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1 Introduction

This deliverable reports about thepreliminary benchmark solutions(BS) for the RAWSEEDS
project. According to the naming convention used in the project abenchmark solutionconsists
in:

• The description and the software implementation of a SLAM algorithm.

• The output of the algorithm on a given dataset. Such a datasetis namedbenchmarking
problemaccording to the Annex I.

• Computation of the score according to a quality measure for evaluating the output of the
algorithm according to the benchmarking problem.

In the current version, we performed our evaluation based ona set of publicly available datasets
and on parts of the RAWSEEDS datasets (due to reasons of availability). For the final deliver-
able of WP5 (D5.2), we will construct a set of benchmark solutions based all datasets acquired
within RAWSEEDS and we will additionally provide the results of our semantic place labeling
techniques as well as on multi-robot exploration accordingto the Annex I.

In the remainder of this document, we first recall the conceptat the base of our perfor-
mance metric. Subsequently, we describe the set of algorithms provided by the members of the
RAWSEEDS consortium. For each of these algorithms, we presenta set of preliminary bench-
mark solutions. We grouped the benchmarking solutions in this document based on the sensor
used by the corresponding algorithms (laser data as well as monocular, stereo, and trinocular
camera data) and based upon the underlying basic principle (Extended Kalman filter, particle
filter, or graph-optimization).

2 Performance Metric

This section gives a brief review of the used metric which is included in D5.1 to make this
document self-containing but should not be regarded as a contribution of D5.1.

One attractive way for measuring the performance of a SLAM algorithm is to consider the
poses of the robot during data acquisition compared to ground truth information rather than
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comparing maps. In this way, we gain two important properties: First, it allows us to compare the
result of algorithms that generate different types of metric map representations, such as feature-
maps or occupancy grid maps. Second, the method is invariantto the sensor setup of the robot.
Thus, a result of a graph-based SLAM approach working on laser range data can be compared,
for example, with the result of vision-based FastSLAM. The only property we require is that the
SLAM algorithm estimates the trajectory of the robot given by a set of poses.

2.1 Benchmarking based on the Trajectory of the Robot

Let x1:T be the poses of the robot estimated by a SLAM algorithm from time step 1 toT . Letx∗
1:T

be the reference poses of the robot, ideally the true locations. We can define a measure that uses
the deformation energy that is needed to deform the estimatedtrajectory into the ground truth.
This can be done – similar to the ideas of the graph mapping introduced by Lu and Milios [24] –
by considering the nodes as masses and connections between them as springs. Thus, our metric
is based on therelativedisplacement between poses. Instead of comparingx to x∗ in the global
reference frame, we do the operation based onδ andδ∗ as

ε(δ) =
1

N

∑

i,j

trans(δi,j ⊖ δ∗i,j)
2 + rot(δi,j ⊖ δ∗i,j)

2, (1)

whereN is the number of relative relations andtrans(·) and rot(·) are used to separate the
translational and rotation components. We suggest to provide both quantities individually. The
mathematical definition of this metric, however, leaves open which relative displacementsδj,i

are included in the summation in Eq. 1. We propose that the relative displacements have to be
provided by thebenchmarking problem, which according to the Annex I, requires to provide the
log file and the ground truth information.

In addition to Eq. 1, one can define the metric according to theabsolute error rather than the
energy. Then the metric can be specified accordingly as

ε(δ) =
1

N

∑

i,j

||trans(δi,j ⊖ δ∗i,j)|| + ||rot(δi,j ⊖ δ∗i,j)|| (2)

The squared error measures to the average energy per constraint required to deform the cur-
rent estimate in the ground truth. The absolute error can be interpreted as the average metric
displacement between the estimated and the true relative transformations.

2.2 Benchmarking based on the Trajectory of the Estimated Map

Some SLAM approaches do not estimate the trajectory of the robot. Especially for “camera-
in-hand” systems, only the resulting map of features is typically considered. In this case, we
can, however, adapt our metric to operate on the landmark locations accordingly and not on
the trajectory of the robot. One then considers the relativedisplacements of landmarks. The
disadvantage of this technique is that the data associationbetween the estimated map and the
ground truth feature map has to be generated by the user. However, this is the only possibility
for benchmarking given that no trajectory estimate is available.
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2.3 Selecting Relative Displacements for Evaluation

The benchmarking problem defines the relative displacements δj,i used in Eq. 1 for a given
dataset. The information can be extracted from accurate building blue print or by manual mea-
surements or manual scan alignment. This, however, is not part of the benchmarking solution
and has to be provided by the benchmarking problem.

3 Benchmark Solutions for Laser-Based SLAM

In this section, we present benchmarking solutions of laser-based SLAM on three different es-
timation algorithms and different datasets. As algorithms,we consider scan-matching as well
as two state-of-the-art SLAM approaches for learning 2D grid maps from a sequence of laser
observations and odometry measurements.

Due to the unavailability of validated RAWSEEDS datasets especially in the beginning of this
WP, we present in this section the results of the algorithms onfive publicly available datasets.
For the final deliverable of WP5 (D5.2), the evaluation will bedone for all RAWSEEDS datasets
by comparing the outputs of the SLAM algorithms according tothe metric of Eq. 1.

3.1 Scan-Matching

Scan matching is the computation of the incremental, open loop maximum likelihood trajectory
of the robot by matching consecutive scans [23, 4].

The general idea of this approaches can be summarized as follows. At any pointt−1 in time,
the robot is given an estimate of its posex̂t−1 and a map̂m(x̂1:t−1, z1:t−1), constructed using the
incremental trajectory estimatêx1:t−1. After the robot moves further on and after taking a new
measurementzt, the robot determines the most likely new posex̂t as

x̂t = argmax
xt

[p(zt | xt, m̂(x̂1:t−1, z1:t−1)) · p(xt | ut−1, x̂t−1)] . (3)

The idea is to trade off the consistency of the measurement with the map (first term on the right-
hand side in (3)) and the consistency of the new pose with the control action and the previous pose
(second term on the right-hand side in (3)). The map is then extended by the new measurement
zt, using the posêxt as the pose at which this measurement was taken. The key limitation of
these approaches lies in the greedy maximization step. Oncethe locationxt at timet has been
computed it is not revised afterward so that the robot cannotrecover from errors affecting the past
pose from which the map is computed (registration errors). Although they have been proved to be
able to correct enormous errors in odometry, the resulting maps often are globally inconsistent,

In small environments, a scan matching algorithm is generally sufficient to obtain accurate
maps with a comparably small computational effort. However, the estimate of the robot trajectory
computed by scan matching is affected by an increasing errorwhich becomes visible whenever
the robot reenters in known regions after visiting large unknown areas (loop closing or place
revisiting).
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3.2 Rao-Blackwellized Particle Filters for Map Learning

Particle filters are a frequently used technique in roboticsfor dynamical system estimation. They
have been used to localize robots [9], to build both feature-maps [25, 27] and grid-maps [11, 17,
19], and to track objects based on vision data [21]. A particle filter approximates the posterior
by a set of random samples and updates it in a recursive way. The particle filter framework
specifies how to update the sample set but leaves open how to choose the so-called proposal
distribution. The proposal is used to draw the next generation of samples at the subsequent time
step in the dynamical process. In practice, the design of theproposal has a major influence on
the performance and robustness of the filtering process. On the one hand, the closer the proposal
is to the target distribution, the better is the estimation performance of the filter. On the other
hand, the computational complexity of the calculation of the proposal distribution should be
small in order to run the filter online. For this reason, the majority of particle filter applications
restrict the proposal distribution to a Gaussian since one can efficiently draw samples from such
a distribution.

In our recent work [34] (see attachment to D5.1), we analyzedhow well such Gaussian
proposal distributions approximate the optimal proposal in the context of mapping. It turns out
that Gaussians are often an appropriate choice but there exist situations in which multi-modal
distributions are needed to appropriately sample the next generation of particles. Based on this
insight, we present an alternative sampling technique thatcan appropriately capture distributions
with multiple modes, resulting in more robust mapping systems.

The mapping system has been implemented and is available as anopen source implemen-
tation under the name GMapping at [35]. GMapping applies a particle filter that requires three
sequential steps to update its estimate. Firstly, one drawsthe next generation of samples from the
so-called proposal distributionπ. Secondly, one assigns a weight to each sample. The weights
account for the fact that the proposal distribution is in general not equal to the target distribu-
tion. The third step is the resampling step in which the targetdistribution is obtained from the
weighted proposal by drawing particles according to their weight.

In the context of the SLAM problem, one aims to estimate the trajectory of the robot as well
as a map of the environment. The key idea of a Rao-Blackwellizedparticle filter for SLAM is to
separate the estimate of the trajectoryx1:t of the robot from the mapm of the environment. This
is done by the following factorization

p(x1:t,m | z1:t, u1:t−1) = p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1), (4)

wherez1:t is the observation sequence andu1:t−1 the odometry information. In practice, the first
term of Eq. (4) is estimated using a particle filter and the second term turns into “mapping with
known poses”.

One of the main challenges in particle filtering is to choose an appropriate proposal distribu-
tion. The closer the proposal is to the true target distribution, the more precise is the estimate
represented by the sample set. Typically, one requires the proposalπ to fulfill the assumption

π(x1:t | z1:t, u1:t−1) = π(xt | x1:t−1, z1:t, u1:t−1)π(x1:t−1 | z1:t−1, u1:t−2). (5)
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According to Doucet [10], the distribution

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) =

p(zt | m
(i)
t−1, xt)p(xt | x

(i)
t−1, ut−1)

p(zt | m
(i)
t−1, x

(i)
t−1, ut−1)

(6)

is the optimal proposal for particlei with respect to thevariance of the particle weightsthat
satisfies Eq. (5). This proposal minimizes the degeneracy ofthe algorithm (Proposition 4 in [10]).
As a result, the computation of the weights turn into

w
(i)
t = w

(i)
t−1

ηp(zt | m
(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1, ut−1)

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1)

(7)

∝ w
(i)
t−1

p(zt | m
(i)
t−1, x

(i)
t )p(x

(i)
t | x

(i)
t−1, ut−1)

p(zt|m
(i)
t−1,xt)p(xt|x

(i)
t−1,ut−1)

p(zt|m
(i)
t−1,x

(i)
t−1,ut−1)

(8)

= w
(i)
t−1 · p(zt | m

(i)
t−1, x

(i)
t−1, ut−1) (9)

= w
(i)
t−1 ·

∫

p(zt | x′)p(x′ | x
(i)
t−1, ut−1) dx′. (10)

Unfortunately, the optimal proposal distribution is in general not available in closed form or
in a suitable form for efficient sampling. As a result, most efficient mapping techniques use a
Gaussian approximation of the optimal proposal. This approximation is easy to compute and
allows the robot to sample efficiently. As we will showed in [34], the Gaussian assumption is not
always justified. Therefore, we implemented a technique that is similar to the Gaussian proposal
approximation but is still able to cover multiple modes.

Our approach is equivalent to computing a sum of weighted Gaussians to model the proposal
but does not require the explicit computation of a sum of Gaussians.

Our previous method [17] first applies scan-matching on a per-particle basis. It then computes
a Gaussian proposalfor each sampleby evaluating poses around the pose reported by the scan-
matcher. This technique yields accurate results in case of auni-modal distribution, but encounters
problems in that it focuses only on the dominant mode to whichthe scan-matching process
converges. The left image in Figure 1 illustrates an examplein which the scan-matching process
converges to the dominant peak denoted as “mode 1”. As a result, the Gaussian proposal samples
only from this mode and at most a few particles cover “mode 2” (and only if the modes are
spatially close). Even if such situations are rarely encountered in practice, we found in our
experiments that they are one of the major reasons for filter divergence.

One of the key ideas integrated into our new approach is to adapt the scan-matching/sampling
procedure to better deal with multiple modes. It consists ofa two step sampling. First, only the
odometry motion model is used to propagate the samples. Thistechnique is known from standard
Monte-Carlo localization approaches (c.f. [9]) and allows the particles to cover possible move-
ments of the robot. In a second step, gradient descent scan-matching is applied based on the
observation likelihood and the denominator of Eq. (6). As a result, each sample converges to the
mode in the likelihood function that is closest to its own starting position. Since the individual
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odometry measurement

mode 2 mode 2mode 1 mode 1

convergence to 2convergence to 1

Figure 1: The left image illustrates a 1D likelihood function and an odometry measurement.
Conventional informed sampling first performs scan-matching starting from the odometry mea-
surement. In this situation, the scan-matcher will find a local peak in the likelihood function
(most likely mode 1) and the future sample will be drawn from aGaussian centered at this single
mode. The right image illustrates the new approach. It drawsthe sample first from the odometry
model and applies scan-matching afterwards. When a drawn sample falls into the area colored
black, the scan-matcher will converge to mode 1, otherwise,it will converge to mode 2. By sam-
pling first from the odometry, then applying scan-matching,and finally computing local Gaussian
approximations, multiple modes in the likelihood functionare likely to be covered by the overall
sample set.

particles start from different locations, they are likely to cover the different modes in their corre-
sponding likelihood functions as illustrated in the right image of Figure 1. Our approach leads
to sample sets distributed according to a Gaussianaround the modesin the observation likeli-
hood functions. As we demonstrated in the experimental results in [34], this technique leads to
proposal distributions which are closer to the optimal proposal given in Eq. (6) than the Gaus-
sian approximations; when the distribution has only a single mode, the solution is equivalent to
previous approaches [17].

Experimental results obtained with GMapping are depicted in Section 3.4 of this deliverable.

3.3 Graph-Based SLAM

Approaches to graph-based SLAM focus on estimating the mostlikely configuration of the nodes
and are therefore referred to as maximum-likelihood (ML) techniques [14, 24, 29]. The approach
briefly described here belongs to this class of methods. For adetailed description see [18, 15, 16,
36].

The goal of graph-based ML mapping algorithms is to find the configuration of the nodes that
maximizes the likelihood of the observations. Letx = (x1 · · · xn)T be a vector of parameters
which describes a configuration of the nodes. Letδji andΩji be respectively the mean and the
information matrix of an observation of nodej seen from nodei. Let fji(x) be a function that
computes a zero noise observation according to the current configuration of the nodesj andi.

Given a constraint between nodej and nodei, we can define theerror eji introduced by the
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constraint as

eji(x) = fji(x) − δji (11)

as well as theresidualrji = −eji(x). Let C = {〈j1, i1〉 , . . . , 〈jM , iM〉} be the set of pairs of
indices for which a constraintδjmim exists. The goal of a ML approach is to find the configuration
x∗ of the nodes that minimized the negative log likelihood of the observations. Assuming the
constraints to be independent, this can be written as

x∗ = argmin
x

∑

〈j,i〉∈C

rji(x)T Ωjirji(x). (12)

Solving the SLAM problem in its graph-based formulation requires to address two problems:

• Determining a set of spatial relationsδij between adjacent robot positions from the laser
observations. This step is often referred to asgraph construction,

• Computing the configuration of posesx∗ which best explain the pairwise relations in the
graph and it is calledgraph optimizationor network optimization.

In the remainder of this section we first discuss how to construct the graph from a sequence
of laser range observations. Subsequently we introduce ournovel graph optimization approach
which is based on stochastic gradient descent. Our approachreaches higher convergence speeds
by embedding the loopy structure of the SLAM problem in the parameterization of the graph.

Graph Construction To construct the graph of relations out of a sequence of measurements
we determine the relative motion between subsequent scans by refining the odometry position
via scan matching. In other words, given a pair of subsequentrobot positionsxi andxi+1, we
determine the transformationδi+1,i as

δi+1,i = argmax
δ

p(δ | zi, zi+1, ui). (13)

Herezi andzi+1 are the laser readings acquired at the timesi andi + 1 andui is the odometry
measurement between the posexi and the posexi+1. δi + 1, i represents the transformation
which leads to the best overlap of the scanszi+1 andzi, under the constraint derived from the
odometry measurementui. To determine these constraints we use the scan-matching algorithm
vascowhich is part of the open source navigation framework CARMEN [26].

We determine the so called loop closing constraintsδj,i between the current robot locationxj

and some previous locationxi by running Monte Carlo Localization [9] in a grid map obtained
from all scans which intersect the current uncertainty ellipse of the robot pose. When MCL
converges, we select the previous nodexi which is closer to the MCL estimatex∗

j of xj and we
add a new constraintδj,i = xj ⊖ xi to the graph.
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Network Optimization using Stochastic Gradient Descent Olsonet al.[29] propose to use a
variant of the preconditioned stochastic gradient descent(SGD) to address the compute the most
likely configuration of the network’s nodes. The approach minimizes Eq. (12) by iteratively
selecting a constraint〈j, i〉 and by moving the nodes of the network in order to decrease theerror
introduced by the selected constraint. Compared to the standard formulation of gradient descent,
the constraints are not optimized as a whole but individually. The nodes are updated according
to the following equation:

xt+1 = xt + λ · H−1JT
jiΩjirji (14)

Herex is the set of variables describing the locations of the posesin the network andH−1 is
a preconditioning matrix.Jji is the Jacobian offji, Ωji is the information matrix capturing the
uncertainty of the observation,rji is the residual, andλ is the learning rate which decreases
with the iteration. For a detailed explanation of Eq. (14), we refer the reader to our previous
works [18, 29].

In practice, the algorithm decomposes the overall problem into many smaller problems by
optimizing subsets of nodes, one subset for each constraint. Whenever time a solution for one
of these subproblems is found, the network is updated accordingly. Obviously, updating the dif-
ferent constraints one after each other can have antagonistic effects on the corresponding subsets
of variables. To avoid infinitive oscillations, one uses thelearning rateλ to reduce the fraction
of the residual which is used for updating the variables. This makes the solutions of the differ-
ent sub-problems to asymptotically converge towards an equilibrium point that is the solution
reported by the algorithm.

Tree Parameterization The posesp = {p1, . . . , pn} of the nodes define the configuration of
the network. The poses can be described by a vector ofparametersx such that a bidirectional
mapping betweenp andx exists. The parameterization defines the subset of variables that are
modified when updating a constraint. Therefore, the way the nodes are parameterized has a
serious influence on the performance of the system. We proposed to use a tree [18] as an efficient
way of parameterizing the nodes. One can construct a spanning tree (not necessarily a minimum
one) from the graph of poses. Given such a tree, we define the parameterization for a node as

xi = pi − pparent(i), (15)

wherepparent(i) refers to the parent of nodei in the spanning tree. As defined in Eq. (15), the tree
stores the differences between poses. This is similar in thespirit to the incremental representa-
tion used in the Olson’s original formulation, in that the difference in pose positions (in global
coordinates) is used rather than pose-relative coordinates or rigid body transformations.

To obtain the difference between two arbitrary nodes based on the tree, one needs to traverse
the tree from the first node upwards to the first common ancestor of both nodes and then down-
wards to the second node. The same holds for computing the error of a constraint. We refer to
the nodes one needs to traverse on the tree as the path of a constraint. For example,Pji is the
path from nodei to nodej for the constraint〈j, i〉. The path can be divided into an ascending
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partP [−]
ji of the path starting from nodei and a descending partP [+]

ji to nodej. We can then
compute the residual in the global frame by

r′ji =
∑

k[−]∈P
[−]
ji

xk[−] −
∑

k[+]∈P
[+]
ji

xk[+] + Riδji. (16)

HereRi is the homogeneous rotation matrix of the posepi. It can be computed according to the
structure of the tree as the product of the individual rotation matrices along the path to the root.
Note that this tree does not replace the graph as an internal representation. The tree only defines
the parameterization of the nodes.

Let Ω′
ji = RiΩjiR

T
i be the information matrix of a constraint in the global frame. According

to [29], we compute an approximation of the Jacobian as

J ′
ji =

∑

k[+]∈P
[+]
ji

Ik[+] −
∑

k[−]∈P
[−]
ji

Ik[−] , (17)

with Ik = (0 · · · 0 I
︸︷︷︸

kth element

0 · · · 0). Then, the update of a constraint turns into

xt+1 = xt + λ|Pji|M
−1Ω′

jir
′
ji, (18)

where|Pji| refers to the number of nodes inPji. In Eq. (18), we replaced the precondition-
ing matrixH−1 with its scaled approximationM−1 as described in [29]. This prevents from a
computationally expensive matrix inversion.

Let the levelof a node be the distance in the tree between the node itself and the root. We
define thetop nodeof a constraint as the node on the path with the smallest level. Our parame-
terization implies that updating a constraint will never change the configuration of a node with a
level smaller than the level of the top node of the constraint.

To summarize, with our approach named TORO [18, 15, 16] (see attachment to D5.1), which
is avaliable as open source at [36], we presented a highly efficient solution to the problem of
learning maximum likelihood maps for mobile robots. Our technique is based on the graph-
formulation of the simultaneous localization and mapping problem and applies a gradient descent
based optimization scheme. Our approach extends Olson’s algorithm by introducing a tree-based
parameterization for the nodes in the graph. This has a significant influence on the convergence
speed and execution time of the method. Furthermore, it enables us to correct arbitrary graphs
and not only a list of sequential poses. In this way, the complexity of our method depends on
the size of the environment and not directly on the length of the input trajectory. This is an
important precondition to allow a robot lifelong map learning in its environment. Our method
has been implemented and exhaustively tested on simulationexperiments as well as on real robot
data. We furthermore compared our method to two existing, state-of-the-art solutions which are
multi-level relaxation and Olson’s algorithm. Our approachconverges significantly faster than
both approaches and yields accurate maps with low errors.
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Figure 2: Maps obtained by the reference datasets used construct RAWSEEDS Benchmark So-
lutions. From left to right: MIT Killian Court, ACES Building atthe University of Texas, Intel
Research Lab Seattle, MIT CSAIL Building, and building 079 University of Freiburg.

