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Abstract— Current SLAM algorithms output the world map in
different formats, and the maps generated by different algorithms
are not easily interchangeable in format. This is mainly due to
the different inner functioning, including the sensing, of each al-
gorithm. In our opinion this might affect the evaluation of SLAM
algorithms. In order to make the evaluation criterion independent
on the representation used for the world modeling, we propose
to consider the SLAM outcome as finalized to executing other
robot activities. The map per sè has therefore a limited value,
its main quality, in our view, is its effectiveness in the contest
of another robot task. At the same time, it has to be noted that
the adoption of a particular SLAM algorithm for a given robotic
application cannot base on a single metric. In comparing SLAM
algorithms we need to take into account several aspects, e.g., the
available sensor suite, the required accuracy, etc. If we consider
the classical localization and navigation tasks, provided the rest
remains unchanged, a SLAM algorithm is better than another
as much as these tasks can be (measurably) better achieved.
In the paper we describe the proposal developed in the FP6
RAWSEEDS project, giving also some methodological insights
about the required ground truth and the score computation.

I. INTRODUCTION

Progress in the field of autonomous mobile robotics requires
that robotic systems gain the ability to operate with less
and less direct human control, without detriment to their
performance and, most importantly, to the safety of the people
interacting with them. We are convinced that we will witness
the birth of a new phase in the industrial development of the
world, when robots will be able to safely navigate through
environments designed for human beings, and to effectively
execute tasks in those environments safely co-existing and
cooperating with people.

A key factor for a rapid progress towards this “robotic
spread” is a substantial advancement in the performances of
moving in the working environment without collisions, while
being able to reach a goal location; we see these as the basic
abilities that a robot must necessarily possess to autonomously
operate. This requires, in particular, the robot to be able to
localize itself in the environment; this is usually achieved by
introducing in some form an internal representation of the
environment, i.e., the map. Both the position of the robot and
of its goal position are then located on the map.
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While applications only require the simpler ability to per-
form self-localization in known map, others might require the
Simultaneous Localization And Mapping (SLAM) functional-
ity [1], [2], [3]). Although these abilities are not sufficient to
ensure the robot to be also able to execute a task, they can be
thought of as necessary conditions for a mobile robot to be
capable of effective autonomous behavior.

A huge amount of work has been done in SLAM, neverthe-
less little has been done for establishing a good methodology
for its benchmarking. Some work, oriented to the more general
issue of following Good Experimental Methodologies, took
place in a Special Interest Group [4] of the EURON2 [5]
EEC Network Of Excellence. Beside that effort, what used to
happen is that research groups (mainly universities) collected
their own data, to test the performances of their own algorithm,
and then shared these datasets with the community [6], to
foster the advancement of the research. In these cases, the
produced datasets and tools have been widely accepted and
used by the community, although they are limited in their
usefulness: no ground truth is present, hence no grounded
comparison is possible, and no uniform methodology is used.

Benchmarking and performance measurement are a key
factor for the industrial development of robotics. The study,
design, engineering and marketing of autonomous robotic
systems and solutions relies on the fact that the actors involved
(mainly, research groups and companies) possess, or can easily
acquire, the tools for developing and testing sophisticated
localization, mapping or SLAM algorithms. Such tools can
be subdivided into the following categories:
• sensor datasets (or real facilities) for the testing of sys-

tems on real-world environments;
• benchmarks and methodologies for the quantitative eval-

uation and comparison of algorithm performance;
• proven algorithms, i.e., which have already demonstrated

a successful performances, to be used both as starting
points, to develop new solutions, and for comparison.

To be fully and readily useful, these elements should be
integrated into a coherent benchmarking toolkit. This in turn
requires: common and well-documented interfaces, immediate
interoperability, extensive documentation, and accompanying
support services. Presently, neither a toolkit of the kind de-
scribed above nor its constituents are available to a generic
potential users.

