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Abstract— RAWSEEDS (Robotics Advancement through Web-
publishing of Sensorial and Elaborated Extensive Data Sets) is a
project funded by the EEC to produce high-quality datasets,
to be used in mobile robotics benchmarking. A key issue in
producing high-quality datasets is the procurement of Ground
Truth, so to allow a fair comparison between different ap-
proaches. RAWSEEDS focuses on benchmarking of Simultaneous
Localization and Mapping (SLAM) as a mobile robotics enabling
technology, and it is vital the procurement of a reliable Ground
Truth for both the maps and the robot poses, to distinguish its
datasets from the ones already publicly available. In particular,
for the robot pose in indoor scenarios, no external devices
are available for the absolute localization of the robot and to
overcome this issue we devised two solutions. On one hand, we
have an approach fully independent from the robot sensors; on
the other, we base on the on-board Laser Range Finders, likely
more accurate, for benchmarking the scientific proposals that do
not require LRF streams. The project was required by its officers
and reviewers to provide a validation of the robot pose Ground
Truth collection system(s), i.e., an experimental evaluation of
their performance; the results of such activity are presented in
this paper.

I. I NTRODUCTION

Progress in the field of robotics requires that robots gain
the ability to operate with less and less direct human control,
without detriment to their performance and, most importantly,
to the safety of the people interacting with them. A key factor
for a rapid progress in this field is a substantial advancement
in the performances of robots associated to the concept of
autonomy. Among the many facets of autonomy, we consider
that moving safely in the environment, and being able to
reach a goal location is the basic ability that a robot must
necessarily possess to operate autonomously. This requires,
in particular, the robot to be capable to localize itself in the
environment: this is usually done by building on some form
of internal representation of the environment, i.e., a map,and
locating the position of the robot and its goal on the map. Any
mobile autonomous robot must have the abilities needed to
perform activities of mapping and self-localization or SLAM
(Simultaneous Localization And Mapping) [1], [2], [3], [4].
Obviously, these abilities are not sufficient to ensure thatthe
robot is also able to execute a task, but they can be thought
of as a necessary conditions for a mobile robot to be capable
of effective autonomous behavior.

Perhaps the main problem in SLAM is the fact that data
processed by the robot come from sensors affected by many
imperfections, such as:

• limited spatial range and/or field-of-perception;
• noise;
• sensibility to spurious effects;
• low dynamic range;
• systematic errors or drift effects;
• failures.

These imperfections are significant for any sensor, even costly
ones, but they become increasingly stringent as the cost of
the sensors decrease. Unfortunately, there is a push for using
cheap sensors, motivated by economical constraints:”exten-
sive market analyses show that a complex sensing system for
a mobile robot cannot cost more that 10US$, for a consumer-
level robot” [5]. The algorithms for solving the mapping
and localization problem become much more complex when
multiple sensors are used (as is usually done to partially com-
pensate for the intrinsic limitations of each sensor), because
they need to include a process of sensor fusion between data
coming from different sensors [6] [7]. Sensor fusion is mostly
difficult when different kinds of sensors are employed (e.g.
cameras and sonars), which is exactly what is generally doneto
explore different aspects of the environment and to exploitthe
capabilities of different sensor technologies [8]. Cheap sensors
(such as the ones that many robotic applications are forced
to employ for cost reasons) have very low performance and
so, paradoxically, need the most sophisticated algorithms, as
the data they generate must be subject to complex elaboration
and interpretation procedures. The ability to use cheap sensors
and nonetheless build high-performance robotic products is
absolutely necessary for the diffusion of mass-market robotic
applications. However, the use of sophisticated algorithms
does not necessarily have a significant impact on the final cost
of a robotic product, as the main economic and conceptual
effort is required for the development and test phases of
the algorithms, while the implementation can usually rely on
inexpensive hardware. Presently the tools needed to designand
develop such algorithms are not available to the vast majority
of the (actually or potentially) interested groups: the objective
of RAWSEEDS is to overcome this obstacle by realizing and
making freely available such tools.