3.4 Performances of Laser-Based Approaches

We run open source implementations of the approaches described above on well known and
publicly available datasets (see Fig. 2). For obtaining close to ground truth information of these
non RAWSEEDS datasets, we extracted a set of ground truth relations by manually matching
sets of nearby scans. We finally measured the performances ofeach algorithm on each dataset
by using Eq 1 and Eq 2.

Often, a “weighting-factor” is used to combine both error terms into a single number. In this
evaluation, however, we provide both terms separately for abetter transparency of the results.

We processed the benchmark datasets mentioned above using the algorithms described at the
beginning of this section. A condensed view of each algorithm’s performance is given by the
averaged error over all relations. In Table 1 (top) we give anoverview on the translational error
of the various algorithms, while Table 1 (bottom) shows the rotational error. As expected, it can
be seen that the more advanced algorithms (Rao-Blackwellizedparticle filter and graph mapping)
usually outperform scan matching. This is mainly caused by the fact, that scan matching only
locally optimizes the result and will introduce topologically errors in the maps, especially when
large loops have to be closed. A distinction between RBPF and graph mapping seems difficult as
both algorithms perform well in general. On average, graph mapping seems to be slightly better
than a RBPF for mapping.

To visualize the results and to provide more insights about the benchmark solutions, we do
not provide the scores only but also plots showing the error of each relation. In case of high
errors in a block of relations, we label the relations in the maps. This enables us to see not only
where an algorithm fails, but might also provide insides whyit fails. Inspecting those situations
in correlation with the map helps to understand the properties of algorithms and give valuable
insights on its capabilities. For two datasets, a detailed analysis using these plots is presented in
the following sections.

MIT Killian Court In the MIT Killian Court dataset (also called the infinite corridor dataset),
the robot mainly observed corridors with only few structuresthat support accurate pose correc-
tion. The robot traverses multiple nested loops – a challenge especially for the RBPF-based
technique. We extracted close to 5000 relations between nearby poses that are used for evalua-
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Table 1: Quantitative results of different approaches/datasets.
Trans. error Scan Matching RBPF (50 part.) Graph Mapping
m / m2

Aces (abs) 0.173± 0.614 0.060± 0.049 0.044± 0.044
Aces (sqr) 0.407± 2.726 0.006± 0.011 0.004± 0.009
Intel (abs) 0.220± 0.296 0.070± 0.083 0.031± 0.026
Intel (sqr) 0.136± 0.277 0.011± 0.034 0.002± 0.004
MIT (abs) 1.651± 4.138 0.122± 0.3861 0.050± 0.056
MIT (sqr) 19.85± 59.84 0.164± 0.8141 0.006± 0.029
CSAIL (abs) 0.106± 0.325 0.049± 0.0491 0.004± 0.009
CSAIL (sqr) 0.117± 0.728 0.005± 0.0131 0.0001± 0.0005
FR 79 (abs) 0.258± 0.427 0.061± 0.0441 0.056± 0.042
FR 79 (sqr) 0.249± 0.687 0.006± 0.0201 0.005± 0.011

Rot. error Scan Matching RBPF (50 part.) Graph Mapping
10−2

rad/2

Aces (abs) 2.0± 2.7 2.1± 2.3 0.7± 0.7
Aces (sqr) 0.1± 0.3 0.09± 0.21 0.01± 0.03
Intel (abs) 1.5± 1.5 4.3± 6.3 0.7± 0.7
Intel (sqr) 0.04± 0.08 0.06± 2.9 0.01± 0.03
MIT (abs) 4.0± 7.8 1.4± 1.71 1.0± 1.5
MIT (sqr) 0.7± 2.0 0.04± 0.551 0.03± 0.57
CSAIL (abs) 2.4± 7.9 5.0± 5.41 0.1± 0.2
CSAIL (sqr) 0.7± 3.4 0.5± 1.41 0.0003± 0.0013
FR 79 (abs) 2.9± 3.7 2.6± 2.71 2.6± 2.7
FR 79 (sqr) 0.2± 0.4 0.1± 0.31 0.1± 0.3

1 scan matching has been applied as a preprocessing step.
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Figure 3: The MIT Killian Court dataset. The reference relations are depicted in light yellow.
The left column shows the results of scan-matching, the middle column the result of a GMapping
using 50 samples, and the right column shows the result of a graph-based approach. The regions
marked in the map (boxes and dark blue relations) correspondto regions in the error plots having
high error. The rotational error is not plotted due to space reasons.

tion. Figure 3 shows three different results and the corresponding error distributions to illustrate
the capabilities of our method. Regions in the map with high inconsistencies correspond to re-
lations having a high error. The absence of significant structure along the corridors results in
a small or medium re-localization error of the robot in all compared approaches. In sum, we
can say the graph-based approach outperforms the other methods and that error reflects the im-
pression of a human about map quality obtained by visually inspecting the mapping results (the
vertical corridors in the upper part are supposed to be parallel).

Freiburg Indoor Building 079 The building 079 of the University of Freiburg is an example
for a typical office environment. The building consists of one corridor which connects the indi-
vidual rooms. Figure 4 depicts the results of the individualalgorithms (scan matching, RBPF,
graph-based). In the first row of Figure 4, the relations having a translational error greater than
0.15 m are highlighted in blue.

In the left plot showing the scan matching result, the relations plotted in blue are generated
when the robot revisits an already known region. These relations are visible in the corresponding
error plots (Figure 4 first column, second and third row). As can be seen from the error plots,
these relations with a number greater than 1000 have a largererror than the rest of the dataset.
The fact that the pose estimate of the robot is sub-optimal and that the error accumulates can also
be seen by the rather blurry map and that some walls occur twice. In contrast to that, the more
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Figure 4: This figure shows the Freiburg Indoor Building 079 dataset. Each column reports the
results of one approach. Left: scan-matching, middle: RBPF and right a graph based algorithm.
Within each column, the top image shows the map, the middle plot is the translational error and
the bottom one is the rotational error.
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sophisticated algorithms, namely RBPF and graph mapping, areable to produce consistent and
accurate maps in this environment. Only very few relations show an increased error (illustrated
by dark blue relations).

All datasets, the manually verified relations, and map images are available online [22].

4 Benchmark Solutions for Monocular SLAM

In this section, we shortly describe a state-of-the-art SLAM algorithm that operates exclusively
on a stream of single-camera images. Subsequently, we explain how to solve the inherent scaling
problem of monocular SLAM to apply the performance measure of Eq. 1. We conclude this
section with an evaluation of this algorithm on some datasets acquired in-house as well as on
some RAWSEEDS datasets.

4.1 Single Camera SLAM

We used a sequential Bayesian approach to visual odometry described in [6],[7]. For complete-
ness we attach the related papers to this deliverable.

The algorithm presented makes use of an Extended Kalman Filter with feature points rep-
resented using inverse-depth [6] and considers several hundreds of point features per frame,
camera-centered. Compared to the usual EKF-SLAM, always referred to a world reference
frame, we use here a sensor-centered approach, that greatlyreduces the linearization error.

Another key difference of our approach is the number of measured features, which we rise
from tens to about a hundred of them (see figure 5). The availability of ground truth in the
RAWSEEDS datasets allowed us to verify that this highly improves the accuracy of the esti-
mation and also makes the typical monocular SLAM scale drift, previously reported in [8, 30],
almost vanish.

As in any visual estimation problem, the spurious rejectionplays a fundamental role in our
algorithm. Spurious rejection algorithms well suited for Bayesian estimation –like the classical
JCBB [28] or the recent Active Matching [5]– become computationally intractable due to the
high number of measured features. To overcome this problem,we adopt a RANSAC-based
spurious rejection algorithm.

4.2 Solving the Scaling Problem of Monocular SLAM for Measuring the
Performance

In order to facilitate posterior comparisons, the publiclyavailableRAWSEEDSdatasets have been
used to benchmark the monocular SLAM algorithm. The great advantage of the RAWSEEDS
datesets is that they have been captured with a multisensor platform both in indoors and outdoors
environment, and ground truth is available. In this paper, three different outdoor sequences have
been selected in order to make use of the Real Time Kinematics Differencial GPS data existing
in those datasets.

14



Figure 5: Example image from the monocular sequence in a RAWSEEDS dataset. Whereas
squares represent the image patches of the tracked features, ellipses show the predicted uncer-
tainty region where the correspondences will be looked for.
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Our goal is to compare the trajectory estimated by the EKF-based visual odometry against the
GPS data which we will consider as ground truth. The EKF-SLAMtrajectory will be referred to
the first camera frame of referenceC0. To do the comparison, a rigid transformation composed
of a rotationR, translationt and scale factors has to be applied. Such transformation converts
every estimated camera position to the ground truth frame ofreference.
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The translation is computed to align the starting position with its ground truth value, and the
unknown rotation and scale are obtained using a non-linear minimization algorithm, where these
parameters are modified to minimize the error between the estimated trajectory and the GPS
ground truth data.

Finally, the error of each camera position in the reconstructed path is computed as the Eu-
clidean distance between each point of the estimated camerapath and the GPS ground truth,
ignoring the vertical coordinate.

4.3 Benchmark results

Three different sequences from the mentionedRAWSEEDSdatasets have been used to test the
validity of the algorithm. All sequences have been recordedwith the same camera, a320 × 240
Unibrain with a wide-angle lens capturing at30 fps. Camera calibration is provided in the dataset.

In the first sequence (sequence 1), composed by3900 images, the robot translates for about
125 meters. The second sequence (sequence 2) has5400 images and the robot describes a larger
trajectory, about185 meters. Finally, a very large challenging sequence (sequence 3) is evaluated
that is composed by22350 frames –12 minutes of video– in which the robot moves around a
loopy trajectory of630 meters. It is remarkable in this latter sequence that, although the accu-
mulated drift already makes the error noticeable when plotted with the GPS ground truth data,
the relative error with respect to the trajectory keeps the same low value as the other two shorter
sequences.

Figures 7,8 and 9 shows the estimated trajectory (in red) andthe GPS ground truth (in green)
over a top view extracted from Google maps for each one of the sequences. From plain visual
inspection, it can be seen in these figures that the estimatedtrajectory is not very far from the
GPS trajectory. Table 2 gives detailed information about the errors obtained in the trajectory. As
an illustration of the distribution of the errors, figure 10 shows its histogram for the630 meters
monocular sequence.

5 Benchmark Solutions for Stereo SLAM

In this section we describe our preliminary benchmark solution for stereo-based SLAM. This
family of approaches utlilzes exclusively a sequence of stereo image pairs to compute a feature
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Figure 6: Example of images taken from the630 metres monocular sequence.

Table 2: EKF-based visual odometry estimation errors in thethree experiments.

Trajectory
length [m]

Mean
error [m]

Maximum
error [m]

% mean error over
the trajectory

125 2.0 4.6 1.6%
185 2.1 6.0 1.1%
630 13.2 23.1 2.1%
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Figure 7: Estimation results in a125 metres trajectory over a Google maps top view. Estimated
trajectory is shown in red; GPS data is plotted in green. Meanerror of the estimated trajectory
is 2.0 metres. Red dot shows the beginning of the trajectory, and redarrow shows its initial
direction.
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Figure 8: Estimation results in a185 metres trajectory over a Google maps top view. Estimated
trajectory is shown in red; GPS data is plotted in green. Meanerror of the estimated trajectory
is 2.1 metres. Red dot shows the beginning of the trajectory, and redarrow shows its initial
direction.
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Figure 9: Estimation results in a630 metres trajectory over a Google maps top view. Estimated
trajectory is shown in red; GPS data is plotted in green. Meanerror of the estimated trajectory
is 13.2 metres. Red dot shows the beginning of the trajectory, and redarrow shows its initial
direction.
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Figure 10: Histogram of the visual odometry errors for the630 metres sequence.
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map of the environment. In the following we present a state-of-the-art approach which is able to
construct maps of large scale environments. We validated the approach on some datasets acquired
in house. The results of our approach are shown in Section 5.2. For the final deliverable of WP5,
we plan to run the approach on the RAWSEEDS datasets and to construct a set of benchmark
solutions using the metric described in Section 4.2.

5.1 Stereo Camera SLAM using Conditionally Independent Local Maps

In this section we describe our stereo-SLAM system which integrates a set of novel technologies
which allow us to gather most of the information available inthe stereo features.

We consider information from features both close and far from the cameras. Stereo provides
3D information from nearby scene points, and each camera canalso provide bearing only infor-
mation from distant scene points. Both types of information are incorporated into the map and
used to improve the estimation of both the camera pose and velocity, as well as the map. Nearby
scene points provide scale information through the stereo baseline, eliminating the intrinsic scale
unobservability problem of monocular systems.

Furthermore our system is able to operate in large environments by decomposing the whole
map in local-maps of limited size. We use Conditionally Independent SLAM [33], that allows the
system to maintain both camera velocity information and current feature information during local
map initialization. This adds robustness to the system without sacrificing precision or consistency
in any way. Using the CI-Graph algorithm we can extend the properties of the CI-submaps to
more complex robot trajectories and map topologies.

Feature Detection and Representation A stereo camera can provide depth estimation of
points up to a certain distance determined by the baseline between left and right cameras. There-
fore, we differentiate two regions: a region close to the cameras and visible by both, in which
stereo behaves as a range and bearing sensor. The second is the region of features far from the
cameras or seen by only one, in which the stereo becomes a monocular camera, only provid-
ing bearing measurements of such points. To take advantage of both types of information, we
combine 3D points and inverse depth points (ID) (see [6]) in the state vector in order to build a
map and estimate the camera trajectory. Despite its properties, each inverse depth point needs an
over-parametrization of six values instead of a simpler three coordinates spatial representation.
This produces a computational overhead in the EKF. Working with a stereo camera, which can
estimate the depth of points close to the camera, raises the subtle question of when a feature
should be initialized using a3D or anID representation.

The system produces sequences of local maps of limited size containing both types of fea-
tures using an EKF SLAM algorithm. Most recent submapping techniques are based on building
local maps of limited size that are statisticallyindependent[37, 38, 20, 31]. This requirement im-
poses important constraints to the submaps structure. Valuable information present in a submap
cannot be used to improve other submap estimates since, otherwise, the independence property
could not be preserved. In addition, same environment features observed in different maps have
independent estimations in each map.
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CI-SLAM TheConditionally IndependentSLAM algorithm works with maps that are not sta-
tistically independent, but ratherconditionally independent[33], and thus allow to share the
valuable information with no increment in computational cost or loss of precision whatsoever.
In Visual SLAM it is very useful to share some state vector components between consecutive
submaps: some camera states, such as linear and angular velocities, as well as features that are
in the transition region between adjacent submaps and are currently being tracked. This allows
us to improve the estimate of relative location between the submaps and continue tracking the
observed features with no interruptions. At the same time, CI-submaps inherit the computational
efficiency of submapping techniques that, taking into account a subgroup of the map elements,
can work with covariance/information submatrices of limited size. The details of this algorithm
are explained in [32, 33].

5.2 Performances of Stereo-Camera SLAM

Figure 11: Stereo vision system used to acquire the image sequences. Picture on the left shows
the experimental setup during the data acquisition for the indoor experiment.

In this section we describe a preliminary validation of the system performed on datasets
acquired in-house with the following sensor setup.

The hardware system consists of a stereo camera carried in hand and a laptop to record and
process a sequence of images (see fig. 11). Since the camera moves in 6DOF, we define the
camera state using 12 variables: camera position in 3D cartesian coordinates, camera orientation
in Euler angles, and linear and angular velocities.

We tested the SLAM algorithm with two320× 240 image sequences obtained with the Point
Grey Bumblebee stereo system (see fig. 11). The system provides a65× 50 degree field of view
per camera, has a baseline of12cm, limiting the 3D point features initialization up to a distance
close to5m.

An indoor loop (at 48 fps) and an urban outdoor (at 25 fps) loopsequences were captured
carrying the camera in hand, at normal walking speeds of4 − 5km/hour. Both sequences were
processed in MATLAB with the proposed algorithms on a desktop computer with an Intel 4
processor at 2,4GHz.
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Figure 12: Outdoors experiment: 6DOF stereo SLAM on a publicsquare (left). Indoor experi-
ment along a building environment (right). The sequence of CILocal maps is represented with
respect to the initial reference (top); results obtained after running the D&C algorithm that joins
and corrects the estimates (middle); final map obtained whenthe loop closing constraint is im-
posed (bottom). The scale factor and camera positions are well recovered thanks to the combined
observations of 3D points and inverse depth points.
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Figure 13: Stereo visual SLAM recovers the true scale: the building environment (top) and the
Public square (bottom) overlapping Google Earth.
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The outdoor sequence is composed of 3441 stereo pairs gathered in a public square of our
home town (see fig. 12, left). The full trajectory is approximately 140m long from the initial
camera position. Figure 12 left column, shows the sequence of conditional independent local
maps obtained with the technique described above. Each map contains 100 features combining
inverse depth and 3D points. The total number of maps built during the stereo sequence is 11.
The result of CI SLAM without applying the loop closing constraint is shown in fig. 12, left,
middle. As it can be observed, the precision of the map obtained is good enough to almost align
the first and last submaps after all the trajectory has been traversed, even without applying loop
closing constraints. Fig. 12, left, bottom, presents the final result after closing the loop.

The second experiment was carried out inside one of our campus buildings in a walk of
approximately210m (see fig. 12, right). The same process was run in order to obtain a full map
from 8135 stereo pairs. This environment has a particular degree of difficulty due to ambiguous
texture and the presence of extensive zones of glass windowssuch as offices, corridors and
cafeterias. This can be noticed in the long distance points estimated in some of the maps, which
are actually inside offices and the cafeteria (see fig.12, right, top). The result of CI SLAM is
shown in fig. 12 right, middle, and the final result after loop closing is shown in fig. 12, right,
bottom.

Using the Google Earth tool we can see that the map scale obtained and the trajectory fol-
lowed by the camera is very close to the real scale. Fig. 13 illustrates comparative results. We
loaded the MATLAB figure in Google Earth and set the scale parameter to the real scale.

In the final version of this deliverable, we will provide benchmark solutions based on the
RAWSEEDS datasets.

6 Benchmark Solutions for Trinocular SLAM

In this section we provide a benchmark solution for SLAM systems which operate on trinocular
camera images and odometry. The benchmark solution presented are based on a system which
uses 3D segments as features. The map is estimated by a hierarchical approach which combines
a set of local maps (esimtated using EKF) into a global map by means of graph-optimization.

6.1 Trinocular SLAM with 3D segments

3D segments turn out to be quite a stable primitive, at the image and also at the scene level. On
the other hand, 3D points are computed in the order of thousands per 3D segment, so they are
not a synthetic measure of a human-built scene. The presentedwork proves that visual SLAM
is possible and reliable, when based on 3D segments from stereo. The work extends the known
hierarchical SLAM algorithm to deal with 3D segments from stereo with a full 6DoF observer
pose; the latter, beside being obvious for outdoor conditions, is more appropriate for properly
handling the small imperfections present in indoor conditions.

Extraction of 3D Segments Our system computes the extrema of each segment as a 3D po-
sition. The uncertainty in the perception of each extrema isassumed to be Gaussian, which is
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(a) (b)

(c) (d)

Figure 14: Images captured from: (a): Camera left. (b): Cameratop. (c): Camera right (with
stereo matched segments). (d): 3D segments extraced by the sensor.

computed by applying the Jacobians of the trinocular projection operation [39], [40], [1], [13],
[2], [3] to the noise affecting the pixels in the image. The three cameras are calibrated with re-
spect to a common reference system, located on the robot. We use a DLT technique to determine
the three projection matrices. Figure 14 shows a typical result of our segment extraction routine.

Hierarchical SLAM with 3D segments In our system, we use 3D data from the perception
system mentioned above. The pose of the each extrema of a segment is modeled as a 3D point.
With this information we can approach the full DoF SLAM problem to build a 3D map and we
do not constrain the robot to move on the plane.

The estimation technique used in our system is the popular Hierarchical-SLAM approach
proposed by Neiraet al. [12]. The main idea is to subdivide the whole map in two levels: a
local level and a global level. The local level consists in a set of submaps. Each of these sub-
maps is estimated using an Extended Kalman Filter. To reducethe complexity of the approach,
the individual maps are treated as independent. The global level is represented by a graph where
each node describes one submap and the edges represent the existing relations between them (i.e.,
the relative position and its uncertainty). At any point in time a global map can be recovered by
graph optimization. These two levels are the two abstraction level through which it is possible to
observe the world.

This hierarchical decomposition of the problem, is shown tolimit the influence of lineariza-
tion errors in the EKF process. Furthermore, it reduces the computational cost of the whole
procedure. See attached paper for a more detailed description.
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(a) (b) (c) (d) (e)

Figure 15: Odometry superimposed to the map of the environment (a), uncertainty in odometry
(±3σ), with view id (b), odometry (full) superimposed to the base referencesof the submaps
depicted as circles connected by lines (c), bounding boxes of last (dark) and first (bright) submaps
(d), and the base references of the submaps after graph relaxation (e).