In the line of developing effective benchmarking toolkits,
RAWSEEDS is a project funded by the European Commission,
as part of the VI EU Framework Program, with the aim of
defining a SLAM benchmarking toolkit. In a previous paper
we described the structure of the RAWSEEDS toolkit [7],



in this paper we focus on the evaluation criteria. The paper
presents an introduction to SLAM benchmarking in the next
section, it then moves to the specific of our proposal, and then
some conclusions are drawn.

II. THE RAWSEEDS BENCHMARKING TOOLKIT

Advancement in any scientific and technical discipline re-
lies on two basic mechanisms: competition between research
groups, and exchange and dissemination of results among the
research community. Both require that one research group
could evaluate the results obtained by another research group
in a quantitative way; this means also that the results obtained
by the groups could be compared, in order to find the best
solutions. In the context of RAWSEEDS, i.e., evaluating and
comparing SLAM algorithms, this requires that:

1) algorithms are applied to the same data;
2) an evaluation methodology is defined.
As we already discussed, even the first of these two condi-

tions is presently very rarely fulfilled. RAWSEEDS will offer
a solution to this problem by providing comprehensive and
validated multisensorial datasets. It is worth noticing that the
many synchronized sensor streams, from exactly the same
situations, allows not only to deal with multisensor fusion,
but also, more relevant in our view, to quantitatively evaluate
the performance of a sensing suite; which is very interesting
for new companies entering the robotic field.

A benchmark can be defined as a standard problem to
which any algorithm, in the considered class, can be applied,
together with a set of rules to evaluate the output produced.
RAWSEEDS will generate and publish the datasets needed to
define Benchmark Problems (BPs) and Benchmark Solutions
(BSs).

A Benchmark Problem (BP) is defined as the union of:
1) a detailed and unambiguous description of a task;
2) an extensive, detailed and validated collection of mul-

tisensorial data, gathered through experimental activity,
to be used as the input for the execution of the task;

3) a rating methodology for the evaluation of the results of
the task execution.

The application of the given methodology to the output of an
algorithm or piece of software, designed to solve a Benchmark
Problem, produces a set of scores that can be used to assess
the performance of the algorithm or compare it with other
algorithms.

A Benchmark Solution (BS) is defined as the union of:
1) a Benchmark Problem;
2) the detailed description of an algorithm for the solution

of the BP (possibly including the source code of its
implementation and/or executable code);

3) the complete output of the algorithm applied to the BP;
4) the set of scores of this output, obtained with the

methodology specified in the BP.
The complete set of BPs and BSs published by RAWSEEDS

is what, in this document, we call the “RAWSEEDS Bench-
marking Toolkit”. For instance, a Benchmark Problem may

be a precise description of the task of extracting a map of an
environment composed of line segments from the point-based
representation of the environment produced by a laser range
scanner, plus the complete scanner data recorded on location,
plus the rating methodology to be applied to the results. The
union of this BP with an algorithm solving the problem (and
possibly a software implementation of it), its results, and their
rating (obtained with the given methodology) may then be a
BS.

The main use of a BP is to test existing (or in the course
of development) algorithms. On the other hand, a BS can be
very useful in many ways, as it might be used for:
• comparing the rating obtained by the algorithm included

in the BS with the rating obtained by another algorithm,
applied to the same BP (the rating methodology is defined
in the BP itself, and so can be applied to different BSs);

• using the output of the algorithm included in the BS to
get pre-processed input data for higher level algorithms,
e.g., as path planners;

• using the algorithm included in the BS as a “building
block” to design a complete multi-layered system for the
processing of sensor data;

• using the algorithm included in the BS (and, if available,
the source code of its implementation) as a source for the
design of new, more sophisticated algorithms.

It must be noted that different BSs can be constructed for
a single BP, so the number of BPs is not a limiting factor
for the number of BSs that can be defined. Additionally, it is
important to stress that the ratings of all the BSs based on the
same BP will be directly comparable. The BSs defined as part
of the RAWSEEDS Benchmarking Toolkit will use state-of-
the-art, well-proven algorithms that will constitute a corpus of
“standard solutions” for the BPs and for similar problems.