The RAWSEEDS project, funded by the European Com-
mission as part of the6th EU Framework Program, focuses
on sensor fusion, localization, mapping and SLAM in au-
tonomous mobile robotics. The project will provide a compre-
hensive Benchmarking Toolkit, including high-quality multi-



sensorial data sets, well defined Benchmarking Problems (BPs)
based on the data sets, state-of-the-art Benchmarking Solutions
(BSs) in the form of algorithms, software, methodologies and
instruments for the assessment of the BSs.

• A Benchmark Problem (BP) is defined as the union of:
(i) a detailed and unambiguous description of a task; (ii)
an extensive, detailed and validated collection of multi-
sensorial data, gathered through experimental activity, to
be used as the input for the execution of the task; (iii) a
rating methodology for the evaluation of the results of the
task execution. The application of the given methodology
to the output of an algorithm or piece of software
designed to solve a Benchmark Problem produces a set
of scores that can be used to assess the performance of
the algorithm or compare it with other algorithms.

• A Benchmark Solution (BS) is defined as the union of:
(i) a BP; (ii) the detailed description of an algorithm
for the solution of the BP (possibly including the source
code of its implementation and/or executable code); (iii)
the complete output of the algorithm applied to the BP;
(iv) the set of scores of this output, obtained with the
methodology specified in the BP.

The main use of a BP is to allow testing existing (or in the
course of development) algorithms. On the other hand, a BS
can be very useful in many ways, as it will be possible to:

• compare the results obtained by the algorithm included
in the BS with another BS;

• use the output of the algorithm included in the BS to get
pre-processed input data for higher level algorithms to be
tested, e.g., path planners;

• use the algorithm included in the BS as a “building block”
to design a multi-layer system for the processing of sensor
data;

• use the algorithm included in the BS (and, if available,
the source code of its implementation) as a source for the
design of new, more sophisticated algorithms.

For what concerns the datasets on which BPs are built,
a noticeable issue is the so-called Ground Truth. If we see
the robot problem as an estimate problem, i.e., estimate of
the unknown map of the environment, and of the robot poses
passed by the robot during its motion in the environment, then
Ground Truth is the set of real values of the unknowns or,
better, a very good approximation of it, as the real values are
not accessible, both for statistical and philosophical reasons.
It is vital that the GT values are believed to be trust-able
from the research groups, in order to allow a fair comparison
between BSs. If we used a certain method on a sensor stream
provided by the robot, to compute the GT values, then it would
be impossible to avoid arguments about the appropriateness
of that method, that in turn will ruin the trust-ability of the
dataset. We could not see any other way for granting fairness
than making the GT the outcome of a third party device. In
other words, we believe we need a statistically independent
measuring system, for measuring such unknowns. Moreover,
the procurement of a reliable and accurate Ground Truth is

the key to the acceptance of RAWSEEDS datasets, in order to
go beyond Radish [9], which is the current state-of-the-artin
supporting comparison of algorithms. Radish is a community
initiative, and is a repository of datasets, provided on a
voluntary base by research groups. Unfortunately, the datasets
are not provided with Ground Truth, whose procurement is
certainly not a trivial task, for a research group that is just
running its robot to collect data for paper publishing. The
usage of GT-less datasets is implicitly limiting the comparison
to what a human could infer from the dataset itself. An
example that cannot be computed, basing on the streams from
the onboard sensors, is a quantitative measure of the robot
pose (unless we run one of the BS under evaluation).

When speaking about GT we can distinguish two set of
unknowns, which are relevant for the autonomous navigation
tasks, i.e., for the RAWSEEDS project: those representing the
map, and those representing the robot pose. While executive
drawings, of the places where the datasets will be collected,
might be reasonable as Ground Truth for mapping in indoor
scenarios, the robot pose requires an original solution to be
developed.

