkend cost required for reaching such accuracy: a few days of
from the research groups, in order to allow a fair comparisavork by an expert person sent by the company producing the
between BSs. If we used a certain method on a sensor strgaaduct, but payed by the customer. Therefore, at the grojec
provided by the robot, to compute the GT values, then it wouldvel, we switched to the design of a brand-new system, and a
be impossible to avoid arguments about the appropriatenebsice of ours, perhaps biased by our background, was based
of that method, that in turn will ruin the trust-ability oféh on the use of a network of cameras.
dataset. We could not see any other way for granting fairnesOne could have expected other solutions to the pose GT
than making the GT the outcome of a third party device. lproblem. We mention here the reasoning that moved us to
other words, we believe we need a statistically independatiscard a few alternatives that might have apparently Idoke
measuring system, for measuring such unknowns. Moreovigasible. In particular, solutions based on an upwarditapk
the procurement of a reliable and accurate Ground Truthdamera mounted on the robot. Under this class we have



methods basing on observing a marker depicted on the ceiliBg Laser-based GT
or on observing a marker projected on the ceiling, possibly
not in the visible range as it is for the NorthStar product bP{
Evolution Robotics. These solutions are not viable becau

the sensing suite Of_ the RAWSEEDS robot mqludes, aft%%sed approaches. These BSs could benefit of a GT system
the successful experiences of the Rhyno and Minerva mbﬁ?sed on the accurate LRFs streams

[4], an upward-looking camera, that would be observing suc In the laser-based GT system there are LRFs onboard the

markings, independently of them being in the visible oranfr robot, which measure polar maps of depths referred to the

red range. This would turn into an unacceptable advantage . - .
. nsors, i.e., the scans. One method for obtaining highly
when using such sensor stream. We could have put a NIR-

cutoff filter on such camera, which would have implie[ﬁxccurate, relative pose estimates between two nearby robot

. . . ion ligns th n means of n alignmen
reducing the sensitiveness of that camera, which could ha%:ato s, aligns the scans by means of a scan alignment

required to increase the exposure. possibly leading t i procedure. This technique or a similar scan matching method
q P ' P y g toamotl i \sed in most graph-based SLAM methods that operate on

blur. To make it straight, we decided to discard all solu!uor‘bD laser data. The high precision of the laser range finder

based_ on altering the environment in a way that might l?eleflows small errors in this alignment and provide and effitie
perceived by the robot sensors.

way to measure robot displacement.

The only option we found feasible, with respect to our . : . o
In using scan alignment we defined a specific robot pose as

i f full i ith h ) X
requwemgnt of 1u mdependgnce with respect to t © rot?ﬁ%e laser-based GT frame, and aligned all scans with respect
sensors, is based on observing the robot from outside, i.e.

structuring the robot so to make it easier to perceive aIII% this frame. Howeyer, an automatic procedure fo_r aligning
. . : . laser range observations recorded at different locatismeot
localize, and then looking at it from a different set of sasso
_ . . . . free of errors. Errors can result from the fact that scangicov
that we distribute in the environment. This solution cosiisa

with those that rely on robot-centric perception. We have & too small overlapping area, the data association between

. . tRe measured obstacle locations is not known, and that the
relevant exception here, applicable to the BSs that useosens . .~ "~ ' )
Oé)StlmlzatIOI’l procedures used to find the alignment are local

streams other than the LRFs, e.g., vision-based approachr cedures. Thus, it is important to manually inspect the

These BSs could benefit of a GT system based on the accufy . . : S
matchings provided by an automatic procedure to eliminate
LRFs streams. Of course, more complex works, e.g., thase ) .
. . Inaccurately aligned scans. Laser range scans recordéd wit
fusing the outcome of different sensor streams as well aetho . T . .
. : L accurate sensors provide a dense set of proximity readitig wi
comparing the performance attainable with different senso :
. : . mall measurement errors. Therefore, the automatic puoeed

streams, are required to base their evaluation on the fu

independent GT collected by our vision-based approach. |r¥comb|_nat|0r_1 with manual inspection, _allows for p_rowgln
the relative displacements between pairs of locations from
A. Vision-based GT which scans are recorded with a high accuracy, that we will

In the vision-based GT system there are cameras, arﬁ&)ort as ground truth.

the field-of-view (FOV) of these cameras will likely have
narrow superimposition, so to increase the part of the robct
workspace where GT will be provided. Therefore we have Validation of a GT system means to obtain the GT values
a small chain of cameras with small superimpositions in tHieom the system, and then to compare them with the values
FOV of consecutive cameras. The depth of the FOV has beaptained from the validation activities. By means of sucimeo
roughly set from 2m to 5m, measured in an horizontal plangarison we can validate whether the proposed GT system is
from the camera pin-hole. The tilt angle of the cameras wastually capable to perform its task with the required aacyr
about—m/4 from the horizontal, i.e., pointing downward, se®r not. We remind that the procurement of an accurate GT is
pictures below. a key point to prepare a trusted dataset. A trusted datagset is
As the GT system has to provide its output in a single turn, the key for its widespread usage. We therefore need
reference frame, the vision-based GTframe, there will bet@a devise a convincing validation activity, to make trubtea
roto-translation matrix from each camera to the first onsur GT values.
in the chain, and then from the first camera to the vision- For the validation of the GT systems we implemented a
based GTframe. These matrices will be obtained by propetisnited experimentation of the GT systems, altogether with
chaining the roto-translations between adjacent caméoag a an evaluation of their performance, by means of independent
the chain, up to the first one, and then composing them witheasurement systems. This evaluation will base on manual
the first-camera-to-GTframe matrix. measurements, which one might expect to be less accurate; on
A last comment is in order about the vision-based GT, we other hand we believe these measurements will be, &t leas
need to verify that the cameras do not move, from the momeatile to convince about the quality of the GT system. With
of the acquisition of the data used for setting up the GT systemanual measurements we mean also to base the measurements
to the end of the GT collection; we devised a simple procedune the manual usage of instruments, like the laser rangeréinde
for such verification that will be mentioned in the following in normal use in civil engineering (i.e, those that perfoira t