6.2 Performances of Trinocular SLAM

We validated our approach by processing a medium-scale indoors dataset acquired at 4th floor
of building U7, Univ. Milano - Bicocca, Milano, Italy. We useda Robuter mobile robot from
Robosoft and a trinocular system which delivers grab three 704x558 gray-scale images simulta-
neously. We recorded an trinocular image every time the robot moved for approximately 5 cm.
The overall length of the trajectory is approximatively 200m. The results of our approach are
shown in Figures 16 and 17.

In the final version of this deliverable we will evaluate the method on multi-sensorial RAWSEEDS
datasets, and we will compare the results with laser based methods using the metric described in
Section 2.
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Figure 16: Birds-eye view of the 6DoF-pose final reconstruction after graph relaxation, superim-
posed to planimetry.

Figure 17: A 3D view of the 6DoF-pose final reconstruction; the solid-circle line is the same as
in Figure 15e.
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7 Conclusion

This deliverable D5.1 “Preliminary Benchmark Solutions” provides according to the description
of work (Annex I) a set of benchmarking solutions, which is (i) a description and the software
implementation of the corresponding SLAM algorithms, (ii)the output of the algorithm on a
given benchmarking problem (a dataset), and (iii) the scoreof rating the output of the algorithm
according to a quality measure defined in the benchmarking problem.

For laser based SLAM, we provided benchmarking solutions for scan matching, a mapping
system based on a Rao-Blackwellized particle filter (“GMapping”, see attached papers) and a
graph mapping system (“TORO”, see attached papers) evaluation of a set of different datasets.
We furthermore carried out the evaluations for vision-based SLAM systems. We provided algo-
rithms for monocular, stereo, and trinocular SLAM.

For the final deliverable (D5.1) of WP5, we will carry out the evaluations on all RAWSEEDS
datasets and will furthermore present results of our semantic place labeling techniques as well as
on multi-robot exploration according to the Annex I.
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8 Attached Documents

The remainder of this deliverable consists of selected scientific RAWSEEDS publications of
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Analyzing Gaussian Proposal Distributions

for Mapping with Rao-Blackwellized Particle Filters

Cyrill Stachniss∗ Giorgio Grisetti∗ Wolfram Burgard∗ Nicholas Roy†

Abstract— Particle filters are a frequently used filtering tech-
nique in the robotics community. They have been successfully
applied to problems such as localization, mapping, or tracking.
The particle filter framework allows the designer to freely
choose the proposal distribution which is used to obtain the
next generation of particles in estimating dynamical processes.
This choice greatly influences the performance of the filter.
Many approaches have achieved good performance through
informed proposals which explicitly take into account the
current observation. A popular approach is to approximate
the desired proposal distribution by a Gaussian. This paper
presents a statistical analysis of the quality of such Gaussian
approximations. We also propose a way to obtain the optimal
proposal in a non-parametric way and then identify the error
introduced by the Gaussian approximation. Furthermore, we
present an alternative sampling strategy that better deals with
situations in which the target distribution is multi-modal.
Experimental results indicate that our alternative sampling
strategy leads to accurate maps more frequently that the
Gaussian approach while requiring only minimal additional
computational overhead.

I. INTRODUCTION

Particle filters are a frequently used technique in robotics

for dynamical system estimation. They have been used to

localize robots [4], to build both feature-maps [12], [13]

and grid-maps [7], [8], [9], and to track objects based on

vision data [10]. A particle filter approximates the posterior

by a set of random samples and updates it in a recursive

way. The particle filter framework specifies how to update

the sample set but leaves open how to choose the so-called

proposal distribution. The proposal is used to draw the next

generation of samples at the subsequent time step in the

dynamical process. For example, in the context of localizing

a robot, the odometry motion model is a good choice for

the proposal in that it can be easily sampled and then easily

transformed into the target distribution by such techniques as

weighted importance sampling. In practice, the design of the

proposal has a major influence on the performance and ro-

bustness of the filtering process. On the one hand, the closer

the proposal is to the target distribution, the better is the

estimation performance of the filter. On the other hand, the

computational complexity of the calculation of the proposal

distribution should be small in order to run the filter online.

For this reason, the majority of particle filter applications

restrict the proposal distribution to a Gaussian since one can

efficiently draw samples from such a distribution.

Murphy, Doucet, and colleagues [6], [14] introduced fac-

tored particle filters, known as “Rao-Blackwellization”, as an

∗University of Freiburg, Department of Computer Science, D-79110
Freiburg. †MIT, 77 Massachusetts Ave., Cambridge, MA 02139-4307

effective means to solve the simultaneous localization and

mapping (SLAM) problem. By applying this factorization,

several efficient mapping algorithms have been presented [7],

[8], [9], [12] and we can note that all of these algorithms have

used Gaussians to obtain the next generation of particles.

In this paper, we analyze how well such Gaussian proposal

distributions approximate the optimal proposal in the context

of mapping. We apply well-founded statistical measures to

carry out the comparisons. To the best of our knowledge,

this question has not been addressed in the context of

particle filter applications in robotics so far. It turns out that

Gaussians are often an appropriate choice but there exist

situations in which multi-modal distributions are needed to

appropriately sample the next generation of particles. Based

on this insight, we present an alternative sampling technique

that has the same complexity as the Gaussian approximation

but can appropriately capture distributions with multiple

modes, resulting in more robust mapping systems.

This paper is organized as follows. After a discussion

of related approaches, we briefly introduce in Section III

the ideas of mapping with Rao-Blackwellized filters. In

Section IV, we explain how to actually represent and sample

from the optimal proposal. We then present an efficient

variant that allows us to deal with multi-modal proposals in

an efficient way. In Section VI, we introduce the statistical

tests that are used in the experimental section for evaluation.

II. RELATED WORK

Particle filters have been applied to various kinds of

robotic state estimation problems such as localization [4],

mapping [7], [8], [9], [12], visual tracking [10], or data

association problems [20]. Murphy, Doucet, and colleagues

were the first that presented an approach based on a

Rao-Blackwellized particle filter that learns grid maps [6],

[14]. The first efficient approach for mapping with Rao-

Blackwellized particle filters was the FastSLAM algorithm

by Montemerlo et al. [13]. It uses a set of Kalman filters to

represent the map features conditioned on a sampled robot

pose. A Gaussian process model is used to sample the odom-

etry motion model and generate the proposal distribution on

the next step. The grid-based variant presented by Haehnel

et al. [9] performs scan-matching as a preprocessing step.

In this way, they are able to draw samples from Gaussians

with lower variances compared to proposals computed based

on the odometry only. This reduces the number of required

particles and allows a robot to maintain a map estimate

online. In contrast to that, Eliazar et al. [7] focus on an

efficient grid map representation which allows the particles



to share a map. Subsequently, Montemerlo et al. published

FastSLAM2 [12] that uses an informed proposal based on

the most recent sensor observation to restrict the space for

sampling. Again, to efficiently draw the next generation

of particles, the distribution is assumed to be Gaussian.

Grisetti et al. [8] extended FastSLAM2 to deal with large-

scale occupancy grid maps. This technique combines scan-

matching on a per particle basis with informed Gaussian

proposal distributions.

To the best of our knowledge, there exists no evaluation

of how well the Gaussian proposal distributions approximate

the optimal proposal which in general is non-Gaussian in the

context of mapping. There exist approaches that show that

the uncertainty of certain SLAM techniques monotonically

decreases over time. For example, Newman proved this

property for the relative map filter and also showed that

“in the limit, as the number of observations increases, the

relative map becomes perfectly known” [15]. In the context

of particle filters for SLAM, Montemerlo et al. [12] showed

that FastSLAM2 “converges [...] for a restricted class of

linear Gaussian problems”. It, however, makes no statement

about the validity of Gaussian approximations in real world

settings.

III. LEARNING MAPS

WITH RAO-BLACKWELLIZED PARTICLE FILTERS

A particle filter requires three sequential steps to update its

estimate. Firstly, one draws the next generation of samples

from the so-called proposal distribution π. Secondly, one

assigns a weight to each sample. The weights account for

the fact that the proposal distribution is in general not equal

to the target distribution. The third step is the resampling step

in which the target distribution is obtained from the weighted

proposal by drawing particles according to their weight.

In the context of the SLAM problem, one aims to estimate

the trajectory of the robot as well as a map of the environ-

ment. The key idea of a Rao-Blackwellized particle filter for

SLAM is to separate the estimate of the trajectory x1:t of

the robot from the map m of the environment. This is done

by the following factorization

p(x1:t,m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) · p(x1:t | z1:t, u1:t−1), (1)

where z1:t is the observation sequence and u1:t−1 the odom-

etry information. In practice, the first term of Eq. (1) is

estimated using a particle filter and the second term turns

into “mapping with known poses”.

One of the main challenges in particle filtering is to

choose an appropriate proposal distribution. The closer the

proposal is to the true target distribution, the more precise

is the estimate represented by the sample set. Typically, one

requires the proposal π to fulfill the assumption

π(x1:t | z1:t, u1:t−1) = π(xt | x1:t−1, z1:t, u1:t−1)

·π(x1:t−1 | z1:t−1, u1:t−2). (2)

According to Doucet [5], the distribution

p(xt | m
(i)
t−1, x

(i)
t−1, zt, ut−1) =

p(zt | m
(i)
t−1, xt)p(xt | x

(i)
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p(zt | m
(i)
t−1, x

(i)
t−1, ut−1)

(3)

is the optimal proposal for particle i with respect to the

variance of the particle weights that satisfies Eq. (2). This

proposal minimizes the degeneracy of the algorithm (Propo-

sition 4 in [5]). As a result, the computation of the weights

turn into
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∫
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Unfortunately, the optimal proposal distribution is in gen-

eral not available in closed form or in a suitable form

for efficient sampling. As a result, most efficient mapping

techniques use a Gaussian approximation of the optimal

proposal. This approximation is easy to compute and allows

the robot to sample efficiently. As we will show in this paper,

the Gaussian assumption is not always justified. To provide

examples for this statement, we first compute the optimal

proposal explicitly and then compare it to the Gaussian

approximation. Using the optimal proposal in a mapping

system leads to computationally expensive operations which

are explained in the next section in more detail.

IV. COMPUTING AND SAMPLING

FROM THE OPTIMAL PROPOSAL

This section explains how to compute the optimal proposal

and how to sample from that distribution. In mapping as

well as in many other problems, there is no closed form

solution available but we can arrive at a high-fidelity nu-

merical solution for the likelihood function. In our case,

the numerator of Eq. (3) is the product of the observation

likelihood and the odometry motion model. When using

laser range finders, the dominating factor is the observation

likelihood. To point-wise evaluate the observation likelihood,

we use the so called “beam endpoint model” [19]. In this

model, the individual beams within a scan are considered

to be independent. Furthermore, the likelihood of a beam

is computed based on the distance between the endpoint of

the beam and the closest obstacle from that point. Using

this point-wise evaluation of the observation likelihood, we

can compute a three-dimensional histogram providing the

observation likelihood for the different poses.

The second term in Eq. (3) is the robot motion model.

In this paper, we consider the “banana-shaped” distribu-

tion known from most approaches to Monte-Carlo localiza-

tion [4]. The likelihood for the individual poses is computed



point-wise and is stored in a histogram. This histogram

describes the likelihood function in a non-parametric form.

Histograms, however, are affected by discretization errors.

To smooth this effect, we furthermore apply the Parzen

window/kernel estimator [1] based on the evaluated data

points. Let xj be the evaluated poses, then this estimator

is defined as

p̂(x) =
p(xj)

h

n
∑

j=1

K

(

x − xj

h

)

(8)

where h is called Parzen window. We chose the kernel K(u)
as

K(u) =
1√
2π

exp

(

−u2

2

)

. (9)

This technique allows us to smooth the histogram data and

in this way avoid the discontinuities which are inherent

in the histogram representation itself. Furthermore, we can

make the likelihood of the smoothed histogram arbitrarily

close to the optimal distribution of Eq. (3) by increasing the

resolution of the local grid map and reducing the size of the

histogram bins.

Given this non-parametric estimator, we can perform re-

jection sampling to draw the next generation of particles.

Obviously, this results in a highly inefficient mapping system

with respect to the computation time. However, it allows

us to sample from an arbitrarily close approximation to

the optimal proposal distribution and to compare it to its

Gaussian approximation.

As we will illustrate in the experiments, in most cases

the proposal can be safely approximated by a Gaussian.

This explains why existing methods based on this particular

approximation have been so successful. In certain situations,

however, the distribution is highly non-Gaussian and often

multi-modal so that the Gaussian does not properly approx-

imate the true distribution which in turn can lead to the

divergence of the filter. To overcome this problem, we present

an alternative sampling method in the following section.

This sampling strategy is able to handle multiple modes in

the likelihood functions used as the proposal distribution.

Note that our approach does not require any significant com-

putational overhead compared to existing mapping systems

that apply scan-matching in combination with a Gaussian

proposal [8].

V. EFFICIENT MAPPING

WITH MULTI-MODAL PROPOSAL DISTRIBUTIONS

In this section, we present our alternative sampling strat-

egy that can handle multiple modes in the distributions while

at the same time keeping the efficiency of a Gaussian pro-

posal distribution. Our approach is equivalent to computing

a sum of weighted Gaussians to model the proposal but does

not require the explicit computation of a sum of Gaussians.

Note that an open source implementation of our mapping

system using this technique is available online [18].

Our previous method [8] first applies scan-matching on a

per-particle basis. It then computes a Gaussian proposal for

odometry measurement

mode 2 mode 2mode 1 mode 1

convergence to 2convergence to 1

Fig. 1. The left image illustrates a 1D likelihood function and an odometry
measurement. Conventional informed sampling first performs scan-matching
starting from the odometry measurement. In this situation, the scan-matcher
will find a local peak in the likelihood function (most likely mode 1) and
the future sample will be drawn from a Gaussian centered at this single
mode. The right image illustrates the new approach. It draws the sample
first from the odometry model and applies scan-matching afterwards. When
a drawn sample falls into the area colored black, the scan-matcher will
converge to mode 1, otherwise, it will converge to mode 2. By sampling
first from the odometry, then applying scan-matching, and finally computing
local Gaussian approximations, multiple modes in the likelihood function
are likely to be covered by the overall sample set.

each sample by evaluating poses around the pose reported

by the scan-matcher. This technique yields accurate results

in case of a uni-modal distribution, but encounters problems

in that it focuses only on the dominant mode to which the

scan-matching process converges. The left image in Figure 1

illustrates an example in which the scan-matching process

converges to the dominant peak denoted as “mode 1”. As a

result, the Gaussian proposal samples only from this mode

and at most a few particles cover “mode 2” (and only if the

modes are spatially close). Even if such situations are rarely

encountered in practice, we found in our experiments that

they are one of the major reasons for filter divergence.

One of the key ideas of our approach is to adapt the scan-

matching/sampling procedure to better deal with multiple

modes. It consists of a two step sampling. First, only the

odometry motion model is used to propagate the samples.

This technique is known from standard Monte-Carlo local-

ization approaches (c.f. [4]) and allows the particles to cover

possible movements of the robot. In a second step, gradient

descent scan-matching is applied based on the observation

likelihood and the denominator of Eq. (3). As a result, each

sample converges to the mode in the likelihood function that

is closest to its own starting position. Since the individual

particles start from different locations, they are likely to

cover the different modes in their corresponding likelihood

functions as illustrated in the right image of Figure 1. Our

approach leads to sample sets distributed according to a

Gaussian around the modes in the observation likelihood

functions. As we will demonstrate in the experimental re-

sults, this technique leads to proposal distributions which are

closer to the optimal proposal given in Eq. (3) than the Gaus-

sian approximations; when the distribution has only a single

mode, the solution is equivalent to previous approaches [8].

VI. STATISTICAL TESTS

To analyze how close the Gaussian proposal as well as

our new proposal are to the optimal proposal distribution,

we make use of three statistical measures. First, we apply

the Anderson-Darling test on normality [2]. This test is

reported to be one of the most powerful tests in statistics

for detecting most departures from normality. This test is



superior to the Kolmogorov-Smirnov test and has a similar

performance than the Shapiro-Wilk test [16]. Second, we use

the Kullback-Leibler divergence [11] to measure the distance

between distributions. Third, we make use of a measure

taken from the Cramér-von-Mises test [3], [21] to identify

differences between distribution.

Given a set of n samples {y1 < . . . < yn} in ascending

order of magnitude, the Anderson-Darling (AD) test com-

putes the A statistic as

A=−n−
n

∑

k=1

2k − 1

n

[

lnF (yk)+ln(1−F (yn+1−k))
]

, (10)

where F is the cumulated density function (CDF) of the

distribution that is assumed to have generated the samples.

In our case, F is the CDF of the normal distribution.

To determine if the samples are generated by a Gaussian

or not, one needs to test if

A ·
(

1 +
0.75

n
+

2.25

n2

)

≤ c, (11)

where c is the Anderson-Darling test value for normal

distributions corresponding to a desired level of significance.

For example, for a 95% confidence test of normality, the

corresponding c is 0.752.

This test allows us to check if the optimal proposal is in

fact a Gaussian distribution. An interesting property of the

AD test is that it also provides a confidence level for its

result. To apply this test, we only need to draw a sample

set from the optimal proposal and compute Eq. (10) and

Eq. (11). Performing this test for all proposals generated

during a mapping experiment provides a measure of how

often a sample set is generated from a wrong distribution.

Besides the Anderson-Darling test, we apply the Kullback-

Leibler divergence (KLD) which is a frequently used tech-

nique to measure the distance between two arbitrary distribu-

tions. This allows us to also compare our proposal given in

the previous section to the optimal proposal distribution. A

KLD value of zero indicates that the distributions are equal

and the higher the KLD, the bigger is the difference between

them. The KLD between p and f is defined as

KLD(p, f) =

∫

p(x) · log

(

p(x)

f(x)

)

dx. (12)

The KLD takes into account a quotient between two distri-

butions. This can give a high weight to differences in the

tails of the distributions (see Eq. (12), where f(x) is small).

An alternative measure for comparison is used in the

Cramér-von-Mises test [3], [21]. It measures the disparity

of two distributions by taking into account their cumulative

density functions (CDF). Since it does not use a quotient

as the KLD does, it gives less weight to the tails of

the distribution. It computes the integral over the squared

distances between the CDFs. Let p and f be the distributions

to compare and P and F the corresponding CDFs. Then,

d(p, f) =

∫

[P (x) − F (x)]2 dP (x) (13)

TABLE I

PROPOSAL DISTRIBUTIONS WHICH ARE REGARDED AS GAUSSIANS

ACCORDING TO THE ANDERSON-DARLING TEST (95% CONFIDENCE).

Dataset Gaussian
proposal

Non-Gauss
(unimodal)

Multi-modal
proposal

Intel Research Lab 89.2% 7.2% 3.6%

FHW Museum 84.5% 10.4% 5.1%

Belgioioso 84.0% 10.4% 5.6%

MIT CSAIL 78.1% 15.9% 6.0%

MIT Killian Court 75.1% 19.1% 5.8%

Freiburg Bldg. 79 74.0% 19.4% 6.6%

provides a measure about the similarity of both distributions

which is zero if both are equal.

The three techniques presented here are used in our

experiments to identify the differences between the individ-

ual proposals and to illustrate potential weaknesses of the

Gaussian proposals.

VII. EXPERIMENTS

The experiments presented in this paper are all based on

real world data. We furthermore used freely available datasets

to perform our analysis. The learned maps and the datasets

used here are available online [17].

A. Quality of Gaussian Proposals

In the first experiment, we carried out the Anderson-

Darling (AD) test with a confidence of 95% to determine

if the optimal proposal can be considered as Gaussian. The

results of the test are described in Table I. As can be seen,

depending on the dataset, in the optimal proposal was non-

Gaussian in 10% to 26% of all cases.

By visually inspecting the datasets and resulting maps,

we observed two different scenarios in which non-Gaussian

situations occurred. Firstly, we often observed non-Gaussian

observation likelihood functions in highly cluttered environ-

ments where small changes in the position led to substantial

changes of the likelihood. Multi-modal distributions are

likely to occur and Gaussians are not well suited to serve as

a proposal in these cases. Secondly, non-Gaussian proposals

occurred when the robot was moving in environments with

long corridors, a fact that surprised us. At first sight, this may

appear counterintuitive since corridors are well-structured

environments. However, in positions where the robot cannot

observe the end of the corridor with its sensor, the likelihood

along the main axis of the corridor is almost constant which

is highly non-Gaussian and can lead to a negative result of

the AD test. One example is MIT Killian Court, consisting

mainly of long corridors. Note that even if the AD test fails

in such situations, Gaussians can be still good proposals.

In addition to testing acceptance as a Gaussian distribution,

we analyzed the distance between the optimal proposal and

its Gaussian approximation based on the KLD and the

measure from the Cramér-von-Mises test (which is referred

to as CvM in the remainder of this paper). Figure 2 plots the

frequencies of the individual KLD and CvM values for the

Intel and FHW datasets. As can be seen, the approximation

error was small (values close to zero) in 94% to 97% of
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Fig. 2. Difference between the optimal proposal and the Gaussian
approximation based on the Intel Research Lab (first row) and the FHW
dataset (second row). The images on the left depict the frequencies of the
individual Kullback-Leibler divergence values and the images on the right
show the frequencies of the distance measure based on the Cramér-von-
Mises test (see Eq. (13)). The right-most bin contains also all values larger
or equal 0.4 (KLD) and 0.2 (CvM).

all cases. In all other cases, however, the distributions were

substantially different. This fact is represented by the peak

in the right-most bin of the histograms which contains all

values larger or equal than 0.4 (KLD) and 0.2 (CvM). This

peak corresponds to situations with multi-modal distributions

which can only be badly approximated by a Gaussian. Note

that similar results were obtained for the other datasets (see

first row of Figure 3).