In this paper we present two different procedures for indoor
Ground Truth acquisition: an external (with respect to the
robot) camera network, providing a robot pose estimate thatis
independent from the robot sensors, and the manual alignment
(followed by an automatic optimization procedure) of laser
scans acquired by the robot sensors. The first should be pre-
ferred whenever we are interested in an independent measure-
ment of SLAM performance with respect to the onboard robot
sensors; the second one is supposed to give better performance,
but it implies two drawbacks: the manual inspection of all scan
alignments, and its being based on one of the robot sensor
streams.

The accuracy required for such pose GT has been roughly
set to 0.1m, as in the original project plan and also as
mentioned by the project reviewers, so it has been more or
less agreed.

The originally planned approach for the RAWSEEDS
project, for the collection of the robot pose GT, was to
base on a commercial UWB localization system. Such system
would have fulfilled the requirement of independency from
the robot sensors, while being ready-for-use, being an off-the-
shelf product. Unfortunately, it turned out that such approach
was not viable, because its maximum attainable accuracy was
a little bit beyond our threshold altogether with the effort
and cost required for reaching such accuracy: a few days of
work by an expert person sent by the company producing the
product, but payed by the customer. Therefore, at the project
level, we switched to the design of a brand-new system, and a
choice of ours, perhaps biased by our background, was based
on the use of a network of cameras.

One could have expected other solutions to the pose GT
problem. We mention here the reasoning that moved us to
discard a few alternatives that might have apparently looked
feasible. In particular, solutions based on an upward-looking
camera mounted on the robot. Under this class we have



methods basing on observing a marker depicted on the ceiling
or on observing a marker projected on the ceiling, possibly
not in the visible range as it is for the NorthStar product by
Evolution Robotics. These solutions are not viable because
the sensing suite of the RAWSEEDS robot includes, after
the successful experiences of the Rhyno and Minerva robots
[4], an upward-looking camera, that would be observing such
markings, independently of them being in the visible or infra-
red range. This would turn into an unacceptable advantage
when using such sensor stream. We could have put a NIR-
cutoff filter on such camera, which would have implied
reducing the sensitiveness of that camera, which could have
required to increase the exposure, possibly leading to motion-
blur. To make it straight, we decided to discard all solutions
based on altering the environment in a way that might be
perceived by the robot sensors.

The only option we found feasible, with respect to our
requirement of full independence with respect to the robot
sensors, is based on observing the robot from outside, i.e.,
structuring the robot so to make it easier to perceive and
localize, and then looking at it from a different set of sensors
that we distribute in the environment. This solution contrasts
with those that rely on robot-centric perception. We have a
relevant exception here, applicable to the BSs that use sensor
streams other than the LRFs, e.g., vision-based approaches.
These BSs could benefit of a GT system based on the accurate
LRFs streams. Of course, more complex works, e.g., those
fusing the outcome of different sensor streams as well as those
comparing the performance attainable with different sensor
streams, are required to base their evaluation on the fully
independent GT collected by our vision-based approach.

A. Vision-based GT

In the vision-based GT system there are cameras, and
the field-of-view (FOV) of these cameras will likely have a
narrow superimposition, so to increase the part of the robot
workspace where GT will be provided. Therefore we have
a small chain of cameras with small superimpositions in the
FOV of consecutive cameras. The depth of the FOV has been
roughly set from 2m to 5m, measured in an horizontal plane,
from the camera pin-hole. The tilt angle of the cameras was
about−π/4 from the horizontal, i.e., pointing downward, see
pictures below.

As the GT system has to provide its output in a single
reference frame, the vision-based GTframe, there will be a
roto-translation matrix from each camera to the first one
in the chain, and then from the first camera to the vision-
based GTframe. These matrices will be obtained by properly
chaining the roto-translations between adjacent cameras along
the chain, up to the first one, and then composing them with
the first-camera-to-GTframe matrix.

A last comment is in order about the vision-based GT, we
need to verify that the cameras do not move, from the moment
of the acquisition of the data used for setting up the GT system,
to the end of the GT collection; we devised a simple procedure
for such verification that will be mentioned in the following.

B. Laser-based GT

As mentioned already, there is a relevant exception to the
not-onboard approach we are taking, that is applicable to the
BSs that use sensor streams other than the LRFs, e.g., vision-
based approaches. These BSs could benefit of a GT system
based on the accurate LRFs streams.