As mentioned already, there is a relevant exception to the
ot-onboard approach we are taking, that is applicabledo th
s that use sensor streams other than the LRFs, e.g.,-vision

Validation



measure along a single line, in opposition to the ones in abrm exception of the BSs using sensor streams other than

use in robotics, i.e., scanning). the LRFs, e.g., vision-based approaches. These BSs can
In order to perform a convincing validation we, unfor- use a GT system based on the accurate LRFs streams.

tunately, had to avoid the places where the actual data- Whatever the GT system, we have here a second set of

collections will take place, at least for the indoor actest estimates of the robot-state. We calldbot-state-GT

because of their openness to the general public: this would3) Lastly, whatever the GT system, we need to validate
have implied the unacceptable risk of people moving the it i.e., to perform a quantitative evaluation of the GT
cameras, because of the long time required for the work. This  system, and publish the procedure as well as the outcome
is to be avoided as it, in turn, severely degrades the acgurac  of this activity, in order to gain a wide acceptance
of the GT system; it also might mean having instrumentation  of our datasets. Therefore, we need an approach for
moved or even stolen, too many people asking questions, the quantitative evaluation of the GT system, which is
etc. Being so impractical, we therefore decided to limit the another independent measure of the robot state. We call
validation to a room with no public access. this extra set of estimatasbot-state-validation
The validation procedure has been performed in a controllgg course, the requirements for these different estimaftéseo
indoor scenario, reduced in the size of the covered areagtho qpot-state are not the same:
comparable with the real data-collection scenario for tleaa bot-state-BSis based on the robot sensors and is
covered by each camera. The robot pose estimates compute'd fobo . i
by the Ground Truth systems will be objectively compared computed, dur.mg the usage of the dataset, by the BSs;
with hand-laser measurements of the real robot pose. Thme roo » fobot-state-GTis p:?\rt of the benchmark probllem (BP),
had to be large enough to replicate the viewing c.onditions and has to be provided by means Qfasource mdgpendent
of the real GT system(s), including openings allowing direc on the SENsors used by the BSs; it can be provided only
' for some limited part of the robot workspace;

e e ok fobltevadatonis nt par o the BP. and ains
P Y at convincing about the accuracy of the GT system;

beam can be reflected away from the receiver, the sun-blades o fo e jt might be built around theoretical, and heuris-

can make un-detected some mark_ers, etc.). . tic considerations. It also has to be provided by means
In the room there are some points, whose coordinates are o
of a third independent measurement system. It can be

known. On the robot we also have points, whose coordinates . : . -

are known with respect to the robot, e.g., the extrema of provided off-line, with respect to the functioning of the
the robot-frame axes. We manually move the robot about the GT system(s). .
room, to the poses where we will validate the GT systems, !N Order to compare the output of the GT systems with
Then, for each such robot pose, we collect the GT data. Tithe validation, we need to refer the different esﬂmateshgf t
means to draw on the floor the robot-points and then, for eal@pOt state to the very same reference system. We decided to
robot-point, to measure the distance to the room pointss@hdUt the GTirames, i.e., the frames to which the output of the
data allow to compute the robot-frame pose. Such robot pd3d Systems are referred, in coincidence with the Virame, i.e
estimates are then compared to the output of the GT systeth§, frame to which the outcome of the validation is referred.
on order to evaluate their accuracy, and such estimatedashddOW this can be done is presented in the following. Therefore

be accurate enough to allow the appreciation of the errorsffRM now on, the frames systems will be mentioned with the
the GT systems. same name, i.e., GTVframe.

We can now summarize the overall picture.

1) When using the datasets produced by the project, for o o o
a user it will be similar to being receiving the data Description of the vision-based GT system, the calibration

from a real robot, moving in its working space, an@f each single camera, the calibration of the chain of casnera

collecting data with its sensors; the only not perceivabf&ketch of roto-translations involved), the marker degect
difference it will be that the data-collection did happefincl. its calibration, a sketch of the roto-translationsalved,
some time before. Each research group will proposeﬂ%\e detection mechanism, the detection rate, etc.), cotigros
different algorithm, i.e., a benchmarking solution (BS)Qf roto-translation to give out an output in the GTVframe.
Each BS is outputting data apout the ropot sta.te, and we Il RAWSEEDSLASER-BASED GT
want to enable the comparative evaluation of its output,
with respect to the output of other BS. These estimatesDescription of the two scan-matching procedures, composi-
of the robot state represent the first set that we will éon of roto-translation to give out an output in the GTVfram
meeting. We call itobot-state-BS

2) We therefore need another trust-able source for the same
robot state, to be used as a reference for the comparisondefinition of the Vframe, determination of the coordinates
This is the so-called GT; these data cannot be, in prinaf the world-points, definition of robot-points, deterntioa
ple, the ones obtained by the robot sensors, otherwise tifea generic pose of the robot-frame, validation path and
comparison would not be fair. Notice here the relevasequence of validation poses, validating the validatidh: a

II. RAWSEEDSVISION-BASED GT

IV. COLLECTION OF GT VALIDATION DATA
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Fig. 1. Overall Results, for the vision-based GT and for the approaches of laser-based GT (measures are in meters).
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