B. Multi-Modal Proposal Distribution

In the next experiment, we evaluated the alternative sam-

pling strategy proposed in this paper. We used the KLD to

compare our new proposal to the optimal proposal distribu-

tion. To actually perform the comparison, we computed all

modes of the distribution explicitly, which is not required in

the mapping system itself as described in Section V. To do

so, we drew a set of samples and performed a gradient ascent

in the likelihood function to find the individual modes. The

modes were then approximated by Gaussians according to

the sampled points.

The results of the comparison are shown in Figure 3

for different datasets. The plots in the first row show the

KLD distance between the optimal proposal and its Gaussian

approximation. The plots in the second row depict the

corresponding comparison of our new proposal to the optimal

one.

As can be seen, we obtained distributions that no longer

approximated a significant fraction of the proposal distribu-

tions with large error (i.e., the right-most bin of the distance

histograms). In contrast to this, the Gaussian approach ap-

proximates the optimal proposal inappropriately in 3% to 6%
of all cases. The comparisons using the CvM value showed

similar results and are omitted due to reasons of space.

Approaches using the Gaussian proposal have shown to

build highly accurate maps of most datasets (compare the

experiments in [8]) but there exist situations in which such

new approach

distribution

selected
wrong mode
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Fig. 4. Resulting map of the MIT CSAIL dataset using a Gaussian proposal
(left) and our new approach (right). The Gaussian approach fails due to
highly non-Gaussian likelihood functions in the cluttered room (illustrated
for a given orientation θ in the top image). Trajectory length: 385m,
recording time: 7 min, average speed: 0.9m/s.

TABLE II

EXECUTION TIME ON A 2.8 GHZ PC WITH A P4 SINGLE CORE CPU.

Dataset N Execution time

optimal [8] new method

MIT Killian Court 80 155 h 112 min 113 min

Freiburg Bldg. 79 30 84 h 62 min 62 min

Intel Research Lab 30 40 h 29 min 29 min

FHW Museum 30 38 h 27 min 27 min

Belgioioso 30 18 h 13 min 13 min

MIT CSAIL 30 10 h 7 min 7 min

techniques are likely to fail. This is especially the case if

the dominant mode in the likelihood function is not the

correct one. Such a situation occurs, for example, in the

CSAIL dataset [17] recorded at MIT. Our expectation is

that modeling multiple modes in the proposal distribution

leads to more robust filters. We carried out 10 experiments

with different random seeds and evaluated the success rate

of the approach using the Gaussian proposal and our new

method. Using the Gaussian approximation for the proposal

distribution, the final map had the correct topology (all

loops closed, etc.) in only 20% of trials whereas our new

approach generated a correct map every time. Figure 4 shows

example maps using the Gaussian proposal (left) and our new

approach (right).

C. Runtime

In principle, it is possible to avoid Gaussian approxi-

mations in the proposal distribution. The main disadvan-

tage when sampling from the optimal proposal is the high

computational overhead. To illustrate this overhead, Table II

shows the execution time for the individual approaches

as well as the number of samples used (N). As can be

seen, sampling from the optimal proposal is not suitable

for practical applications since it took up to one week to

correct a single dataset. In contrast to this, the computational

overhead of our new approach is negligible. It allows a robot

to learn an accurate map online while moving through the

environment.
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Fig. 3. The plots in the first row show the KLD between optimal proposal and its Gaussian approximation for different datasets. The plots in the second
row depict the corresponding KLD between the optimal proposal and the proposal proposed in this paper. The right-most bin contains also all values larger
or equal to 0.4. The right-most bin illustrates the mayor drawback of the Gaussian approximation since it described the situations in which the optimal
proposal is highly non-Gaussian (e.g., multi-modal). Our new approach, however, can better deal with such situations.

VIII. CONCLUSION

In this paper, we analyzed how well Gaussian proposal

distributions approximate the optimal proposal in the context

of the application of Rao-Blackwellized particle filters to

the simultaneous localization and mapping problem. We

demonstrated that in around 5% of all cases, the Gaussian ap-

proximation is not sufficient to model the likelihood function.

As such situations are one of the sources for the divergence

of the filter, we presented an alternative sampling technique

that is able to deal with multi-modal distributions while

maintaining the same efficiency as the Gaussian proposal.

This resulted in a more robust approach to mapping with

Rao-Blackwellized particle filters. In experiments carried out

with real data, we showed the efficiency and robustness of

our approach.
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Abstract— In 2006, Olson et al. presented a novel approach to
address the graph-based simultaneous localization and mapping
problem by applying stochastic gradient descent to minimize
the error introduced by constraints. Together with multi-level
relaxation, this is one of the most robust and efficient maxi-
mum likelihood techniques published so far. In this paper, we
present an extension of Olson’s algorithm. It applies a novel
parameterization of the nodes in the graph that significantly
improves the performance and enables us to cope with arbitrary
network topologies. The latter allows us to bound the complexity
of the algorithm to the size of the mapped area and not to
the length of the trajectory as it is the case with both previous
approaches. We implemented our technique and compared it to
multi-level relaxation and Olson’s algorithm. As we demonstrate
in simulated and in real world experiments, our approach
converges faster than the other approaches and yields accurate
maps of the environment.

I. INTRODUCTION

Models of the environment are needed for a wide range of

robotic applications, including search and rescue, automated

vacuum cleaning, and many others. Learning maps has there-

fore been a major research focus in the robotics community

over the last decades. Learning maps under uncertainty is

often referred to as the simultaneous localization and map-

ping (SLAM) problem. In the literature, a large variety of

solutions to this problem can be found. The approaches mainly

differ due to the underlying estimation technique such as

extended Kalman filters, information filters, particle filters, or

least-square error minimization techniques.

In this paper, we consider the so-called “graph-based” or

“network-based” formulation of the SLAM problem in which

the poses of the robot are modeled by nodes in a graph [2,

5, 6, 7, 11, 13]. Constraints between poses resulting from

observations or from odometry are encoded in the edges

between the nodes.

The goal of an algorithm designed to solve this problem

is to find the configuration of the nodes that maximizes the

observation likelihood encoded in the constraints. Often, one

refers to the negative observation likelihood as the error or the

energy in the network. An alternative view to the problem is

given by the spring-mass model in physics. In this view, the

nodes are regarded as masses and the constraints as springs

connected to the masses. The minimal energy configuration of

the springs and masses describes a solution to the mapping

problem. Figure 1 depicts such a constraint network as a

motivating example.

A popular solution to this class of problems are iterative

approaches. They can be used to either correct all poses

simultaneously [6, 9, 11] or to locally update parts of the

Fig. 1. The left image shows an uncorrected network with around 100k poses
and 450k constraints. The right image depicts the network after applying our
error minimization approach (100 iterations, 17s on a P4 CPU with 1.8GHz).

network [2, 5, 7, 13]. Depending on the used technique,

different parts of the network are updated in each iteration.

The strategy for defining and performing these local updates

has a significant impact on the convergence speed.

Our approach uses a tree structure to define and efficiently

update local regions in each iteration. The poses of the indi-

vidual nodes are represented in an incremental fashion which

allows the algorithm to automatically update successor nodes.

Our approach extends Olson’s algorithm [13] and converges

significantly faster to a network configuration with a low error.

Additionally, we are able to bound the complexity to the size

of the environment and not to the length of the trajectory.

The remainder of this paper is organized as follows. After

discussing the related work, Section III explains the graph-

based formulation of the mapping problem. Subsequently, we

explain the usage of stochastic gradient descent to find network

configurations with small errors. Section V introduces our

tree parameterization and in Section VI we explain how to

obtain such a parameterization tree from robot data. We finally

present our experimental results in Section VII.

II. RELATED WORK

Mapping techniques for mobile robots can be classified

according to the underlying estimation technique. The most

popular approaches are extended Kalman filters (EKFs), sparse

extended information filters, particle filters, and least square

error minimization approaches. The effectiveness of the EKF

approaches comes from the fact that they estimate a fully

correlated posterior about landmark maps and robot poses [10,

14]. Their weakness lies in the strong assumptions that have

to be made on both, the robot motion model and the sensor

noise. Moreover, the landmarks are assumed to be uniquely



identifiable. There exist techniques [12] to deal with unknown

data association in the SLAM context, however, if certain

assumptions are violated the filter is likely to diverge [8].

Frese’s TreeMap algorithm [4] can be applied to compute

nonlinear map estimates. It relies on a strong topological

assumption on the map to perform sparsification of the in-

formation matrix. This approximation ignores small entries in

the information matrix. In this way, Frese is able to perform

an update in O(log n) where n is the number of features.

An alternative approach is to find maximum likelihood maps

by least square error minimization. The idea is to compute

a network of relations given the sequence of sensor read-

ings. These relations represent the spatial constraints between

the poses of the robot. In this paper, we also follow this

way of formulating the SLAM problem. Lu and Milios [11]

first applied this approach in robotics to address the SLAM

problem using a kind of brute force method. Their approach

seeks to optimize the whole network at once. Gutmann and

Konolige [6] proposed an effective way for constructing such

a network and for detecting loop closures while running an

incremental estimation algorithm. Howard et al. [7] apply

relaxation to localize the robot and build a map. Duckett

et al. [2] propose the usage of Gauss-Seidel relaxation to

minimize the error in the network of constraints. In order to

make the problem linear, they assume knowledge about the

orientation of the robot. Frese et al. [5] propose a variant of

Gauss-Seidel relaxation called multi-level relaxation (MLR).

It applies relaxation at different resolutions. MLR is reported

to provide very good results and is probably the best relaxation

technique in the SLAM context at the moment.

Note that such maximum likelihood techniques as well as

our method focus on computing the best map and assume that

the data association is given. The ATLAS framework [1] or

hierarchical SLAM [3], for example, can be used to obtain

such data associations (constraints). They also apply a global

optimization procedure to compute a consistent map. One can

replace such optimization procedures by our algorithm and in

this way make ATLAS or hierarchical SLAM more efficient.

The approach closest to the work presented here is the

work of Olson et al. [13]. They apply stochastic gradient

descent to reduce the error in the network. They also propose

a representation of the nodes which enables the algorithm to

perform efficient updates. The approach of Olson et al. is

one of the current state-of-the-art approaches for optimizing

networks of constraints. In contrast to their technique, our

approach uses a different parameterization of the nodes in

the network that better takes into account the topology of

the environment. This results in a faster convergence of our

algorithm.

Highly sophisticated optimization techniques such as MLR

or Olson’s algorithm are restricted to networks that are built

in an incremental way. They require as input a sequence of

robot poses according to the traveled path. First, this makes it

difficult to use these techniques in the context of multi-robot

SLAM. Second, the complexity of the algorithm depends on

the length of the trajectory traveled by the robot and not on

the size of the environment. This dependency prevents to use

these approaches in the context of lifelong map learning.

One motivation of our approach is to build a system that

depends on the size of the environment and not explicitely

on the length of the trajectory. We designed our approach in

a way that it can be applied to arbitrary networks. As we

will show in the remainder of this paper, the ability to use

arbitrary networks allows us to prune the trajectory so that

the complexity of our approach depends only on the size

of the environment. Furthermore, our approach proposes a

more efficient parameterization of the network when applying

gradient descent.

III. ON GRAPH-BASED SLAM

Most approaches to graph-based SLAM focus on estimating

the most-likely configuration of the nodes and are therefore

referred to as maximum-likelihood (ML) techniques [2, 5, 6,

11, 13]. They do not consider to compute the full posterior

about the map and the poses of the robot. The approach

presented in this paper also belongs to this class of methods.

The goal of graph-based ML mapping algorithms is to find

the configuration of the nodes that maximizes the likelihood

of the observations. For a more precise formulation consider

the following definitions:

• x = (x1 · · · xn)T is a vector of parameters which

describes a configuration of the nodes. Note that the

parameters xi do not need to be the absolute poses of the

nodes. They are arbitrary variables which can be mapped

to the poses of the nodes in real world coordinates.

• δji describes a constraint between the nodes j and i. It

refers to an observation of node j seen from node i. These

constraints are the edges in the graph structure.

• Ωji is the information matrix modeling the uncertainty

of δji.

• fji(x) is a function that computes a zero noise observation

according to the current configuration of the nodes j and

i. It returns an observation of node j seen from node i.

Given a constraint between node j and node i, we can define

the error eji introduced by the constraint as

eji(x) = fji(x) − δji (1)

as well as the residual rji

rji(x) = −eji(x). (2)

Note that at the equilibrium point, eji is equal to 0 since

fji(x) = δji. In this case, an observation perfectly matches

the current configuration of the nodes. Assuming a Gaussian

observation error, the negative log likelihood of an observation

fji is

Fji(x) ∝ (fji(x) − δji)
T

Ωji (fji(x) − δji) (3)

= eji(x)T Ωjieji(x) (4)

= rji(x)T Ωjirji(x). (5)

Under the assumption that the observations are independent,

the overall negative log likelihood of a configuration x is

F (x) =
∑

〈j,i〉∈C

Fji(x) (6)

=
∑

〈j,i〉∈C

rji(x)T Ωjirji(x). (7)



Here C = {〈j1, i1〉 , . . . , 〈jM , iM 〉} is set of pairs of indices

for which a constraint δjmim
exists.

The goal of a ML approach is to find the configuration x∗

of the nodes that maximizes the likelihood of the observations.

This can be written as

x∗ = argmin
x

F (x). (8)

IV. STOCHASTIC GRADIENT DESCENT

FOR MAXIMUM LIKELIHOOD MAPPING

Olson et al. [13] propose to use a variant of the pre-

conditioned stochastic gradient descent (SGD) to address the

SLAM problem. The approach minimizes Eq. (8) by iteratively

selecting a constraint 〈j, i〉 and by moving the nodes of the

network in order to decrease the error introduced by the

selected constraint. Compared to the standard formulation

of gradient descent, the constraints are not optimized as a

whole but individually. The nodes are updated according to

the following equation:

xt+1 = xt + λ · H−1JT
jiΩjirji

︸ ︷︷ ︸

∆xji

(9)

Here x is the set of variables describing the locations of the

poses in the network and H−1 is a preconditioning matrix. Jji

is the Jacobian of fji, Ωji is the information matrix capturing

the uncertainty of the observation, and rji is the residual.

Reading the term ∆xji of Eq. (9) from right to left gives

an intuition about the sequential procedure used in SGD:

• rji is the residual which is the opposite of the error vector.

Changing the network configuration in the direction of the

residual rji will decrease the error eji.

• Ωji represents the information matrix of a constraint.

Multiplying it with rji scales the residual components

according to the information encoded in the constraint.

• JT
ji: The role of the Jacobian is to map the residual term

into a set of variations in the parameter space.

• H is the Hessian of the system and it represents the

curvature of the error function. This allows us to scale

the variations resulting from the Jacobian depending on

the curvature of the error surface. We actually use an

approximation of H which is computed as

H ≃
∑

〈j,i〉

JjiΩjiJ
T
ji. (10)

Rather than inverting the full Hessian which is computa-

tionally expensive, we approximate it by

H−1 ≃ [diag(H)]−1. (11)

• λ is a learning rate which decreases with the iteration

of SGD and which makes the system to converge to an

equilibrium point.

In practice, the algorithm decomposes the overall problem

into many smaller problems by optimizing the constraints

individually. Each time a solution for one of these subproblems

is found, the network is updated accordingly. Obviously,

updating the different constraints one after each other can have

opposite effects on a subset of variables. To avoid infinitive

oscillations, one uses the learning rate to reduce the fraction

of the residual which is used for updating the variables.

This makes the solutions of the different sub-problems to

asymptotically converge towards an equilibrium point that is

the solution reported by the algorithm.

This framework allows us to iteratively reduce the error

given the network of constraints. The optimization approach,

however, leaves open how the nodes are represented (parame-

terized). Since the parameterization defines also the structure

of the Jacobians, it has a strong influence on the performance

of the algorithm.

The next section addresses the problem of how to parame-

terize a graph in order to efficiently carry out the optimization

approach.

V. NETWORK PARAMETERIZATIONS

The poses p = {p1, . . . , pn} of the nodes define the

configuration of the network. The poses can be described by a

vector of parameters x such that a bijective mapping g between

p and x exists
x = g(p) p = g−1(x). (12)

As previously explained, in each iteration SGD decomposes

the problem into a set of subproblems and solves them

successively. In this work, a subproblem is defined as the

optimization of a single constraint. Different solutions to the

individual subproblems can have antagonistic effects when

combining them.

The parameterization g defines also the subset of variables

that are modified by a single constraint update. A good

parameterization defines the subproblems in a way that the

combination step leads only to small changes of the individual

solutions.

A. Incremental Pose Parameterization

Olson et al. propose the so-called incremental pose param-

eterization. Given a set of node locations pi and given a fixed

order on the nodes, the incremental parameters xi can be

computed as follows

xi = pi − pi−1. (13)

Note that xi is computed as the difference between two

subsequent nodes and not by motion composition. Under this

parameterization, the error in the global reference frame (in-

dicated by primed variables) has the following form

e′ji = pj − (pi ⊕ δji) (14)

=

(
j
∑

k=i+1

xk

)

+

(
i∏

k=1

R̃k

)

︸ ︷︷ ︸

Ri

δji, (15)

where ⊕ is the motion composition operator according to Lu

and Milios [11] and R̃k the homogenous rotation matrix of the

parameter xk. The term Rk is defined as the rotation matrix

of the pose pk. The information matrix in the global reference

frame can be computed as

Ω′
ji = RiΩjiR

T
i . (16)



According to Olson et al. [13], neglecting the contribution

of the angular terms of x0, . . . , xi to the Jacobian results in

the following simplified form

J ′
ji =

j
∑

k=i+1

Ik with Ik = (0 · · · 0 I
︸︷︷︸

k

0 · · · 0). (17)

Here 0 is the 3 by 3 zero matrix and I is the 3 by 3 identity.

Updating the network based on the constraint 〈j, i〉 with

such an Jacobian results in keeping the node i fixed and in

distributing the residual along all nodes between j and i.

Olson et al. weight the residual proportional to j−i which is

the number of nodes involved in the constraint. The parameter

xk of the node k with k = i + 1, . . . , j is updated as follows

∆xk = λwkΩ′
jir

′
ji, (18)

where the weight wk is computed as

wk = (j − i)

[
j
∑

m=i+1

D−1
m

]−1

D−1
k . (19)

In Eq. (19), Dk are the matrices containing the diagonal

elements of the kth block of the Hessian H. Intuitively, each

variable is updated proportional to the uncertainty about that

variable. Note that the simple form of the Jacobians allows us

to update the parameter vector for each node individually as

expressed by Eq. (18).

The approach presented in this section is currently one of the

best solutions to ML mapping. However, it has the following

drawbacks:

• In practice, the incremental parameterization cannot deal

with arbitrarily connected networks. This results from the

approximation made in Eq. (17), in which the angular

components are ignored when computing the Jacobian.

This approximation is only valid if the subsequent nodes

in Eq. (13) are spatially close. Furthermore, the way the

error is distributed over the network assumes that the

nodes are ordered according to poses along the trajectory.

This results in adding a large number of nodes to the

network whenever the robot travels for a long time in

the same region. This requirement prevents an approach

from merging multiple nodes into a single one. Merging

or pruning nodes, however, is a necessary precondition to

allow the robot lifelong map learning.

• When updating a constraint between the nodes j and i,

the parameterization requires to change the j-i nodes. As

a result, each node is likely to be updated by several

constraints. This leads to a high interaction between con-

straints and will typically reduce the convergence speed

of SGD. For example, the node k will be updated by all

constraints 〈j′, i′〉 with i′ < k ≤ j′. Note that using an

intelligent lookup structure, this operation can be carried

out in O(log n) time where n is the number of nodes in the

network [13]. Therefore, this is a problem of convergence

speed of SGD and not a computational problem.

B. Tree Parameterization

Investigating a different parameterization which preserves

the advantages of the incremental one but overcomes its

drawbacks is the main motivation for our approach. First,

our method should be able to deal with arbitrary network

topologies. This would enable us to compress the graph

whenever robot revisits a place. As a result, the size of the

network would be proportional to the visited area and not to

the length of the trajectory. Second, the number of nodes in

the graph updated by each constraint should mainly depend

on the topology of the environment. For example, in case of a

loop-closure a large number of nodes need to be updated but

in all other situations the update is limited to a small number

of nodes in order to keep the interactions between constraints

small.

Our idea is to first construct a spanning tree from the (arbi-

trary) graph. Given such a tree, we define the parameterization

for a node as

xi = pi − pparent(i), (20)

where pparent(i) refers to the parent of node i in the spanning

tree. As defined in Eq. (20), the tree stores the differences

between poses. As a consequence, one needs to process the

tree up to the root to compute the actual pose of a node in the

global reference frame.

However, to obtain only the difference between two arbi-

trary nodes, one needs to traverse the tree from the first node

upwards to the first common ancestor of both nodes and then

downwards to the second node. The same holds for computing

the error of a constraint. We refer to the nodes one needs to

traverse on the tree as the path of a constraint. For example,

Pji is the path from node i to node j for the constraint 〈j, i〉.

The path can be divided into an ascending part P
[−]
ji of the

path starting from node i and a descending part P
[+]
ji to node j.