In the laser-based GT system there are LRFs onboard the
robot, which measure polar maps of depths referred to the
sensors, i.e., the scans. One method for obtaining highly
accurate, relative pose estimates between two nearby robot
locations, aligns the scans by means of a scan alignment
procedure. This technique or a similar scan matching method
is used in most graph-based SLAM methods that operate on
2D laser data. The high precision of the laser range finder
allows small errors in this alignment and provide and efficient
way to measure robot displacement.

In using scan alignment we defined a specific robot pose as
the laser-based GT frame, and aligned all scans with respect
to this frame. However, an automatic procedure for aligning
laser range observations recorded at different locations is not
free of errors. Errors can result from the fact that scans cover
a too small overlapping area, the data association between
the measured obstacle locations is not known, and that the
optimization procedures used to find the alignment are local
procedures. Thus, it is important to manually inspect the
matchings provided by an automatic procedure to eliminate
inaccurately aligned scans. Laser range scans recorded with
accurate sensors provide a dense set of proximity reading with
small measurement errors. Therefore, the automatic procedure,
in combination with manual inspection, allows for providing
the relative displacements between pairs of locations from
which scans are recorded with a high accuracy, that we will
report as ground truth.

C. Validation

Validation of a GT system means to obtain the GT values
from the system, and then to compare them with the values
obtained from the validation activities. By means of such com-
parison we can validate whether the proposed GT system is
actually capable to perform its task with the required accuracy
or not. We remind that the procurement of an accurate GT is
a key point to prepare a trusted dataset. A trusted dataset is,
in turn, the key for its widespread usage. We therefore need
to devise a convincing validation activity, to make trust-able
our GT values.

For the validation of the GT systems we implemented a
limited experimentation of the GT systems, altogether with
an evaluation of their performance, by means of independent
measurement systems. This evaluation will base on manual
measurements, which one might expect to be less accurate; on
the other hand we believe these measurements will be, at least,
able to convince about the quality of the GT system. With
manual measurements we mean also to base the measurements
on the manual usage of instruments, like the laser range finders
in normal use in civil engineering (i.e, those that perform the



measure along a single line, in opposition to the ones in normal
use in robotics, i.e., scanning).

In order to perform a convincing validation we, unfor-
tunately, had to avoid the places where the actual data-
collections will take place, at least for the indoor activities,
because of their openness to the general public: this would
have implied the unacceptable risk of people moving the
cameras, because of the long time required for the work. This
is to be avoided as it, in turn, severely degrades the accuracy
of the GT system; it also might mean having instrumentation
moved or even stolen, too many people asking questions,
etc. Being so impractical, we therefore decided to limit the
validation to a room with no public access.

The validation procedure has been performed in a controlled
indoor scenario, reduced in the size of the covered area, though
comparable with the real data-collection scenario for the area
covered by each camera. The robot pose estimates computed
by the Ground Truth systems will be objectively compared
with hand-laser measurements of the real robot pose. The room
had to be large enough to replicate the viewing conditions
of the real GT system(s), including openings allowing direct
sunlight, a sufficiently high number of cameras, etc. Such
effects affects the performance of the GT systems (the laser
beam can be reflected away from the receiver, the sun-blades
can make un-detected some markers, etc.).

In the room there are some points, whose coordinates are
known. On the robot we also have points, whose coordinates
are known with respect to the robot, e.g., the extrema of
the robot-frame axes. We manually move the robot about the
room, to the poses where we will validate the GT systems.
Then, for each such robot pose, we collect the GT data. This
means to draw on the floor the robot-points and then, for each
robot-point, to measure the distance to the room points. These
data allow to compute the robot-frame pose. Such robot pose
estimates are then compared to the output of the GT systems,
on order to evaluate their accuracy, and such estimates should
be accurate enough to allow the appreciation of the errors in
the GT systems.