For the construction of the BPs, typical instances of different
indoor and outdoor environments will be used, in both static
(i.e., excluding moving elements such as people) and dynamic
conditions. Each multisensor dataset will be collected moving
the test robot, see Figure 1, through the environment on a
complex exploratory path.

Each environment will be covered by multiple datasets,
generated by performing exploration sessions on different
paths with the same test robot; in this way it will be possible
e.g., to use multiple datasets associated to the same envi-
ronment to simulate a multi-robot dataset. In our view the
inclusion of outdoor locations is particularly significant, since
many research groups do not own robot platforms capable to
navigate through unstructured terrain and thus research results
in this field are very scarce, even if many possible scientific
and commercial applications can be envisaged.

The raw collection high-resolution sensorial data is not
sufficient to guarantee their precision and consistency, i.e. the
fact that the data obtained from different sensor devices are
coherent with each other, with the (logged) actions performed
by the robot and with the physical environment explored.
Moreover, advanced robotics applications require time coher-
ence between different sensor data streams, which usually is



Fig. 1. robocomduringdatacollectionsv2.eps; the 3 b/w cameras can constitute
different stereoheads

neither guaranteed nor verifiable. To overcome these problems
RAWSEEDS will include an extensive data validation phase,
with the aim of verifying and certifying the consistency of
the data produced by each sensor and their coherence with
the ground truth. Statistical analysis of the data against the
ground truth will be performed during the validation process,
and its results (e.g. noise levels, and distribution) added to the
BPs.

It is extremely important to note that such rating is arbitrary:
it depends on the specific dataset included in the BP and on the
choice of rating methodology. However, it gives a rough way
to compare different algorithms, which is something that has
always been very difficult in robotics. We would like to stress
that the purpose of RAWSEEDS is not that of compiling and
publishing a ”hit parade” of the more successful algorithms
for mobile robotics (which we hope people will submit to
RAWSEEDS for publication in the form of BSs), nor to
certificate the performance of algorithms, as the published
ratings will always be measured by the authors of the BSs
themselves. On the contrary, RAWSEEDS wants to contribute
to the progress of robotics by publishing a set of instruments
- the benchmarking toolkit - useful to develop, evaluate and
perfect algorithms for mobile robotics. The fact that the eval-
uation ratings can, with attention to all the pitfalls associated
to such an operation, be used to compare the performance of
different algorithms when applied to the same data is certainly

useful for research and development but is not, in any measure,
the focus of RAWSEEDS’ activity.

III. THE GROUND TRUTH ISSUE

One of the RAWSEEDS aims is to enable the evaluation of
the performance of different algorithms; for this reason we
need a joint collection of the datasets and the appropriate
Ground Truth (GT in the following). Collection of the GT
means collecting the real value for the variables to be estimated
by the algorithms, i.e., position of walls, that will be then
evaluated. In the cases where such values change in time,
i.e., the robot pose with respect to the world reference, the
collection has to take place at the same time of the sensor
data collection. The GT, together with the data collected by
the robot sensors, constitutes a Benchmark Problem (BP).

Of course, no device is available to measure “the real ground
truth”, i.e. real position with zero error; instead, the best
accurate ground truth estimate suitable for common robotics
requirement will be provided. This estimate will be integrated
with error bounds and/or confidence intervals to be properly
compared with the accuracy of the proposed Benchmark
Solutions (BSs). In the unfortunate case that the accuracy of
the independent GT measuring device is (or in the time will
become) not high enough, the ground truth will be built basing
on the output of the best known algorithm.