We can then compute the error in the global frame by

e′ji = pj − (pi ⊕ δji) (21)

= pj − (pi + Riδji) (22)

=
∑

k[+]∈P
[+]
ji

xk[+] −
∑

k[−]∈P
[−]
ji

xk[−] − Riδji. (23)

Here Ri is the rotation matrix of the pose pi. It can be

computed according to the structure of the tree as the product

of the individual rotation matrices along the path to the root.

Note that this tree does not replace the graph as an internal

representation. The tree only defines the parameterization of

the nodes. It can furthermore be used to define an order in

which the optimization algorithm can efficiently process the

constraints as we will explain in the remainder of this section.

For illustration, Figure 2 (a) and (b) depict two graphs and

possible parameterization trees.

Similar to Eq. (16), we can express the information matrix

associated to a constraint in the global frame by

Ω′
ji = RiΩjiR

T
i . (24)

As proposed in [13], we neglect the contribution of the

rotation matrix Ri in the computation of the Jacobian. This ap-

proximation speeds up the computation significantly. Without



(a) (b) (c)

Fig. 2. (a) and (b): Two small example graphs and the trees used to determine the parameterizations. The small grey connections are constraints introduced
by observations where black ones result from odometry. (c) Processing the constraints ordered according to the node with the smallest level in the path avoids
the recomputation of rotational component of all parents. The same holds for subtrees with different root nodes on the same level.

this approximation the update of a single constraint influences

the poses of all nodes up to the root.

The approximation leads to the following Jacobian:

J ′
ji =

∑

k[+]∈P
[+]
ji

Ik[+] −
∑

k[−]∈P
[−]
ji

Ik[−] (25)

Compared to the approach described in the previous section,

the number of updated variables per constraint is in practice

smaller when using the tree. Our approach updates |Pji|
variables rather than j − i. The weights wk are computed as

wk = |Pji|





j
∑

m∈Pji

D−1
m





−1

D−1
k , (26)

where Dk is the k-th diagonal block element of H. This results

in the following update rule for the variable xk

∆xk = λwk · s(xk, i, j) · Ω′
jir

′
ji, (27)

where the value of s(xk, j, i) is +1 or −1 depending on where

the parameter xk is located on the path Pji:

s(xk, j, i) =

{

+1 if xk ∈ P
[+]
ji

−1 if xk ∈ P
[−]
ji

(28)

Our parameterization maintains the simple form of the

Jacobians which enables us to perform the update of each

parameter variable individually (as can be seen in Eq. (27)).

Note that in case one uses a tree that is degenerated to a list,

this parameterization is equal to the one proposed by Olson

et al. [13]. In case of a non-degenerated tree, our approach

offers several advantages as we will show in the experimental

section of this paper.

The optimization algorithm specifies how to update the

nodes but does not specify the order in which to process

the constraints. We can use our tree parameterization to sort

the constraints which allows us to reduce the computational

complexity of our approach.

To compute the residual of a constraint 〈j, i〉, we need to

know the rotational component of the node i. This requires to

traverse the tree up to the first node for which the rotational

component is known. In the worst case, this is the root of the

tree.

Let the level of a node be the distance in the tree between

the node itself and the root. Let zji be the node in the path of

the constraint 〈j, i〉 with the smallest level. The level of the

constraint is then defined as the level of zji.

Our parameterization implies that updating a constraint will

never change the configuration of a node with a level smaller

than the level of the constraint. Based on this knowledge, we

can sort the constraints according to their level and process

them in that order. As a result, it is sufficient to access the

parent of zji to compute the rotational component of the node i

since all nodes with a smaller level than zji have already been

corrected.

Figure 2 (c) illustrates such a situation. The constraint 〈7, 4〉
with the path 4, 3, 2, 7 does not change any node with a smaller

level than the one of node 2. It also does not influence other

subtrees on the same level such as the nodes involved in the

constraint 〈9, 8〉.
In the following section, we describe how we actually build

the tree given the trajectory of a robot or an arbitrary network

as input.

VI. CONSTRUCTION OF THE SPANNING TREE

When constructing the parameterization tree, we distinguish

two different situations. First, we assume that the input is a

sequence of positions belonging to a trajectory traveled by

the robot. Second, we explain how to build the tree given an

arbitrary graph of relations.

In the first case, the subsequent poses are located closely

together and there exist constraints between subsequent poses

resulting from odometry or scan-matching. Further constraints

between arbitrary nodes result from observations when revis-

iting a place in the environment. In this setting, we build our

parameterization tree as follows:

1) We assign a unique id to each node based on the

timestamps and process the nodes accordingly.

2) The first node is the root of the tree (and therefore has

no parent).

3) As the parent of a node, we choose the node with the

smallest id for which a constraint to the current node

exists.

This tree can be easily constructed on the fly. The Fig-

ures 2 (a) and (b) illustrates graphs and the corresponding

trees. This tree has a series of nice properties when applying

our optimization algorithm to find a minimal error configura-

tion of the nodes. These properties are:

• The tree can be constructed incrementally: when adding

a new node it is not required to change the existing tree.

• In case the robot moves through nested loops, the inter-

action between the updates of the nodes belonging to the

individual loops depends on the number of nodes the loops

have in common.



• When retraversing an already mapped area and adding

constraints between new and previously added nodes, the

length of the path in the tree between these nodes is small.

This means that only a small number of nodes need to be

updated.

The second property is illustrated in Figure 2 (a). The two

loops in that image are only connected via the constraint

between the nodes 3 and 7. They are the only nodes that are

updated by constraints of both loops.

The third property is illustrated in Figure 2 (b). Here, the

robot revisits a loop. The nodes 1 to 4 are chosen as the parents

for all further nodes. This results in short paths in the tree when

updating the positions of the nodes while retraversing known

areas.

The complexity of the approach presented so far depends

on the length of the trajectory and not on the size of the

environment. These two quantities are different in case the

robot revisits already known areas. This becomes important

whenever the robot is deployed in a bounded environment for

a long time and has to update its map over time. This is also

known as lifelong map learning. Since our parameterization

is not restricted to a trajectory of sequential poses, we have

the possibility of a further optimization. Whenever the robot

revisits a known place, we do not need to add new nodes to

the graph. We can assign the current pose of the robot to an

already existing node in the graph.

Note that this can be seen as an approximation similar to

adding a rigid constraint neglecting the uncertainty of the

corresponding observation. However, in case local maps (e.g.,

grid maps) are used as nodes in the network, it makes sense

to use such an approximation since one can localize a robot

in an existing map quite accurately.

To also avoid adding new constraints to the network, we can

refine an existing constraint between two nodes in case of a

new observation. Given a constraint δ
(1)
ji between the nodes j

and i in the graph and a new constraint δ
(2)
ji based on the

current observation. Both constraints can be combined to a

single constraint which has the following information matrix

and mean:

Ωji = Ω
(1)
ji + Ω

(2)
ji (29)

δji = Ω−1
ji (Ω

(1)
ji · δ

(1)
ji + Ω

(2)
ji · δ

(2)
ji ) (30)

As a result, the size of the problem does not increase when

revisiting known locations. As the experiments illustrate, this

node reduction technique leads to an increased convergence

speed.

In case the input to our algorithm is an arbitrary graph

and no natural order of the nodes is provided, we compute

a minimal spanning tree to define the parameterization. Since

no additional information (like consecutive poses according

to a trajectory) is available, we cannot directly infer which

parts of the graph are well suited to form a subtree in the

parameterization tree. The minimal spanning tree appears

to yield comparable results with respect to the number of

iterations needed for convergence in all our experiments.

Fig. 3. The map of the Intel Research Lab before (left) and after (right)
execution of our algorithm (1000 nodes, runtime <1s).

VII. EXPERIMENTS

This section is designed to evaluate the properties of our

tree parameterization for learning maximum likelihood maps.

We first show that such a technique is well suited to generate

accurate occupancy grid maps given laser range data and

odometry from a real robot. Second, we provide simulation

experiments on large-scale datasets. We furthermore provide

a comparison between our approach, Olson’s algorithm [13],

and multi-level relaxation by Frese et al. [5]. Finally, we

analyze our approach and investigate properties of the tree

parameterization in order to explain why we obtain better

results then the other methods.

A. Real World Experiments

The first experiment is designed to illustrate that our ap-

proach can be used to build maps from real robot data. The

goal was to build an accurate occupancy grid map given the

laser range data obtained by the robot. The nodes of our graph

correspond to the individual poses of the robot during data

acquisition. The constraints result from odometry and from

the pair-wise matching of laser range scans. Figure 3 depicts

two maps of the Intel Research Lab in Seattle. The left one is

constructed from raw odometry and the right one is the result

obtained by our algorithm. As can be seen, the corrected map

shows no inconsistencies such as double corridors. Note that

this dataset is freely available on the Internet.

B. Simulated Experiments

The second set of experiments is designed to measure the

performance of our approach quantitatively. Furthermore, we

compare our technique to two current state-of-the-art SLAM

approaches that work on constraint networks, namely multi-

level relaxation by Frese et al. [5] and Olson’s algorithm [13].

In the experiments, we used the two variants of our method:

the one that uses the node reduction technique described in

Section VI and the one that maintains all the nodes in the

graph.

In our simulation experiments, we moved a virtual robot

on a grid world. An observation is generated each time the

current position of the robot was close to a previously visited

location. We corrupted the observations with a variable amount

of noise for testing the robustness of the algorithms. We

simulated different datasets resulting in graphs with a number

of constraints between around 4,000 and 2 million.



Fig. 4. Results of Olson’s algorithm (first row) and our approach (second row) after 1, 10, 50, 100, 300 iterations for a network with 64k constraints. The
black areas in the images result from constraints between nodes which are not perfectly corrected after the corresponding iteration (for timings see Figure 6).

Fig. 5. The result of MLR strongly depends on the initial configuration of
the network. Left: small initial pose error, right: large initial pose error.

Figure 4 depicts a series of graphs obtained by Olson’s

algorithm and our approach after different iterations. As can

be seen, our approach converges faster. Asymptotically, both

approaches converge to a similar solution.

In all our experiments, the results of MLR strongly de-

pended on the initial positions of the nodes. In case of a good

starting configuration, MLR converges to an accurate solution

similar to our approach as shown in Figure 5 (left). Otherwise,

it is likely to diverge (right). Olson’s approach as well as our

technique are more or less independent of the initial poses of

the nodes.

To evaluate our technique quantitatively, we first measured

the error in the network after each iteration. The left image

of Figure 6 depicts a statistical experiments over 10 networks

with the same topology but different noise realizations. As

can be seen, our approach converges significantly faster than

the approach of Olson et al. For medium size networks, both

approaches converge asymptotically to approximatively the

same error value (see middle image). For large networks,

the high number of iterations needed for Olson’s approach

prevented us from showing this convergence experimentally.

Due to the sake of brevity, we omitted comparisons to EKF and

Gauss Seidel relaxation because Olson et al. already showed

that their approach outperforms such techniques.

Additionally, we evaluated in Figure 6 (right) the average

computation time per iteration of the different approaches.

As a result of personal communication with Edwin Olson,

we furthermore analyzed a variant of his approach which is

restricted to spherical covariances. It yields similar execution
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Fig. 7. The average amplitude of the oscillations of the nodes due to the
antagonistic effects of different constraints.

times per iteration than our approach. However, this restricted

variant has still the same converge speed with respect to the

number of iterations than Olson’s unrestricted technique. As

can be seen from that picture, our node reduction technique

speeds up the computations up to a factor of 20.

C. Analysis of the Algorithm

The experiments presented above illustrated that our algo-

rithm offers significant improvements compared to both other

techniques. The goal of this section is to experimentally point

out the reasons for these improvements.

The presented tree parameterization allows us to decompose

the optimization of the whole graph into a set of weakly

interacting problems. A good measure for evaluating the

interaction between the constraints is the average number l

of updated nodes per constraint. For example, a network with

a large value of l has typically a higher number of interacting

constraints compared to networks with low values of l. In all

experiments, our approach had a value between 3 and 7. In

contrast to that, this values varies between 60 and 17,000 in

Olson’s approach on the same networks. Note that such a high

average path length reduces the convergence speed of Olson’s

algorithm but does not introduce a higher complexity.

The optimization approach used in this paper as well as

in Olson’s algorithm updates for each constraint the involved

nodes to minimize the error in the network. As a result,

different constraints can update poses in an antagonistic way

during one iteration. This leads to oscillations in the position
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Fig. 6. The left image illustrates shows the error of our and Olson’s approach in a statistical experiment (σ = 0.05 confidence). The image in the middle
shows that both techniques converge asymptotically to the same error. The right image shows the average execution time per iteration for different networks.
For the 1.9M constraints network, the executing of MLR required memory swapping and the result is therefore omitted.

of a node before convergence. Figure 7 illustrates the average

amplitude of such an oscillations for Olson’s algorithm as well

as for our approach. As can be seen, our techniques converges

faster to an equilibrium point. This a further reason for the

higher convergence speed of our approach.

D. Complexity

Due to the nature of gradient descent, the complexity of

our approach per iteration depends linearly on the number of

constraints. For each constraint 〈j, i〉, our approach modifies

exactly those nodes which belong to the path Pji in the

tree. Since each constraint has an individual path length,

we consider the average path length l. This results in an

complexity per iteration of O(M · l), where M is the number

of constraints. In all our experiments, l was approximatively

log N , where N is the number of nodes. Note that given our

node reduction technique, M as well as N are bounded by the

size of the environment and not by the length of the trajectory.

A further advantage of our technique compared to MLR

is that it is easy to implement. The function that performs a

single iteration requires less than 100 lines of C++ code. An

open source implementation, image and video material, and

the datasets are available at the authors’ web-pages.

VIII. CONCLUSION

In this paper, we presented a highly efficient solution to

the problem of learning maximum likelihood maps for mo-

bile robots. Our technique is based on the graph-formulation

of the simultaneous localization and mapping problem and

applies a gradient descent based optimization scheme. Our

approach extends Olson’s algorithm by introducing a tree-

based parameterization for the nodes in the graph. This has a

significant influence on the convergence speed and execution

time of the method. Furthermore, it enables us to correct

arbitrary graphs and not only a list of sequential poses. In

this way, the complexity of our method depends on the size

of the environment and not directly on the length of the input

trajectory. This is an important precondition to allow a robot

lifelong map learning in its environment.

Our method has been implemented and exhaustively tested

on simulation experiments as well as on real robot data. We

furthermore compared our method to two existing, state-of-

the-art solutions which are multi-level relaxation and Olson’s

algorithm. Our approach converges significantly faster than

both approaches and yields accurate maps with low errors.
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Online Constraint Network Optimization

for Efficient Maximum Likelihood Map Learning

Giorgio Grisetti∗ Dario Lodi Rizzini‡ Cyrill Stachniss∗ Edwin Olson† Wolfram Burgard∗

Abstract— In this paper, we address the problem of incremen-
tally optimizing constraint networks for maximum likelihood
map learning. Our approach allows a robot to efficiently
compute configurations of the network with small errors while
the robot moves through the environment. We apply a variant
of stochastic gradient descent and use a tree-based parame-
terization of the nodes in the network. By integrating adaptive
learning rates in the parameterization of the network, our algo-
rithm can use previously computed solutions to determine the
result of the next optimization run. Additionally, our approach
updates only the parts of the network which are affected by the
newly incorporated measurements and starts the optimization
approach only if the new data reveals inconsistencies with
the network constructed so far. These improvements yield an
efficient solution for this class of online optimization problems.

Our approach has been implemented and tested on simu-
lated and on real data. We present comparisons to recently
proposed online and offline methods that address the problem
of optimizing constraint network. Experiments illustrate that
our approach converges faster to a network configuration with
small errors than the previous approaches.

I. INTRODUCTION

Maps of the environment are needed for a wide range of

robotic applications such as search and rescue, automated

vacuum cleaning, and many other service robotic tasks.

Learning maps has therefore been a major research focus in

the robotics community over the last decades. Learning maps

under uncertainty is often referred to as the simultaneous

localization and mapping (SLAM) problem. In the literature,

a large variety of solutions to this problem can be found.

The approaches mainly differ in the underlying estimation

technique. Typical techniques are Kalman filters, information

filters, particle filters, network based methods which rely on

least-square error minimization techniques.

Solutions to the SLAM problem can be furthermore di-

vided into online an offline methods. Offline methods are

so-called batch algorithms that require all the data to be

available right from the beginning [1], [2], [3]. In contrast to

that, online methods can re-use an already computed solution

and update or refine it. Online methods are needed for

situations in which the robot has to make decisions based on

the model of the environment during mapping. Exploring an

unknown environment, for example, is a task of this category.

Popular online SLAM approaches such as [4], [5] are based

on the Bayes’ filter. Recently, also incremental maximum-

likelihood approaches have been presented as an effective

alternative [6], [7], [8].
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Fig. 1. Four snapshots created while incrementally learning a map.

In this paper, we present an efficient online optimization

algorithm which can be used to solve the so-called “graph-

based” or “network-based” formulation of the SLAM prob-

lem. Here, the poses of the robot are modeled by nodes

in a graph and constraints between poses resulting from

observations or from odometry are encoded in the edges

between the nodes. Our method belongs to the same class of

techniques of Olson’s algorithm or MLR [8]. It focuses on

computing the best map and it assumes that the constraints

are given. Techniques like the ATLAS framework [9] or

hierarchical SLAM [10], for example, can be used to obtain

the necessary data associations (constraints). They also apply

a global optimization procedure to compute a consistent

map. One can replace these optimization procedures by our

algorithm and in this way make them more efficient.

Our approach combines the ideas of adaptive learning

rates with a tree-based parameterization of the nodes when

applying stochastic gradient descent. This yields an online

algorithm that can efficiently compute network configura-

tions with low errors. An application example is shown in

Figure 1. It depicts four snapshots of our online approach

during a process of building a map from the ACES dataset.

II. RELATED WORK

A large number of mapping approaches has been presented

in the past and a variety of different estimation techniques

have been used to learn maps. One class of approaches uses

constraint networks to represent the relations between poses

and observations.



Lu and Milios [1] were the first who used constraint

networks to address the SLAM problem. They proposed a

brute force method that seeks to optimize the whole network

at once. Gutmann and Konolige [11] presented an effective

way for constructing such a network and for detecting loop

closures while running an incremental estimation algorithm.

Frese et al. [8] described a variant of Gauss-Seidel relaxation

called multi-level relaxation (MLR). It applies relaxation at

different resolutions.

Olson et al. [2] were the first who applied a variant

of stochastic gradient descent to compute solutions to this

family of problems. They propose a representation of the

nodes which enables the algorithm to perform efficient

updates. Our previously presented method [3] introduced

the tree parameterization that is also used in this paper.

Subsequently, Olson et al. [6] presented an online variant of

their method using adaptive learning rates. In this paper, we

integrate such learning rates into the tree-based parameteri-

zation which yields a solution to the online SLAM problem

that outperforms the individual methods.

Kaess el al. [7] proposed an on-line version of the smooth-

ing and mapping algorithm for maximum likelihood map

estimation. This approach relies on a QR factorization of

the information matrix and integrates the new measurements

as they are available. Using the QR factorization, the poses

of the nodes in the network can be efficiently retrieved by

back substitution. Additionally they keep the matrices sparse

via occasional variable reordering. Frese [12] proposed the

Treemap algorithm which is able to perform efficient updates

of the estimate by ignoring the weak correlations between

distant locations.

The contribution of this paper is an efficient online ap-

proach for learning maximum likelihood maps. It integrates

adaptive learning rates into a tree-based network optimization

technique using a variant of stochastic gradient descent. Our

approach presents an efficient way of selecting only the part

of the network which is affected by newly incorporated data.

Furthermore, it allows to delay the optimization so that the

network is only updated if needed.

III. STOCHASTIC GRADIENT DESCENT FOR MAXIMUM

LIKELIHOOD MAPPING

Approaches to graph-based SLAM focus on estimating

the most likely configuration of the nodes and are therefore

referred to as maximum-likelihood (ML) techniques [8], [1],

[2]. The approach presented in this paper also belongs to this

class of methods.

The goal of graph-based ML mapping algorithms is to find

the configuration of the nodes that maximizes the likelihood

of the observations. Let x = (x1 · · · xn)T be a vector of

parameters which describes a configuration of the nodes. Let

δji and Ωji be respectively the mean and the information

matrix of an observation of node j seen from node i. Let

fji(x) be a function that computes a zero noise observation

according to the current configuration of the nodes j and i.

Given a constraint between node j and node i, we can

define the error eji introduced by the constraint as

eji(x) = fji(x)− δji (1)

as well as the residual rji = −eji(x). Let C =
{〈j1, i1〉 , . . . , 〈jM , iM 〉} be the set of pairs of indices for

which a constraint δjmim
exists. The goal of a ML approach

is to find the configuration x∗ of the nodes that minimized

the negative log likelihood of the observations. Assuming the

constraints to be independent, this can be written as

x∗ = argmin
x

∑

〈j,i〉∈C

rji(x)T Ωjirji(x). (2)

In the remainder of this section we describe how the general

framework of stochastic gradient descent can be used for

minimizing Eq. (2) and how to construct a parameterization

of the network which increases the convergence speed.