We can now summarize the overall picture.
1) When using the datasets produced by the project, for

a user it will be similar to being receiving the data
from a real robot, moving in its working space, and
collecting data with its sensors; the only not perceivable
difference it will be that the data-collection did happen
some time before. Each research group will propose a
different algorithm, i.e., a benchmarking solution (BS).
Each BS is outputting data about the robot state, and we
want to enable the comparative evaluation of its output,
with respect to the output of other BS. These estimates
of the robot state represent the first set that we will be
meeting. We call itrobot-state-BS.

2) We therefore need another trust-able source for the same
robot state, to be used as a reference for the comparisons.
This is the so-called GT; these data cannot be, in princi-
ple, the ones obtained by the robot sensors, otherwise the
comparison would not be fair. Notice here the relevant

exception of the BSs using sensor streams other than
the LRFs, e.g., vision-based approaches. These BSs can
use a GT system based on the accurate LRFs streams.
Whatever the GT system, we have here a second set of
estimates of the robot-state. We call itrobot-state-GT.

3) Lastly, whatever the GT system, we need to validate
it, i.e., to perform a quantitative evaluation of the GT
system, and publish the procedure as well as the outcome
of this activity, in order to gain a wide acceptance
of our datasets. Therefore, we need an approach for
the quantitative evaluation of the GT system, which is
another independent measure of the robot state. We call
this extra set of estimatesrobot-state-validation.

Of course, the requirements for these different estimates of the
robot-state are not the same:

• robot-state-BSis based on the robot sensors and is
computed, during the usage of the dataset, by the BSs;

• robot-state-GTis part of the benchmark problem (BP),
and has to be provided by means of a source independent
on the sensors used by the BSs; it can be provided only
for some limited part of the robot workspace;

• robot-state-validationis not part of the BP, and aims
at convincing about the accuracy of the GT system;
therefore it might be built around theoretical, and heuris-
tic considerations. It also has to be provided by means
of a third independent measurement system. It can be
provided off-line, with respect to the functioning of the
GT system(s).

In order to compare the output of the GT systems with
the validation, we need to refer the different estimates of the
robot state to the very same reference system. We decided to
put the GTframes, i.e., the frames to which the output of the
GT systems are referred, in coincidence with the Vframe, i.e.,
the frame to which the outcome of the validation is referred.
How this can be done is presented in the following. Therefore,
from now on, the frames systems will be mentioned with the
same name, i.e., GTVframe.

II. RAWSEEDSVISION-BASED GT

Description of the vision-based GT system, the calibration
of each single camera, the calibration of the chain of cameras
(sketch of roto-translations involved), the marker detection
(incl. its calibration, a sketch of the roto-translations involved,
the detection mechanism, the detection rate, etc.), composition
of roto-translation to give out an output in the GTVframe.

III. RAWSEEDSLASER-BASED GT

Description of the two scan-matching procedures, composi-
tion of roto-translation to give out an output in the GTVframe.

IV. COLLECTION OF GT VALIDATION DATA

Definition of the Vframe, determination of the coordinates
of the world-points, definition of robot-points, determination
of a generic pose of the robot-frame, validation path and
sequence of validation poses, validating the validation: all



Fig. 1. Overall Results, for the vision-based GT and for the two approaches of laser-based GT (measures are in meters).

initializations go to the same estimate, relative accuracy(de-
tection of small displacements), absolute accuracy it’s not
possible, just as a consolation we see that validation is in
agreement with the partially independent (from the vision-
based GT) system built on the cameras plus calibration pattern
(the cameras are the same as for the vision-based GT system,
though the detection mechanism is different being not based
on the markers).

V. EXPERIMENTAL VALIDATION

A. Validation of vision-based GT

Results in terms of accuracy as well as of detection rate.
Identification of theweak ring in the chain, i.e., comparison
with the accuracy attained by using the calibration pattern.

B. Validation of laser-based GT

Results in term of accuracy of both approaches.

C. Comparison of vision-based and laser-based GT

In figure 1 a comparison of the two validated GT systems
(vision and laser based) are presented. Comments about the
unexpected part of the results will be presented in the final
paper.
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