Which independent GT collecting device can we devise,
for the robot poses? In the indoor scenarios, a potentially
interesting devices like D-GPS does not work properly and we
therefore need to base on a different technology. Since we are
currently considering continuous acquisition, the manual mea-
surement approach is also not admissible, beside being error
prone and very cumbersome. We designed and implemented
a system, independent on the onboard sensors, based on a
network of cameras. This system exploits a public available
software tool, to locate the robot by locating some markers
carried by the robot (visible in Figure 1), in known positions
on the robot itself. We believe that this approach, which can
be in short described as “GT just in a few places along the
path”, i.e, where the cameras are, is realistic and good enough
for many years forward (of GT usage).

For the map, on the other hand, we might rely on executive
drawings, possibly integrated by hand measurements for those
items (e.g., furniture), which are not in the executive drawings.
Another option is to base on maps collected, independently
from the robot sensors suite, by a human operator. On these
hand-made maps the GT will be computed only on the relative
position between pairs of well-defined environment landmarks,
e.g., vertical edges, etc. This will allow comparison of maps
obtained by the algorithm under evaluation w.r.t. the GT, in
terms of reconstruction error of relative distances. A last option
is to base the GT on maps produced by manually registering
the data output by the most accurate sensors available on the
robot, e.g., laser range scanners.

It has to be noted that some performance evaluation figures
might not require GT, e.g., the pre loop-closure error. A
question that might arise concerns the need for the GT to



be absolute or relative. Relative means that both the GT map
and poses are referred to some previous robot frame. As the
evaluation can be performed between pairs of map elements
and/or poses, we deduce we do not need an absolute GT.

IV. EVALUATION OF SLAM

The output of a SLAM algorithm is a map of an environ-
ment. The most frequently mentioned evaluation methodology
bases on the comparison of the reconstructed map with a
“reference” map of the environment, which is included in the
associated ground truth. This comparison is usually performed
by comparing the position in the maps of specific landmarks,
i.e., features that are both important for navigation and easy
to identify, such as corners or borders of the walls. This (pre-
defined) set of landmarks is chosen on the reference map, and
then the same landmarks are searched in the reconstructed
map: the ratings of the algorithm are then defined in terms
of presence and correct positioning of the landmarks in the
reconstructed map. Examples of such ratings might be the
percentage of landmarks that can actually be identified in
the reconstructed map, or the mean error obtained when
comparing the distances between pairs of landmarks in the
reconstructed map with the same distances evaluated in the
reference map.

However, suppose that we have a Ground Truth accurate
enough; in order to evaluate the performance of a SLAM
approach we need to associate parts of the reconstructed map
to the elements in the Ground Truth. Many different kind of
maps exist: line segment maps, occupancy grid maps, and so
on; a few examples, for the same environment, are presented
in Figure 2, 3, 4. Therefore, when associating map elements
to Ground Truth elements, it might turn out that some SLAM
approach, just because of the map representation used, appears
less performing than others.

An alternative might be to specify, in each BP, which
kind of map is required from the solution algorithm, and of
course it will be possible to define multiple BPs, differing
only for the kind of map they require. We do not think
this to be a convenient approach for the advancement of
the research, as fixing the representations in the BPs stops
the competition between the different representations. A BP
should represent a real problem, without any bias, like fixing
the map representation, the class of the algorithm, etc.

It is also possible to define, on such maps, SLAM-specific
methodologies; an example is the evaluation of loop-closure
error. When the dataset includes a loop, i.e., the trajectory
of the robot returns to a previously visited point, a SLAM
algorithm, which updates the map as the robot proceeds, has
a means of correcting the errors on the estimated pose of
the robot: in fact it possesses two different estimates of the
robot’s pose, in two different time instants, knowing that they
must be coincident. Forcing this coincidence gives additional
constraints on the trajectory of the robot and greatly reduces
the errors due to imperfect odometry.

Moreover, as the features of the reconstructed map have
an estimated position calculated simultaneously with the esti-

Fig. 2. Left: example of image features used in MonoSLAM. Right: Bird’s
view of a MonoSLAM map. Pictures courtesy of Univ. of Zaragoza, Spain

Fig. 3. A map obtained by integrating scans from a LRF. Picture courtesy
of Univ. of Freiburg, Germany

mated trajectory of the robot, when the trajectory is corrected
by “closing the loop”, the map is subject to correction too, and
its precision rises. Loop-closure error is the error between the
estimated pose of the robot (or the position of some feature
of the environment) when reaching the end of a loop, and the
modified pose of the robot (or position of feature) after the
correction due to the closure.