A. Network Optimization using Stochastic Gradient Descent

Olson et al. [2] propose to use a variant of the pre-

conditioned stochastic gradient descent (SGD) to address

the compute the most likely configuration of the network’s

nodes. The approach minimizes Eq. (2) by iteratively se-

lecting a constraint 〈j, i〉 and by moving the nodes of the

network in order to decrease the error introduced by the

selected constraint. Compared to the standard formulation

of gradient descent, the constraints are not optimized as a

whole but individually. The nodes are updated according to

the following equation:

xt+1 = xt + λ ·H−1JT
jiΩjirji (3)

Here x is the set of variables describing the locations of

the poses in the network and H−1 is a preconditioning

matrix. Jji is the Jacobian of fji, Ωji is the information

matrix capturing the uncertainty of the observation, rji is

the residual, and λ is the learning rate which decreases with

the iteration. For a detailed explanation of Eq. (3), we refer

the reader to our previous works [3], [2].

In practice, the algorithm decomposes the overall problem

into many smaller problems by optimizing subsets of nodes,

one subset for each constraint. Whenever time a solution for

one of these subproblems is found, the network is updated

accordingly. Obviously, updating the different constraints one

after each other can have antagonistic effects on the corre-

sponding subsets of variables. To avoid infinitive oscillations,

one uses the learning rate λ to reduce the fraction of the

residual which is used for updating the variables. This makes

the solutions of the different sub-problems to asymptotically

converge towards an equilibrium point that is the solution

reported by the algorithm.

B. Tree Parameterization

The poses p = {p1, . . . , pn} of the nodes define the

configuration of the network. The poses can be described

by a vector of parameters x such that a bidirectional map-

ping between p and x exists. The parameterization defines

the subset of variables that are modified when updating a

constraint. An efficient way of parameterizing the node is to



use a tree. One can construct a spanning tree (not necessarily

a minimum one) from the graph of poses. Given such a tree,

we define the parameterization for a node as

xi = pi − pparent(i), (4)

where pparent(i) refers to the parent of node i in the spanning

tree. As defined in Eq. (4), the tree stores the differences

between poses. This is similar in the spirit to the incremental

representation used in the Olson’s original formulation, in

that the difference in pose positions (in global coordinates)

is used rather than pose-relative coordinates or rigid body

transformations.

To obtain the difference between two arbitrary nodes based

on the tree, one needs to traverse the tree from the first node

upwards to the first common ancestor of both nodes and

then downwards to the second node. The same holds for

computing the error of a constraint. We refer to the nodes

one needs to traverse on the tree as the path of a constraint.

For example, Pji is the path from node i to node j for the

constraint 〈j, i〉. The path can be divided into an ascending

part P
[−]
ji of the path starting from node i and a descending

part P
[+]
ji to node j. We can then compute the residual in

the global frame by

r′ji =
∑

k[−]∈P
[−]
ji

xk[−] −
∑

k[+]∈P
[+]
ji

xk[+] + Riδji. (5)

Here Ri is the homogeneous rotation matrix of the pose pi.

It can be computed according to the structure of the tree

as the product of the individual rotation matrices along the

path to the root. Note that this tree does not replace the

graph as an internal representation. The tree only defines the

parameterization of the nodes.

Let Ω′
ji = RiΩjiR

T
i be the information matrix of a

constraint in the global frame. According to [2], we compute

an approximation of the Jacobian as

J ′
ji =

∑

k[+]∈P
[+]
ji

Ik[+] −
∑

k[−]∈P
[−]
ji

Ik[−] , (6)

with Ik = (0 · · · 0 I
︸︷︷︸

kth element

0 · · · 0). Then, the update

of a constraint turns into

xt+1 = xt + λ|Pji|M
−1Ω′

jir
′
ji, (7)

where |Pji| refers to the number of nodes in Pji. In Eq. (7),

we replaced the preconditioning matrix H−1 with its scaled

approximation M−1 as described in [2]. This prevents from

a computationally expensive matrix inversion.

Let the level of a node be the distance in the tree between

the node itself and the root. We define the top node of a

constraint as the node on the path with the smallest level.

Our parameterization implies that updating a constraint will

never change the configuration of a node with a level smaller

than the level of the top node of the constraint.

In principle, one could apply the technique described in

this section as a batch algorithm to an arbitrarily constructed

spanning tree of the graph. However, our proposed method

uses a spanning tree which can be constructed incrementally,

as described in the next section.

IV. ONLINE NETWORK OPTIMIZATION

The algorithm presented in the previous section is a batch

procedure. At every iteration, the poses of all nodes in the

network are optimized. The fraction of the residual used

in updating every constraint decreases over time with the

learning rate λ, which evolves according to an harmonic

progression. During online optimization, the network is dy-

namically updated to incorporate new movements and obser-

vations. In theory, one could also apply the batch version of

our optimizer to correct the network. This, however, would

require to compute a solution from scratch each time the

robot moves or makes an observation which would obviously

lead to an inefficient algorithm.

In this section we describe an incremental version of our

optimization algorithm, which is suitable for solving on-

line mapping problems. As pointed in [6] an incremental

algorithm should have the following properties:

1) Every time a constraint is added to the network, only

the part of the network which is affected by that

constraint should be optimized. For example, when

exploring new terrain, the effects of the optimization

should not perturb distant parts of the graph.

2) When revisiting a known region of the environment it

is common to re-localize the robot in the previously

built map. One should use the information provided

by the re-localization to compute a better initial guess

for the position of the newly added nodes.

3) To have a consistent network, performing an opti-

mization step after adding each constraint is often

not needed. This happens when the newly added con-

straints are adequately satisfied by the current network

configuration. Having a criterion for deciding when to

perform unnecessary optimizations can save a substan-

tial amount of computation.

In the remainder of this section, we present four im-

provements to the algorithm so that it satisfies the discussed

properties.

A. Incremental Construction of the Tree

When constructing the parameterization tree online, we

can assume that the input is a sequence of poses corre-

sponding to a trajectory of the robot. In this case, subsequent

poses are located closely together and there exist constraints

between subsequent poses resulting from odometry or scan-

matching. Further constraints between arbitrary nodes result

from observations when revisiting a place in the environment.

We proceed as follows: the oldest node is the root of the

tree. When adding a node i to the network, we choose as

its parent the oldest node for which a constraint to the node

i exists. Such a tree can be constructed incrementally since

adding a new node does not require to change the existing

parts of the tree.

The pose pi and parameter xi of a newly added node i is

initialized according to the position of the parent node and



the connecting constraint as

pi = pparent(i) ⊕ δi,parent(i) (8)

xi = pi − pparent(i). (9)

The parent node represents an already explored part of the

environment and the constraint between the new node and the

parent can be regarded as a localization event in an already

constructed map, thus satisfying Property 2. As shown in the

experiments described below, this initialization appears to be

a good heuristic for determining the initial guess of the pose

of a newly added node.

B. Constraint Selection

When adding a constraint 〈j, i〉 to the graph, a subset of

nodes needs to be updated. This set depends on the topology

of the network and can be determined by a variant of breadth

first visit. Let Gj,i be the minimal subgraph that contains the

added constraint and has only one constraint to the rest of

the graph. Then, the nodes that need to be updated are all

nodes of the minimal subtree that contains Gj,i. The precise

formulation on how to efficiently determine this set is given

by Algorithm 1.

Data: 〈j, i〉: the constraint, G: the graph, T : the tree.
Result: Nji: the set of affected nodes, Eji: the affected

constraints.
Queue f = childrenOf(topNode(〈j, i〉));
Eji := edgesToChildren(topNode(〈j, i〉));
foreach 〈a, b〉 ∈ Eji do

〈a, b〉 .mark = true;
end
while f 6= {} do

Node n := first(f);
n.mark := true
foreach 〈a, b〉 ∈ edgesOf(n) do

if 〈a, b〉 .mark = true then
continue;

end
Node m := (a = n)?b : a;
if m = parent(n) or m.mark = true then

continue;
end
〈a, b〉 .mark = true;
Eji := Eji ∪ {〈a, b〉};
if 〈a, b〉 ∈ T then

f := f ∪ {m};
else

f := f ∪ childrenOf(topNode(〈a, b〉));
end

end
f := removeFirst(f);
Nji := Nji ∪ {n};

end
Algorithm 1: Construction of the set of nodes affected by
a constraint. For readability we assume that the frontier f can
contain only the nodes which are not already marked.

Note that the number of nodes in Gj,i does depend only

on the root of the tree and on the overall graph. It contains

all variables which are affected by adding the new costraint

〈i, j〉.

C. Adaptive Learning Rates

Rather than using one learning rate λ for all nodes, the

incremental version of the algorithm uses spatially adaptive

learning rates introduced in [6]. The idea is to assign an

individual learning rate to each node, allowing different parts

of the network to be optimized at different rates. These

learning rates are initialized when a new constraint is added

to the network and they decrease with each iteration of the

algorithm. In the following, we describe how to initialize and

update the learning rates and how to adapt the update of the

network specified in Eq. (7).

a) Initialization of the learning rates: When a new

constraint 〈j, i〉 is added to the network, we need to update

the learning rates for the nodes Nji determined in the

previous section. First, we compute the learning rate λ′
ji for

the newly introduced information. Then, we propagate this

learning rate to the nodes Nji.e

A proper learning rate is determined as follows. Let βji

be the fraction of the residual that would appropriately fuse

the previous estimate and the new constraint. Similar to a

Kalman filter, βji is determined as

βji = Ωji(Ωji + Ωgraph
ji )−1, (10)

where Ωji is the information matrix of the new constraint,

and Ωgraph
ji is an information matrix representing the uncer-

tainty of the constraints in the network. Based on Eq. (10),

we can compute the learning rate λ′
ji of the new constraint

as

λ′
ji = maxrow

(
1

|Pji|
(βji ⊘MΩ′

ji)

)

. (11)

Here ⊘ represents the row by row division (see [6] for further

details). The learning rate of the constraint is then propagated

to all nodes k ∈ Nji as

λk ← max(λk, λ′
ji), (12)

where λk is the learning rate of the node k. According

to Eq. (11) constraints with large residuals result in larger

learning rate increases than constraints with small residuals.

b) Update of the network: When updating the network,

one has to consider the newly introduced learning rates.

During an iteration, we decrease the individual learning

rates of the nodes according to a generalized harmonic

progression [13]:

λk ←
λk

1 + λk

(13)

In this way, one guarantees the strong monotonicity of λk

and thus the convergence of the algorithm to an equilibrium

point.

The learning rates of the nodes cannot be directly used

for updating the poses since Eq. (7) requires a learning rate

for each constraint and not for each node. When updating

the network given the constraint 〈j, i〉, we obtain an average

learning rate λ̃ji from the nodes on Pji as

λ̃ji =
1

|Pji|

∑

k∈Pji

λk. (14)



Then, the constraint update turns into

∆xk = λ̃ji|Pji|M
−1Ω′

jir
′
ji. (15)

D. Scheduling the Network Optimization

When adding a set of constraints 〈j, i〉 ∈ Cnew to a network

without performing an optimization, we can incrementally

compute the error of the network as

enew =
∑

〈j,i〉∈Cold

rT
jiΩjirji +

∑

〈j,i〉∈Cnew

rT
jiΩjirji. (16)

Here enew is the new error and Cold refers to the set of

constraints before the modification.

To avoid unnecessary computation, we perform the opti-

mization only if needed. This is the case when the newly

incorporated information introduced a significant error com-

pared to the error of the network before. We perform an

optimization step if

enew

|Cnew|+ |Cold|
> α max

〈j,i〉∈Cold

rT
jiΩjirji. (17)

Here α is a user-defined factor that allows the designer of

a mapping system to adapt the quality of the incremental

solutions to the needs of the specific application.

If we assume that the network in Cold has already con-

verged, this heuristic triggers an optimization only if a signif-

icant inconsistency is revealed. Furthermore, the optimization

only needs to be performed for a subset of the network and

not for the whole network. The subset is given by

E =
⋃

〈j,i〉∈Cnew

Eji. (18)

Here Eji is the set of constraints to be updated given a new

constraint 〈j, i〉 ∈ Cnew. The sets Eji are computed according

to Algorithm 1. This criterion satisfies Property 3 and leads

to an efficient algorithm for incrementally optimizing the

network of constraints.

V. EXPERIMENTS

This section is designed to evaluate the effectiveness

of the proposed methods to incrementally learn maximum

likelihood maps. We first show that such a technique is

well suited to generate accurate grid maps given laser range

data and odometry from a real robot. Second, we provide

simulation experiments to evaluate the evolution of the error

and provide comparisons to our previously proposed tech-

niques [3], [2], [6]. Finally, we illustrate the computational

advantages resulting from our algorithm.

A. Real World Experiments

To illustrate that our technique can be used to learn maps

from real robot data, we used the freely available ACES

dataset. The motivating example shown in Figure 1 depicts

four different maps computed online by our incremental

mapping technique. During this experiment, we extracted

constraints between consecutive poses by means of pairwise

scan matching. Loop closures were determined by localizing

Fig. 2. Network used in the simulated experiments. Left: initial guess.
Right: ground truth.

 0.001

 1

 1000

 0  5  10  15  20  25  30

er
ro

r 
p

er
 c

o
n

st
ra

in
t

iteration

Olson Offline
Olson Incremental

Tree Offline
Tree Incremental

 0.001

 1

 1000

 0  5  10  15  20  25  30

er
ro

r 
p

er
 c

o
n

st
ra

in
t

iteration

Olson Offline
Olson Incremental

Tree Offline
Tree Incremental

Fig. 3. Statistical experiments showing the evolution of the error per
iteration of the algorithm. Top: situation in which the robot is closes a small
loop. Bottom: closure of a large loop. The statistics have been generated
by considering 10 different realizations of the observation noise along the
same path.

the robot in the previously built map by means of a particle

filter.

As can be seen, our approach leads to accurate maps for

real robot data. Similar results were obtained with all datasets

we found online or recorded on our own.

B. Statistical Experiments on the Evolution of the Error

In the these experiments, we moved a virtual robot on

a grid world. An observation is generated each time the

current position of the robot was close to a previously visited

location. The observations are corrupted by a given amount

of Gaussian noise. The network used in this experiment is

depicted in Figure 2.

We compare our approach named Tree Incremental with

its offline variant [3] called Tree Offline which solves the

overall problem from scratch. In addition to that, we compare

it to the offline version without the tree optimization [2]

called Olson Offline as well as its incremental variant [6]

referred to as Olson Incremental. For space reasons, we omit

comparisons to LU decomposition, EKF, and Gauss-Seidel.

The advantages of our method over these other methods is

similar to those previously reported [2].

To allow a fair comparison, we disabled the scheduling of

the optimization of Eq. (17) and we performed 30 iterations

every time 16 constraints were added to the network. During

the very first iterations, the error of all approaches may show
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Fig. 4. Top: runtime comparison of the offline and the incremental
approaches using a tree parameterization. The optimization is performed
only when the error condition specified by Eq. (17) was verified. Bottom:
Comparison of the evolution of the global error between Treemap[12] and
the online version of our approach.

an increase, due to the bigger correction steps which result

from increasing the learning rates.

Figure 3 depicts the evolution of the error for all four

techniques during a mapping experiment. We depicted two

situations. In the first one, the robot closed a small loop.

As can be seen, the introduced error is small and thus our

approach corrects the error within 2 iterations. Both incre-

mental techniques perform better than their offline variants.

The approach proposed in this paper outperforms the other

techniques. The same holds for the second situation in which

the robot was closing a large loop. Note that in most cases,

one iteration of the incremental approach can be carried

out faster, since only a subpart of the network needs to be

updated.

C. Runtime Comparison

Finally, we evaluated our incremental version and its of-

fline variant with respect to the execution time. Both methods

where executed only when needed according to our criterion

specified by Eq. (17). We measured the time needed to run

the individual approach until convergence to the same low

error configuration, or until a maximum number of iterations

(30) was reached. As can be seen in Figure 4(top), the

incremental technique requires significantly less operations

and thus runtime to provide equivalent results in terms of

error. Figure 4(bottom) shows the error plot of a comparison

of our approach and Treemap [12] proposed by Frese. As

shown in the error-plot, in the beginning Treemap performs

slightly better than our algorithm, due to the exact calculation

of the Jacobians. However, when closing large loops Treemap

is more sensitive to angular wraparounds (see increase of

the error at constraint 2400 in Figure 4). This issue is

typically better handled by our iterative procedure. Overall,

we observed that for datasets having a small noise Treemap

provides slightly better estimates, while our approach is

generally more robust to extreme conditions.

VI. CONCLUSION

In this paper, we presented an efficient online solution to

the optimization of constraint networks. It can incrementally

learn maps while the robot moves through the environ-

ment. Our approach optimizes a network of constraints

that represents the spatial relations between the poses of

the robot. It uses a tree-parameterization of the nodes and

applies a variant of gradient descent to compute network

configurations with low errors.

A per-node adaptive learning rate allows the robot to re-

use already computed solutions from previous steps, to up-

date only the parts of the network, which are affected by the

newly incorporated information, and to start the optimization

approach only if the new data causes inconsistencies with the

already computed solution. We tested our approach on real

robot data as well as with simulated datasets. We compared

it to recently presented online and offline methods that also

address the network-based SLAM problem. As we showed

in practical experiments, our approach converges faster to a

configuration with small errors.
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Inverse Depth Parametrization for Monocular SLAM
Javier Civera, Andrew J. Davison, and J. M. Martı́nez Montiel

Abstract—We present a new parametrization for point fea-
tures within monocular simultaneous localization and mapping
(SLAM) that permits efficient and accurate representation of un-
certainty during undelayed initialization and beyond, all within
the standard extended Kalman filter (EKF). The key concept
is direct parametrization of the inverse depth of features rela-
tive to the camera locations from which they were first viewed,
which produces measurement equations with a high degree of
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This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the author. This material includes the
following video files. inverseDepth_indoor.avi (11.7 MB) shows simultane-
ous localization and mapping, from a hand-held camera observing an in-
door scene. All the processing is automatic, the image sequence being the
only sensorial information used as input. It is shown as a top view of the
computed camera trajectory and 3-D scene map. Image sequence is acquired
with a hand-held camera 320 £ 240 at 30 frames/second. Player information

XviD MPEG-4. inverseDepth_outdoor.avi (12.4 MB) shows real-time simul-
taneous localization and mapping, from a hand-held camera observing an
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linearity. Importantly, our parametrization can cope with features
over a huge range of depths, even those that are so far from the cam-
era that they present little parallax during motion—maintaining
sufficient representative uncertainty that these points retain the op-
portunity to “come in” smoothly from infinity if the camera makes
larger movements. Feature initialization is undelayed in the sense
that even distant features are immediately used to improve cam-
era motion estimates, acting initially as bearing references but not
permanently labeled as such. The inverse depth parametrization
remains well behaved for features at all stages of SLAM process-
ing, but has the drawback in computational terms that each point is
represented by a 6-D state vector as opposed to the standard three
of a Euclidean XYZ representation. We show that once the depth
estimate of a feature is sufficiently accurate, its representation can
safely be converted to the Euclidean XYZ form, and propose a
linearity index that allows automatic detection and conversion to
maintain maximum efficiency—only low parallax features need be
maintained in inverse depth form for long periods. We present a
real-time implementation at 30 Hz, where the parametrization is
validated in a fully automatic 3-D SLAM system featuring a hand-
held single camera with no additional sensing. Experiments show
robust operation in challenging indoor and outdoor environments
with a very large ranges of scene depth, varied motion, and also
real time 360◦ loop closing.

Index Terms—Monocular simultaneous localization and map-
ping (SLAM), real-time vision.

I. INTRODUCTION

A
MONOCULAR camera is a projective sensor that mea-

sures the bearing of image features. Given an image se-

quence of a rigid 3-D scene taken from a moving camera, it

is now well known that it is possible to compute both a scene

structure and a camera motion up to a scale factor. To infer the

3-D position of each feature, the moving camera must observe it

repeatedly each time, capturing a ray of light from the feature to

its optic center. The measured angle between the captured rays

from different viewpoints is the feature’s parallax—this is what

allows its depth to be estimated.

In offline “structure from motion (SFM)” solutions from the

computer vision literature (e.g., [11] and [23]), motion and struc-

ture are estimated from an image sequence by first applying a

robust feature matching between pairs or other short overlap-

ping sets of images to estimate relative motion. An optimization

procedure then iteratively refines global camera location and

scene feature position estimates such that features project as

closely as possible to their measured image positions (bundle

adjustment). Recently, work in the spirit of these methods, but

with “sliding window” processing and refinement rather than

global optimization, has produced impressive real-time “visual

odometry” results when applied to stereo sequences in [21] and

for monocular sequences in [20].

An alternative approach to achieving real-time motion and

structure estimation are online visual simultaneous localiza-

tion and mapping (SLAM) approaches that use a probabilistic

1552-3098/$25.00 © 2008 IEEE
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filtering approach to sequentially update estimates of the posi-

tions of features (the map) and the current location of the camera.

These SLAM methods have different strengths and weaknesses

to visual odometry, being able to build consistent and drift-free

global maps, but with a bounded number of mapped features.

The core single extended Kalman filter (EKF) SLAM technique,

previously proven in multisensor robotic applications, was first

applied successfully to real-time monocular camera tracking by

Davison et al. [8], [9] in a system that built sparse room-sized

maps at 30 Hz.

A significant limitation of Davison’s and similar approaches,

however, was that they could only make use of features that

were close to the camera relative to its distance of transla-

tion, and therefore exhibited significant parallax during motion.

The problem was in initializing uncertain depth estimates for

distant features: in the straightforward Euclidean XYZ feature

parametrization adopted, position uncertainties for low parallax

features are not well represented by the Gaussian distributions

implicit in the EKF. The depth coordinate of such features has

a probability density that rises sharply at a well-defined min-

imum depth to a peak, but then, tails off very slowly toward

infinity—from low parallax measurements, it is very difficult to

tell whether a feature has a depth of 10 units rather than 100,

1000, or more. For the rest of the paper, we refer to Euclidean

XYZ parametrization simply as XYZ.

There have been several recent methods proposed for cop-

ing with this problem, relying on generally undesirable special

treatment of newly initialized features. In this paper, we describe

a new feature parametrization that is able to smoothly cope with

initialization of features at all depths—even up to “infinity”—

within the standard EKF framework. The key concept is direct

parametrization of inverse depth relative to the camera position

from which a feature was first observed.

A. Delayed and Undelayed Initialization

The most obvious approach to coping with feature initial-

ization within a monocular SLAM system is to treat newly

detected features separately from the main map, accumulating

information in a special processing over several frames to reduce

depth uncertainty before insertion into the full filter with a stan-

dard XYZ representation. Such delayed initialization schemes

(e.g., [3], [8], and [14]) have the drawback that new features,

held outside the main probabilistic state, are not able to con-

tribute to the estimation of the camera position until finally

included in the map. Further, features that retain low parallax

over many frames (those very far from the camera or close to

the motion epipole) are usually rejected completely because

they never pass the test for inclusion.

In the delayed approach of Bailey [2], initialization is delayed

until the measurement equation is approximately Gaussian and

the point can be safely triangulated; here, the problem was posed

in 2-D and validated in simulation. A similar approach for a

3-D monocular vision with inertial sensing was proposed in [3].

Davison [8] reacted to the detection of a new feature by inserting

a 3-D semiinfinite ray into the main map representing everything

about the feature except its depth, and then, used an auxiliary

particle filter to explicitly refine the depth estimate over several

frames, taking advantage of all the measurements in a high frame

rate sequence, but again with new features held outside the main

state vector until inclusion.

More recently, several undelayed initialization schemes have

been proposed, which still treat new features in a special way

but are able to benefit immediately from them to improve cam-

era motion estimates—the key insight being that while features

with highly uncertain depths provide little information on cam-

era translation, they are extremely useful as bearing references

for orientation estimation. The undelayed method proposed by

Kwok and Dissanayake [15] was a multiple hypothesis scheme,

initializing features at various depths and pruning those not re-

observed in subsequent images.

Sola et al. [24], [25] described a more rigorous undelayed

approach using a Gaussian sum filter approximated by a fed-

erated information sharing method to keep the computational

overhead low. An important insight was to spread the Gaus-

sian depth hypotheses along the ray according to inverse depth,

achieving much better representational efficiency in this way.

This method can perhaps be seen as the direct stepping stone

between Davison’s particle method and our new inverse depth

scheme; a Gaussian sum is a more efficient representation than

particles (efficient enough that the separate Gaussians can all be

put into the main state vector), but not as efficient as the single

Gaussian representation that the inverse depth parametrization

allows. Note that neither [15] nor [25] considers features at very

large “infinite” depths.

B. Points at Infinity

A major motivation of the approach in this paper is not only

the efficient undelayed initialization, but also the desire to cope

with features at all depths, particularly in outdoor scenes. In

SFM, the well-known concept of a point at infinity is a feature

that exhibits no parallax during camera motion due to its extreme

depth. A star for instance would be observed at the same image

location by a camera that translated through many kilometers

pointed up at the sky without rotating. Such a feature cannot be

used for estimating camera translation but is a perfect bearing

reference for estimating rotation. The homogeneous coordinate

systems of visual projective geometry used normally in SFM

allow explicit representation of points at infinity, and they have

proven to play an important role during offline structure and

motion estimation.

In a sequential SLAM system, the difficulty is that we do not

know in advance which features are infinite and which are not.

Montiel and Davison [19] showed that in the special case where

all features are known to be infinite—in very-large-scale outdoor

scenes or when the camera rotates on a tripod— SLAM in pure

angular coordinates turns the camera into a real-time visual

compass. In the more general case, let us imagine a camera

moving through a 3-D scene with observable features at a range

of depths. From the estimation point of view, we can think of

all features starting at infinity and “coming in” as the camera

moves far enough to measure sufficient parallax. For nearby

indoor features, only a few centimeters of movement will be
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sufficient. Distant features may require many meters or even

kilometers of motion before parallax is observed. It is important

that these features are not permanently labeled as infinite—

a feature that seems to be at infinity should always have the

chance to prove its finite depth given enough motion, or there

will be the serious risk of systematic errors in the scene map.

Our probabilistic SLAM algorithm must be able to represent the

uncertainty in depth of seemingly infinite features. Observing

no parallax for a feature after 10 units of camera translation

does tell us something about its depth—it gives a reliable lower

bound, which depends on the amount of motion made by the

camera (if the feature had been closer than this, we would have

observed parallax). This explicit consideration of uncertainty

in the locations of points has not been previously required in

offline computer vision algorithms, but is very important in a

more difficult online case.

C. Inverse Depth Representation

Our contribution is to show that, in fact, there is a unified and

straightforward parametrization for feature locations that can

handle both initialization and standard tracking of both close

and very distant features within the standard EKF framework.

An explicit parametrization of the inverse depth of a feature

along a semiinfinite ray from the position from which it was

first viewed allows a Gaussian distribution to cover uncertainty

in depth that spans a depth range from nearby to infinity, and per-

mits seamless crossing over to finite depth estimates of features

that have been apparently infinite for long periods of time. The

unified representation means that our algorithm requires no spe-

cial initialization process for features. They are simply tracked

right from the start, immediately contribute to improved cam-

era estimates, and have their correlations with all other features

in the map correctly modeled. Note that our parameterization

would be equally compatible with other variants of Gaussian

filtering such as sparse information filters.

We introduce a linearity index and use it to analyze and prove

the representational capability of the inverse depth parametriza-

tion for both low and high parallax features. The only drawback

of the inverse depth scheme is the computational issue of in-

creased state vector size since an inverse depth point needs

six parameters rather than the three of XYZ coding. As a so-

lution to this, we show that our linearity index can also be

applied to the XYZ parametrization to signal when a feature

can be safely switched from inverse depth to XYZ; the usage of

the inverse depth representation can, in this way, be restricted

to low parallax feature cases where the XYZ encoding departs

from Gaussianity. Note that this “switching,” unlike in delayed

initialization methods, is purely to reduce computational load;

SLAM accuracy with or without switching is almost the same.

The fact is that the projective nature of a camera means that

the image measurement process is nearly linear in this inverse

depth coordinate. Inverse depth is a concept used widely in com-

puter vision: it appears in the relation between image disparity

and point depth in a stereo vision; it is interpreted as the paral-

lax with respect to the plane at infinity in [12]. Inverse depth is

also used to relate the motion field induced by scene points with

the camera velocity in optical flow analysis [13]. In the track-

ing community, “modified polar coordinates” [1] also exploit

the linearity properties of the inverse depth representation in a

slightly different, but closely related, problem of a target motion

analysis (TMA) from measurements gathered by a bearing-only

sensor with known motion.

However, the inverse depth idea has not previously been prop-

erly integrated in sequential, probabilistic estimation of motion,

and structure. It has been used in EKF-based sequential depth

estimation from camera-known motion [16], and in a multibase-

line stereo, Okutomi and Kanade [22] used the inverse depth to

increase matching robustness for scene symmetries; matching

scores coming from multiple stereo pairs with different base-

lines were accumulated in a common reference coded in in-

verse depth, this paper focusing on matching robustness and

not on probabilistic uncertainty propagation. Chowdhury and

Chellappa [5] proposed a sequential EKF process using inverse

depth, but this was in some way short of full SLAM in its details.

Images are first processed pairwise to obtain a sequence of 3-D

motions that are then fused with an individual EKF per feature.

It is our parametrization of inverse depth relative to the po-

sitions from which features were first observed, which means

that a Gaussian representation is uniquely well behaved, this is

the reason why a straightforward parametrization of monocular

SLAM in the homogeneous coordinates of SFM will not give a

good result—that representation only meaningfully represents

points that appear to be infinite relative to the coordinate origin.

It could be said in projective terms that our method defines sep-

arate but correlated projective frames for each feature. Another

interesting comparison is between our method, where the rep-

resentation for each feature includes the camera position from

which it was first observed, and smoothing/full SLAM schemes,

where all historical sensor pose estimates are maintained in a

filter.

Two recently published papers from other authors have de-

veloped methods that are quite similar to ours. Trawny and

Roumeliotis [26] proposed an undelayed initialization for 2-D

monocular SLAM that encodes a map point as the intersection of

two projection rays. This representation is overparametrized but

allows undelayed initialization and encoding of both close and

distant features, the approach validated with simulation results.

Eade and Drummond presented an inverse depth initialization

scheme within the context of their FastSLAM-based system

for monocular SLAM [10], offering some of the same argu-

ments about advantages in linearity as in our paper. The posi-

tion of each new partially initialized feature added to the map

is parametrized with three coordinates representing its direction

and inverse depth relative to the camera pose at the first observa-

tion, and estimates of these coordinates are refined within a set

of Kalman filters for each particle of the map. Once the inverse

depth estimation has collapsed, the feature is converted to a fully

initialized standard XYZ representation. While retaining the dif-

ferentiation between partially and fully initialized features, they

go further and are able to use measurements of partially ini-

tialized features with unknown depth to improve estimates of

camera orientation and translation via a special epipolar up-

date step. Their approach certainly appears appropriate within
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a FastSLAM implementation. However, it lacks the satisfying

unified quality of the parametrization we present in this paper,

where the transition from partially to fully initialized need not

be explicitly tackled and full use is automatically made of all of

the information available in measurements.

This paper offers a comprehensive and extended version of

our work previously published as two conference papers [7],

[18]. We now present a full real-time implementation of the

inverse depth parameterization that can map up to 50–70 fea-

tures in real time on a standard laptop computer. Experimental

validation has shown the important role of an accurate cam-

era calibration to improve the system performance, especially

with wide-angle cameras. Our results section includes new real-

time experiments, including the key result of vision-only loop

closing. Input test image sequences and movies showing the

computed solution are included in the paper as multimedia

material.

Section II is devoted to defining the state vector, including

the camera motion model, XYZ point coding, and inverse depth

point parametrization. The measurement equation is described

in Section III. Section IV presents a discussion about measure-

ment equation linearization errors. Next, feature initialization

from a single-feature observation is detailed in Section V. In

Section VI, the switch from inverse depth to XYZ coding is

presented, and in Section VII, we present experimental valida-

tions over real-image sequences captured at 30 Hz in large-scale

environments, indoors and outdoors, including real-time perfor-

mance, and a loop closing experiment; links to movies showing

the system performance are provided. Finally, Section VIII is

devoted to conclusions.

II. STATE VECTOR DEFINITION

A. Camera Motion

A constant angular and linear velocity model is used to model

handheld camera motion. The camera state xv is composed

of pose terms: rW C camera optical center position and qW C

quaternion defining orientation, and linear and angular velocity

vW and ωC relative to world frame W and camera frame C,

respectively.

We assume that linear and angular accelerations aW and αC

affect the camera, producing at each step, an impulse of linear

velocity VW = aW ∆t and angular velocity ΩC = αC ∆t, with

zero mean and known Gaussian distribution. We currently as-

sume a diagonal covariance matrix for the unknown input linear

and angular accelerations.

The state update equation for the camera is

fv =











rW C
k+1

qW C
k+1

vW
k+1

ωC
k+1











=











rW C
k +

(

vW
k + VW

k

)

∆t

qW C
k × q

((

ωC
k + ΩC

)

∆t
)

vW
k + VW

ωC
k + ΩC











(1)

where q((ωC
k + ΩC )∆t) is the quaternion defined by the rota-

tion vector (ωC
k + ΩC )∆t.

Fig. 1. Feature parametrization and measurement equation.

B. Euclidean XYZ Point Parametrization

The standard representation for scene points i in terms of

Euclidean XYZ coordinates (see Fig. 1) is

xi = (Xi Yi Zi)
⊤ . (2)

In this paper, we refer to the Euclidean XYZ coding simply as

XYZ coding.

C. Inverse Depth Point Parametrization

In our new scheme, a scene 3-D point i can be defined by the

6-D state vector:

yi = (xi yi zi θi φi ρi)
⊤

(3)

which models a 3-D point located at (see Fig. 1)

xi =





Xi

Yi

Zi



 =





xi

yi

zi



 +
1

ρi
m (θi , φi) (4)

m = (cos φi sin θi ,− sin φi , cos φi cos θi)
⊤ . (5)

The yi vector encodes the ray from the first camera position

from which the feature was observed by xi , yi , zi , the camera

optical center, and θi , φi azimuth and elevation (coded in the

world frame) defining unit directional vector m (θi , φi). The

point’s depth along the ray di is encoded by its inverse ρi =
1/di .

D. Full State Vector

As in standard EKF SLAM, we use a single-joint state vector

containing camera pose and feature estimates, with the assump-

tion that the camera moves with respect to a static scene. The

whole state vector x is composed of the camera and all the map

features

x =
(

x⊤
v ,y⊤

1 ,y⊤
2 , . . . ,y⊤

n

)⊤
. (6)

III. MEASUREMENT EQUATION

Each observed feature imposes a constraint between the cam-

era location and the corresponding map feature (see Fig. 1).



936 IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Observation of a point yi(xi) defines a ray coded by a direc-

tional vector in the camera frame hC = (hx hy hz )
⊤

. For

points in XYZ

hC = hC
X Y Z = RC W





Xi

Yi

Zi

− rW C



 . (7)

For points in inverse depth

hC = hC
ρ = RC W



ρi









xi

yi

zi



 − rW C



 + m (θi , φi)





(8)

where the directional vector has been normalized using the in-

verse depth. It is worth noting that (8) can be safely used even

for points at infinity, i.e., ρi = 0.

The camera does not directly observe hC but its projection

in the image according to the pinhole model. Projection to a

normalized retina, and then, camera calibration is applied:

h =

(

u
v

)

=









u0 −
f

dx

hx

hz

v0 −
f

dy

hy

hz









(9)

where u0 , v0 is the camera’s principal point, f is the focal length,

and dx , dy is the pixel size. Finally, a distortion model has to

be applied to deal with real camera lenses. In this paper, we

have used the standard two parameters distortion model from

photogrammetry [17] (see the Appendix for details).

It is worth noting that the measurement equation in in-

verse depth has a sensitive dependency on the parallax angle

α (see Fig. 1). At low parallax, (8) can be approximated by

hC ≈ RC W (m (θi , φi)), and hence, the measurement equa-

tion only provides information about the camera orientation and

the directional vector m (θi , φi).

IV. MEASUREMENT EQUATION LINEARITY

The more linear the measurement equation is, the better a

Kalman filter performs. This section is devoted to presenting an

analysis of measurement equation linearity for both XYZ and

inverse depth codings. These linearity analyses theoretically

support the superiority of the inverse depth coding.

A. Linearized Propagation of a Gaussian

Let x be an uncertain variable with Gaussian distribution x ∼
N

(

µx , σ2
x

)

. The transformation of x through the function f is a

variable y that can be approximated with Gaussian distribution:

y ∼ N
(

µy , σ2
y

)

, µy = f (µx) , σ2
y =

∂f

∂x

∣

∣

∣

∣

µx

σ2
x

∂f

∂x

∣

∣

∣

∣

⊤

µx

(10)

if the function f is linear in an interval around µx (Fig. 2).

The interval size in which the function has to be linear depends

on σx ; the bigger σx the wider the interval has to be to cover

a significant fraction of the random variable x values. In this

paper, we fix the linearity interval to the 95% confidence region

defined by [µx − 2σx , µx + 2σx ].

Fig. 2. First derivative variation in [µx − 2σx , µx + 2σx ] codes the departure
from Gaussianity in the propagation of the uncertain variable through a function.

Fig. 3. Uncertainty propagation from the scene point to the image. (a) XYZ

coding. (b) Inverse depth coding.

If a function is linear in an interval, the first derivative is

constant in that interval. To analyze the first derivative variation

around the interval [µx − 2σx , µx + 2σx ], consider the Taylor

expansion for the first derivative:

∂f

∂x
(µx + ∆x) ≈

∂f

∂x

∣

∣

∣

∣

µx

+
∂2f

∂x2

∣

∣

∣

∣

µx

∆x. (11)

We propose to compare the value of the derivative at the interval

center µx with the value at the extremes µx ± 2σx , where the

deviation from linearity will be maximal, using the following

dimensionless linearity index:

L =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2f

∂x2

∣

∣

∣

∣

µx

2σx

∂f

∂x

∣

∣

∣

∣

µx

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (12)

When L ≈ 0, the function can be considered linear in the inter-

val, and hence, Gaussianity is preserved during transformation.

B. Linearity of XYZ Parametrization

The linearity of the XYZ representation is analyzed by means

of a simplified model that only estimates the depth of a point

with respect to the camera. In our analysis, a scene point is

observed by two cameras [Fig. 3(a)], both of which are oriented

toward the point. The first camera detects the ray on which the

point lies. The second camera observes the same point from a

distance d1 ; the parallax angle α is approximated by the angle

between the cameras’ optic axes.

The point’s location error d is encoded as Gaussian in depth

D = d0 + d, d ∼ N
(

0, σ2
d

)

. (13)
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This error d is propagated to the image of the point in the second

camera u as

u =
x

y
=

d sin α

d1 + d cos α
. (14)

The Gaussianity of u is analyzed by means of (12), giving the

following linearity index:

Ld =

∣

∣

∣

∣

(∂2u/∂d2)2σd

∂u/∂d

∣

∣

∣

∣

=
4σd

d1
|cos α| . (15)

C. Linearity of Inverse Depth Parametrization

The inverse depth parametrization is based on the same scene

geometry as the direct depth coding, but the depth error is en-

coded as Gaussian in inverse depth [Fig. 3(b)]:

D =
1

ρ0 − ρ
, ρ ∼ N

(

0, σ2
ρ

)

(16)

d = D − d0 =
ρ

ρ0 (ρ0 − ρ)
d0 =

1

ρ0
. (17)

So, the image of the scene point is computed as

u =
x

y
=

d sin α

d1 + d cos α
=

ρ sin α

ρ0d1 (ρ0 − ρ) + ρ cos α
(18)

and the linearity index Lρ is now

Lρ =

∣

∣

∣

∣

(∂2u/∂ρ2)2σρ

∂u/∂ρ

∣

∣

∣

∣

=
4σρ

ρ0

∣

∣

∣

∣

1 −
d0

d1
cos α

∣

∣

∣

∣

. (19)

D. Depth Versus Inverse Depth Comparison

When a feature is initialized, the depth prior has to cover

a vast region in front of the camera. With the inverse depth

representation, the 95% confidence region with parameters ρ0 ,

σρ is
[

1

ρ0 + 2σρ
,

1

ρ0 − 2σρ

]

. (20)

This region cannot include zero depth but can easily extend to

infinity.

Conversely, with the depth representation, the 95% region

with parameters d0 , σd is [d0 − 2σd , d0 + 2σd ] . This region

can include zero depth but cannot extend to infinity.

In the first few frames, after a new feature has been initial-

ized, little parallax is likely to have been observed. Therefore,

d0/d1 ≈ 1 and α ≈ 0 =⇒ cos α ≈ 1. In this case, the Ld lin-

earity index for depth is high (bad), while the Lρ linearity index

for inverse depth is low (good): during initialization, the inverse

depth measurement equation linearity is superior to the XYZ

coding.

As estimation proceeds and α increases, leading to more

accurate depth estimates, the inverse depth representation con-

tinues to have a high degree of linearity. This is because in the

expression for Lρ , the increase in the term |1 − (d0/d1)cos α|
is compensated by the decrease in 4σρ/ρ0 . For inverse depth

features, a good linearity index is achieved along the whole

estimation history. So, the inverse depth coding is suitable for

both low and high parallax cases if the feature is continuously

observed.

The XYZ encoding has low computational cost, but achieves

linearity only at low depth uncertainty and high parallax. In

Section VI, we explain how the representation of a feature can be

switched over such that the inverse depth parametrization is only

used when needed—for features that are either just initialized

or at extreme depths.

V. FEATURE INITIALIZATION

From just a single observation, no feature depth can be es-

timated (although it would be possible in principle to impose

a very weak depth prior by knowledge of the type of scene

observed). What we do is to assign a general Gaussian prior

in inverse depth that encodes probabilistically the fact that the

point has to be in front of the camera. Hence, due to the linear-

ity of inverse depth at low parallax, the filter can be initialized

from just one observation. Experimental tuning has shown that

infinity should be included with reasonable probability within

the initialization prior, despite the fact that this means that depth

estimates can become negative. Once initialized, features are

processed with the standard EKF prediction-update loop—even

in the case of negative inverse depth estimates—and immedi-

ately contribute to camera location estimation within SLAM.

It is worth noting that while a feature retains low parallax,

it will automatically be used mainly to determine the camera

orientation. The feature’s depth will remain uncertain with the

hypothesis of infinity still under consideration (represented by

the probability mass corresponding to negative inverse depths).

If the camera translates to produce enough parallax, then the

feature’s depth estimation will be improved and it will begin to

contribute more to the camera location estimation.

The initial location for a newly observed feature inserted into

the state vector is

ŷ
(

r̂W C , q̂W C ,h, ρ0

)

= (x̂i ŷi ẑi θ̂i φ̂i ρ̂i)
⊤

(21)

a function of the current camera pose estimate r̂W C , q̂W C , the

image observation h = (u v )⊤, and the parameters determin-

ing the depth prior ρ0 , σρ .