As it can be easily observed, there are currently many
possible ways for assessing the performance of a SLAM
algorithm, among these we can mention:

1) Quantitative measures of path quality, w.r.t. GT;
2) Quantitative measures of map quality, w.r.t. GT;
3) Performance changes as the map size grows;
4) Quantitative measure of the estimation error, before loop

closure;
5) Loop detection performance (false positives, false neg-

atives, etc.).
It seems clear to us that there is not a single and agreed way
to evaluate a SLAM algorithm, instead, like for many other
performance evaluation efforts, see e.g., [8, 9], we will need

Fig. 4. A map obtained integrating 3D segments from a segment-based 3D
stereo reconstruction system



to consider different criteria. Nevertheless, we believe there is
still some missing point in SLAM performance evaluation so
far: no one of the previous mentioned metrics does take in to
consideration the task the robot should pursuit.

V. TASK LEVEL BENCHMARKING

In the end of the previous section we introduced an el-
ement of doubt about the fact that the current approaches
to benchmarking are really optimal. In fact geometry-based
methodologies measure the geometric quality of the map,
when compared to a reference (i.e., correct and complete) map;
in other words, they measure the capability of the mapping
algorithm to produce good maps. It has to be noted, though,
that many SLAM algorithm exist, and a relevant difference
preventing comparison is in the way the map is represented;
we call this the map representation issue.

If we stick to a pure geometry-based approach we need to
solve the problem of matching different representations to the
existing GT map. Finding these matches means: to identify a
set of landmarks in the reference maps (e.g., corners), to find
those landmarks by hand in the reconstructed representation,
and to compute the errors. Here, just reverting the order and
selecting the landmarks in the reconstructed representation
instead of in the reference map, might turn into a different error
score, and the same applies to the selection of the landmarks.
Anyway, if there are enough landmarks, the score becomes
representative.

It might appear that the problem with the different repre-
sentations is that the process of matching to the GT might be
not fair, with respect to the different approaches. For instance,
we could obtain an occupancy grid from the SLAM system,
to be matched to a 2D sparse map of points for GT, we have
the grid quantization playing against. Similarly, if we receive
3D segments from the SLAM system, again to be matched
to a 2D sparse map of points for GT, we might associate,
after a 2D projection, a 3D segment endpoint with the wrong
2D point. However, it would be better if we could figure out a
benchmarking metric that could provide natively an evaluation
of the effectiveness of the map, without any need such always
suboptimal matches.

Such representation independent benchmark would also be
in agreement with the aim to ease the access to mobile robotic
technologies from subjects, like SMEs, active in other fields.
In such case, it is required to be able not only to compare
the different SLAM algorithms, but also the sensing suites or,
more interesting, the combined effect of each algorithm on a
given sensor stream.

These observations motivate our apparently controversial
point, i.e., that it is not the purpose of a mapping algorithm for
robotics to obtain the best map, per sè. In our view, the purpose
of such an algorithm is, instead, the creation of a map that,
when used by a robot to navigate into the real environment
allows the best performance of the robot. This requires the map
to be good, for example, as an instrument for path planning
and/or for obstacle avoidance. It is absolutely possible that,
given a map with good geometric accuracy and one with a

worse geometric accuracy, the second will lead to a much
better performance of the robot in the real environment. For
example, in planning, it is more important to know which
passages (such as doors) exist between the rooms of an office
than to know the exact position of each passage: a map which
has perfect geometry, but representing a wall instead of the
doors, could well lead to disastrous results, up to the incapacity
to perform a given task. We therefore advocate the need to
define new metrics for the evaluation of maps and of mapping
algorithms, more closely related to the real objectives of those
maps, i.e., their usage in robotic applications.

So our proposal for an alternative solution to SLAM bench-
marking is the quantitative measure of the effectiveness in
performing a certain (set of) mobile robotics task(s) based
on the reconstructed map. In other words, we are not really
interested in the amount of accuracy w.r.t. ground truth,
provided we can plan, navigate, and localize in our map.
Moreover, any representation is good, if it allows to a good
performance in these task; similar considerations apply to
the sensor suite: provided the robot can plan, navigate, and
localize itself, it is irrelevant which sensor is used or better,
the relevant dimension moves to other sensor features, e.g.,
power consumption, cost, etc. Summarizing: the definitive
solution to SLAM benchmarking lays in the benchmarking of
Planning, Navigation and Localization. The idea of task-level
benchmarking has been mentioned already, by the authors in a
previous paper [7], and partially also by Collins et al. in [10].

VI. A PRELIMINARY IMPLEMENTATION, BASED ON
LOCALIZATION

To be more practical we focus now on the localization task.
We will evaluate the map built with a SLAM algorithm by
measuring the quality of robot localization, within it, once the
robot moves along a new path, in the same environment.

In this benchmark the first issue is that the dataset should
comprise sensor data to perform SLAM, i.e., the robot should
have moved adequately, revisiting enough times the same
places, allowing ample gathering of the environment features.
Different datasets can be envisaged here, by shortening the
path and/or its informativeness, to change the task difficulty,
and providing a better benchmark measure.

The path used for localization should include sensor
streams, collected from the same robot in the very same
environment, but during different paths. These paths might
be gathered under different conditions, e.g., lighting, dynamic
obstacles, etc. Note that ground truth for the robot pose is
needed only for these paths. Different scores can be built,
such as: how long it takes to get globally localized, basic
statistics of the localization error under the different changing
conditions, etc.

We realize that a few question opens: which localization
algorithm? How can we trust this measure for being a measure
of the SLAM algorithm performance? Is the representation
affecting this measure? Our answers stem from the underlying
idea of measuring the task-level effectiveness:



• the author(s) of the SLAM algorithm are the most ap-
propriate person(s) for performing the selection of the
localization algorithm. Of course they are given the extra-
burden of this selection and implementation, but their
selection cannot be accused of unfairness for the map
representation, for the implementation of the localization
algorithm itself, etc.

• The authors are well aware of the pros and cons of their
SLAM algorithm and are in the best position for selecting
the optimal combination with a localization algorithm,
and this is in agreement with reaching the best task-level
performance.

• The performance will measure the joint performance
of the SLAM and the localization algorithm. But this
is perfectly in agreement with measuring the task-level
performance: the latter is the only relevant measure, our
thesis is “the map quality per sé is not relevant”.

There are two positive side-effects, the first is that no more
map representation issue has to be faced, and secondly that
we can compare different sensing suites and not only the
algorithms.

On the other hand, a for us correct criticism is that the
usage of localization, as the only mobile robotic task exploiting
the map, is unfair; this is the reason for calling the proposal
preliminary. We believe that each task should be scored. Then,
anyone interested in the performance of SLAM algorithms
should look at the task-oriented score that best suites his
specific application.

VII. CONCLUSIONS

In this paper we propose to base the evaluation of SLAM
algorithms on the measured performance of some algorithm
implementing another mobile robotic task, e.g., localization.
To avoid any unfairness, e.g., related to the map representation,
in the selection of the specific algorithm for performing that
robotic task, we propose to give the selection to the author(s)
of the SLAM algorithm under evaluation.

This proposal has the advantage of allowing direct compar-
ison between SLAM algorithms, something that is obviously
interesting, although such interest is perhaps mostly academic.
On the other hand, the proposal has also the advantage of al-
lowing direct comparison between different sensor suites; this
is, in our opinion, something currently missing for reaching

a of widespread usage of mobile robotic technologies in the
industry.
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