The endpoint of the initialization ray (see Fig. 1) is taken

from the current camera location estimate

(x̂i ŷi ẑi)
⊤ = r̂W C (22)

and the direction of the ray is computed from the observed point,

expressed in the world coordinate frame

hW = RW C

(

ˆqW C
)

(υ ν 1)⊤ (23)

where υ and ν are normalized retina image coordinates. Despite

hW being a nonunit directional vector, the angles by which we

parametrize its direction can be calculated as

(

θi

φi

)

=





arctan
(

hW
x ,hW

z

)

arctan

(

−hW
y ,

√

hW
x

2 + hW
z

2

)



 . (24)

The covariance of x̂i , ŷi , ẑi , θ̂i , and φ̂i is derived from the

image measurement error covarianceRi and the state covariance

estimate P̂k |k .

The initial value for ρ0 and its standard deviation are set em-

pirically such that the 95% confidence region spans a range of
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depths from close to the camera up to infinity. In our experi-

ments, we set ρ̂0 = 0.1, σρ = 0.5, which gives an inverse depth

confidence region [1.1,−0.9]. Notice that infinity is included

in this range. Experimental validation has shown that the pre-

cise values of these parameters are relatively unimportant to

the accurate operation of the filter as long as infinity is clearly

included in the confidence interval.

The state covariance after feature initialization is

P̂new
k |k = J





P̂k |k 0 0
0 Ri 0
0 0 σ2

ρ



J⊤ (25)
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The inherent scale ambiguity in a monocular SLAM has usu-

ally been fixed by observing some known initial features that fix

the scale (e.g., [8]). A very interesting experimental observation

we have made using the inverse depth scheme is that sequential

monocular SLAM can operate successfully without any known

features in the scene, and in fact, the experiments we present

in this paper do not use an initialization target. In this case,

of course, the overall scale of the reconstruction and camera

motion is undetermined, although with the formulation of the

current paper, the estimation will settle on a (meaningless) scale

of some value. In a very recent work [6], we have investigated

this issue with a new dimensionless formulation of monocular

SLAM.

VI. SWITCHING FROM INVERSE DEPTH TO XYZ

While the inverse depth encoding can be used at both low and

high parallax, it is advantageous for reasons of computational

efficiency to restrict inverse depth to cases where the XYZ encod-

ing exhibits nonlinearity according to the Ld index. This section

details switching from inverse depth to XYZ for high parallax

features.

A. Conversion From Inverse Depth to XYZ Coding

After each estimation step, the linearity index Ld (15) is

computed for every map feature coded in inverse depth

hW
X Y Z = x̂i − r̂W C σd =

σρ

ρ2
i

σρ =
√

Py i y i
(6, 6)

di =
∥

∥hW
X Y Z

∥

∥ cos α = m⊤hW
X Y Z

∥

∥hW
X Y Z

∥

∥

−1
. (27)

where x̂i is computed using (4) and Py i y i
is the submatrix 6 × 6

covariance matrix corresponding to the considered feature.

If Ld is below a switching threshold, the feature is trans-

formed using (4) and the full state covariance matrix P is trans-

formed with the corresponding Jacobian:

Pnew = JPJ⊤ J = diag

(

I,
∂xi

∂yi
, I

)

. (28)

Fig. 4. Percentage of test rejections as a function of the linearity index Ld .

B. Linearity Index Threshold

We propose to use index Ld (15) to define a threshold for

switching from inverse depth to XYZ encoding at the point when

the latter can be considered linear. If the XYZ representation is

linear, then the measurement u is Gaussian distributed (10), i.e.,

u ∼ N
(

µu , σ2
u

)

µu = 0 σ2
u =

(

sin α

d1

)2

σ2
d .

(29)

To determine the threshold in Ld that signals a lack of lin-

earity in the measurement equation, a simulation experiment

has been performed. The goal was to generate samples from

the uncertain distribution for variable u, and then, apply a stan-

dard Kolmogorov–Smirnov Gaussianty [4] test to these sam-

ples, counting the percentage of rejected hypotheses h. When

u is effectively Gaussian, the percentage should match the test

significance level αsl (5% in our experiments); as the num-

ber of rejected hypotheses increases, the measurement equation

departs from linearity. A plot of the percentage of rejected hy-

potheses h with respect to the linearity index Ld is shown in

Fig. 4. It can be clearly seen than when Ld > 0.2, h sharply

departs from 5%. So, we propose the Ld < 10% threshold for

switching from inverse depth to XYZ encoding.

Notice that the plot in Fig. 4 is smooth (log scale in Ld ),

which indicates that the linearity index effectively represents

the departure from linearity.

The simulation has been performed for a variety of values

of α, d1 , and σd ; more precisely, all triplets resulting from the

following parameter values:

α(deg) ∈ {0.1, 1, 3, 5, 7, 10, 20, 30, 40, 50, 60, 70}

d1(m) ∈ {1, 3, 5, 7, 10, 20, 50, 100}

σd(m) ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 5} .

The simulation algorithm detailed in Fig. 5 is applied to every

triplet {α, d1 , σd} to count the percentage of rejected hypotheses

h and the corresponding linearity index Ld .

VII. EXPERIMENTAL RESULTS

The performance of the new parametrization has been tested

on real-image sequences acquired with a handheld-low-cost

Unibrain IEEE1394 camera, with a 90◦ field of view and
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Fig. 5. Simulation algorithm to test the linearity of the measurement equation.

Fig. 6. First (a) and last (b) frame in the sequence of the indoor experiment
of Section VII-A. Features 11, 12, and 13 are analyzed. These features are
initialized in the same frame but are located at different distances from the
camera.

320 × 240 resolution, capturing monochrome image sequences

at 30 fps.

Five experiments were performed. The first was an indoor

sequence processed offline with a Matlab implementation, the

goal being to analyze initialization of scene features located

at different depths. The second experiment shows an outdoor

sequence processed in real time with a C++ implementation.

The focus was on distant features observed under low parallax

along the whole sequence. The third experiment was a loop

closing sequence, concentrating on camera covariance evolu-

tion. Fourth was a simulation experiment to analyze the effect

of switching from inverse depth to XYZ representations. In the

last experiment, the switching performance was verified on the

real loop closing sequence. This section ends with a computing

time analysis. It is worth noting that no initial pattern to fix the

scale was used in any of the last three experiments.

A. Indoor Sequence

This experiment analyzes the performance of the inverse

depth scheme as several features at a range of depths are tracked

within SLAM. We discuss three features, which are all detected

in the same frame but have very different depths. Fig. 6 shows

the image where the analyzed features are initialized (frame

18 in the sequence) and the last image in the sequence. Fig. 7

focuses on the evolution of the estimates corresponding to the

features, with labels 11, 12, and 13, at frames 1, 10, 25, and 100.

Confidence regions derived from the inverse depth representa-

Fig. 7. Feature initialization. Each column shows the estimation history for a
feature horizontal components. For each feature, the estimates after 1, 10, 25,
and 100 frames since initialization are plotted; the parallax angle α in degrees
between the initial observation and the current frame is displayed. The thick
(red) lines show (calculated by a Monte Carlo numerical simulation) the 95%
confidence region when coded as Gaussian in inverse depth. The thin (black)
ellipsoids show the uncertainty as a Gaussian in the XYZ space propagated
according to (28). Notice how at low parallax, the inverse depth confidence
region is very different from the elliptical Gaussian. However, as the parallax
increases, the uncertainty reduces and collapses to the Gaussian ellipse.

tion (thick red line) are plotted in the XYZ space by numerical

Monte Carlo propagation from the 6-D multivariate Gaussians

representing these features in the SLAM EKF. For comparison,

standard Gaussian XYZ acceptance ellipsoids (thin black line)

are linearly propagated from the 6-D representation by means of

the Jacobian of (28). The parallax α in degrees for each feature

at every step is also displayed.

When initialized, the 95% acceptance region of all the features

includes ρ = 0, so infinite depth is considered as a possibility.

The corresponding confidence region in depth is highly asym-

metric, excluding low depths but extending to infinity. It is clear

that Gaussianity in inverse depth is not mapped to Gaussianity

in XYZ, so the black ellipsoids produced by Jacobian transfor-

mation are far from representing the true depth uncertainty. As

stated in Section IV-D, it is at low parallax that the inverse depth

parametrization plays a key role.

As rays producing bigger parallax are gathered, the uncer-

tainty in ρ becomes smaller but still maps to a nonGaussian dis-

tribution in XYZ. Eventually, at high parallax, for all of the fea-

tures, the red confidence regions become closely Gaussian and

well approximated by the linearly propagated black ellipses—

but this happens much sooner for nearby feature 11 than distant

feature 13.

A movie showing the input sequence and estimation

history of this experiment is available as multimedia

data inverseDepth indoor.avi. The raw input image

sequence is also available at inverseDepth indoorRaw-

Images.tar.gz.

B. Real-Time Outdoor Sequence

This 860 frame experiment was performed with a

C++ implementation that achieves real-time performance
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Fig. 8. (a) and (b) show frames #163 and #807 from the outdoor experiment
of Section VII-B. This experiment was processed in real time. The focus was
two features: 11 (tree on the left) and 3 (car on the right) at low parallax. Each
of the two figures shows the current images and top-down views illustrating
the horizontal components of the estimation of camera and feature locations
at three different zoom scales for clarity: the top-right plots (maximum zoom)
highlight the estimation of the camera motion; bottom-left (medium zoom)
views highlight nearby features; and bottom-right (minimum zoom) emphasizes
distant features.

at 30 fps with the handheld camera. Here, we high-

light the ability of our parametrization to deal with both

close and distant features in an outdoor setting. The

input image sequence is available at multimedia mate-

rial inverseDepth outdoorRawImages.tar.gz. A

movie showing the estimation process is also available at

inverseDepth outdoor.avi.

Fig. 8 shows two frames of the movie illustrating the perfor-

mance. For most of the features, the camera ended up gathering

enough parallax to accurately estimate their depths. However,

being outdoors, there were distant features producing low par-

allax during the whole camera motion.

The inverse depth estimation history for two features is high-

lighted in Fig. 9. It is shown that distant, low parallax fea-

tures are persistently tracked through the sequence, despite the

fact that their depths cannot be precisely estimated. The large

depth uncertainty, represented with the inverse depth scheme, is

Fig. 9. Analysis of outdoor experiment of Section VII-B. (a) Inverse depth
estimation history for feature 3, on the car, and (b) for feature 11, on a distant
tree. Due to the uncertainty reduction during estimation, two plots at different
scales are shown for each feature. It shows the 95% confidence region, and with
a thick line, the estimated inverse depth. The thin solid line is the inverse depth
estimated after processing the whole sequence. In (a), for the first 250 steps,
zero inverse depth is included in the confidence region, meaning that the feature
might be at infinity. After this, more distant but finite locations are gradually
eliminated, and eventually, the feature’s depth is accurately estimated. In (b),
the tree is so distant that the confidence region always includes zero since little
parallax is gathered for that feature.

successfully managed by the SLAM EKF, allowing the orienta-

tion information supplied by these features to be exploited.

Feature 3, on a nearby car, eventually gathers enough paral-

lax enough to have an accurate depth estimate after 250 images,

where infinite depth is considered as a possibility. Meanwhile,

the estimate of feature 11, on a distant tree and never displaying

significant parallax, never collapses in this way and zero inverse

depth remains within its confidence region. Delayed intializa-

tion schemes would have discarded this feature without obtain-

ing any information from it, while in our system, it behaves like

a bearing reference. This ability to deal with distant points in

real time is a highly advantageous quality of our parametriza-

tion. Note that what does happen to the estimate of feature 11

as translation occurs is that hypotheses of nearby depths are

ruled out—the inverse depth scheme correctly recognizes that

measuring little parallax while the camera has translated some

distance allows a minimum depth for the feature to be set.

C. Loop Closing Sequence

A loop closing sequence offers a challenging benchmark

for any SLAM algorithm. In this experiment, a handheld

camera was carried by a person walking in small circles

within a very large student laboratory, carrying out two

complete laps. The raw input image sequence is available

at inverseDepth loopClosingRawImages.tar.gz,

and a movie showing the mapping process at

inverseDepth loopClosing.avi.

Fig. 10 shows a selection of the 737 frames from the sequence,

concentrating on the beginning, first loop closure, and end of the

sequence. Fig. 11 shows the camera location estimate covariance

history, represented by the 95% confidence regions for the six

camera DOF and expressed in a reference local to the camera.

We observe the following properties of the evolution of the

estimation, focussing, in particular, on the uncertainty in the

camera location.

1) After processing the first few images, the uncertainty in

the depth of features is huge, with highly nonelliptical

confidence regions in the XYZ space [Fig. 10(a)].

2) In Fig. 11, the first peak in the X and Z translation un-

certainty corresponds to a camera motion backward along
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Fig. 10. Selection of frames from the loop closing experiment of Section VII-
C. For each frame, we show the current image and reprojected map (left),
and a top-down view of the map with 95% confidence regions and camera
trajectory (right). Notice that confidence regions for the map features are far
from being Gaussian ellipses, especially for newly initialized or distant features.
The selected frames are: (a) #11, close to the start of the sequence; (b) #417,
where the first loop closing match, corresponding to a distant feature, is detected;
the loop closing match is signaled with an arrow; (c) #441, where the first loop
closing match corresponding to a close feature is detected; the match is signaled
with an arrow; and (d) #737, the last image, in the sequence, after reobserving
most of the map features during the second lap around the loop.

the optical axis; this motion produces poor parallax for

newly initialized features, and we, therefore, see a reduc-

tion in the orientation uncertainty and an increase in the

translation uncertainty. After frame #50, the camera again

translates in the X-direction, parallax is gathered, and the

translation uncertainty is reduced.

3) From frame #240, the camera starts a 360◦ circular motion

in the XZ plane. The camera explores new scene regions,

and the covariance increases steadily as expected (Fig. 11).

4) In frame #417, the first loop closing feature is reobserved.

This is a feature that is distant from the camera, and causes

an abrupt reduction in the orientation and translation un-

certainty (Fig. 11), though a medium level of uncertainty

remains.

Fig. 11. Camera location estimate covariance along the sequence. The 95%
confidence regions for each of the 6 DOF of camera motion are plotted. Note
that errors are expressed in a reference local to the camera. The vertical solid
lines indicate the loop closing frames #417 and #441.

5) In frame #441, a much closer loop closing feature (mapped

with high parallax) is matched. Another abrupt covariance

reduction takes place (Fig. 11) with the extra information

this provides.

6) After frame #441, as the camera goes on a second lap

around the loop, most of the map features are revisited,

almost no new features are initalized, and hence, the un-

certainty in the map is further reduced. Comparing the

map at frame #441 (the beginning of the second lap) and

#737, (the end of the second lap), we see a significant re-

duction in uncertainty. During the second lap, the camera

uncertainty is low, and as features are reobserved, their

uncertainties are noticeably reduced [Fig. 10(c) and (d)].

Note that these loop closing results with the inverse depth

representation show a marked improvement on the experiments

on monocular SLAM with a humanoid robot presented in [9],

where a gyro was needed in order to reduce angular uncertainty

enough to close loops with very similar camera motions.

D. Simulation Analysis for Inverse Depth to XYZ Switching

In order to analyze the effect of the parametrization switching

proposed in Section VI on the consistency of SLAM estimation,

simulation experiments with different switching thresholds were

run. In the simulations, a camera completed two laps of a circular

trajectory of radius 3 m in the XZ plane, looking out radially

at a scene composed of points lying on three concentric spheres

of radius 4.3, 10, and 20 m. These points at different depths

were intended to produce observations with a range of parallax

angles (Fig. 12).

The camera parameters of the simulation correspond with

our real image acquisition system: camera 320 × 240 pixels,

frame rate 30 frames/s, image field of view 90◦, measure-

ment uncertainty for a point feature in the image, and Gaussian
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Fig. 12. Simulation configuration for analysis of parametrization switching
in Section VII-D, sketching the circular camera trajectory and 3-D scene, com-
posed of three concentric spheres of radius 4.3, 10, and 20 m. The camera
completes two circular laps in the (XZ )-plane with radius 3 m, and is orien-
tated radially.

Fig. 13. Details from the parametrization switching experiment. Camera lo-
cation estimation error history in 6 DOF. (translation in XY Z , and three orien-
tation angles ψθφ) for four switching thresholds: With Ld = 0%, no switching
occurs and the features all remain in the inverse depth parametrization. At
Ld = 10%, although features from the spheres at 4.3 and 10 m are eventually
converted, no degradation with respect to the non-switching case is observed.
At Ld = 40%, some features are switched before achieving true Gaussianity,
and there is noticeable degradation, especially in θ rotation around the Y axis.
At Ld = 60%, the map becomes totally inconsistent and loop closing fails.

N
(

0, 1 pixel2
)

. The simulated image sequence contained 1000

frames. Features were selected following the randomized map

management algorithm proposed in [8] in order to have 15

features visible in the image at all times. All our simulation

experiments work using the same scene features in order to

homogenize the comparison.

Four simulation experiments for different thresholds

for switching each feature from inverse depth to XYZ

parametrization were run with Ld ∈ {0%, 10%, 40%, 60%}.

Fig. 13 shows the camera trajectory estimation history in

6 DOF (translation in XY Z, and three orientation angles

Fig. 14. Parametrization switching on a real sequence (Section VII-E): state
vector size history. Top: percentage reduction in state dimension when using
switching compared with keeping all points in inverse depth. Bottom: total
number of points in the map, showing the number of points in inverse depth and
the number of points in XYZ.

ψ(Rotx), θ(Roty ), φ(Rotz , cyclotorsion)). The following con-

clusions can be made.

1) Almost the same performance is achieved with no switch-

ing (0%) and with 10% switching. So, it is clearly ad-

vantageous to perform 10% switching because there is no

penalization in accuracy and the state vector size of each

converted feature is halved.

2) Switching too early degrades accuracy, especially in the

orientation estimate. Notice how for 40% the orientation

estimate is worse and the orientation error covariance is

smaller, showing filter inconsistency. For 60%, the esti-

mation is totally inconsistent and the loop closing fails.

3) Since early switching degrades performance, the inverse

depth parametrization is mandatory for initialization of

every feature and over the long term for low parallax

features.

E. Parametrization Switching With Real Images

The loop closing sequence of Section VII-C was processed

without any parametrization switching, and with switching at

Ld = 10%. A movie showing the results is available at inver-

seDepth loopClosing ID to XYZ conversion.avi.

As in the simulation experiments, no significant change was

noticed in the estimated trajectory or map.

Fig. 14 shows the history of the state size, the number of

map features, and how their parametrization evolves. At the last

estimation step, about half of the features had been switched; at

this step, the state size had reduced from 427 to 322 (34 inverse

depth features and 35 XYZ), i.e., 75% of the original vector size.

Fig. 15 shows four frames from the sequence illustrating fea-

ture switching. Up to step 100, the camera has low translation

and all the features are in inverse depth form. As the camera

translates, nearby features switch to XYZ. Around step 420, the

loop is closed and features are reobserved, producing a sig-

nificant reduction in uncertainty that allows switching of more

reobserved close features. Our method automatically determines

which features should be represented in the inverse depth or XYZ

forms, optimizing computational efficiency without sacrificing

accuracy.
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Fig. 15. Parametrization switching seen in image space: points coded in in-
verse depth (⋆) and coded in XYZ (△). (a) First frame, with all features in inverse
depth. (b) Frame #100; nearby features start switching. (c) Frame #470, loop
closing; most features in XYZ. (d) Last image of the sequence.

F. Processing Time

We give some details of the real-time operation of our

monocular SLAM system, running on a 1.8 GHz Pentium M

processor laptop. A typical EKF iteration would implies the

following.

1) A state vector dimension of 300.

2) 12 features observed in the image, a measurement dimen-

sion of 24.

3) 30 fps, so 33.3 ms available for processing.

Typical computing time breaks down as follows: image ac-

quisition, 1 ms.; EKF prediction, 2 ms; image matching, 1 ms.;

and EKF update, 17 ms. This adds up to a total of 21 ms. The

remaining time is used for graphics functions using OpenGL on

an NVidia card and scheduled at a low priority.

The quoted state vector size 300 corresponds to a map size

of 50 if all features are encoded using inverse depth. In indoor

scenes, due to switching maps of up to 60–70, features can be

computed in real time. This size is enough to map many typical

scenes robustly.

VIII. CONCLUSION

We have presented a parametrization for monocular SLAM

that permits operation based uniquely on the standard EKF

prediction-update procedure at every step, unifying initializa-

tion with the tracking of mapped features. Our inverse depth

parametrization for 3-D points allows unified modeling and

processing for any point in the scene, close or distant, or even

at “infinity.” In fact, close, distant, or just-initialized features

are processed within the routine EKF prediction-update loop

without making any binary decisions. Due to the undelayed ini-

tialization and immediate full use of infinite points, estimates

of camera orientation are significantly improved, reducing the

camera estimation jitter often reported in previous work. The

jitter reduction, in turn, leads to computational benefits in terms

of smaller search regions and improved image processing speed.

The key factor is that due to our parametrization of the di-

rection and inverse depth of a point relative to the location

from which it was first seen, our measurement equation has low

linearization errors at low parallax, and hence, the estimation

uncertainty is accurately modeled with a multivariate Gaussian.

In Section IV, we presented a model that quantifies lineariza-

tion error. This provides a theoretical understanding of the im-

pressive outdoor, real-time performance of the EKF with our

parametrization.

The inverse depth representation requires a 6-D state vector

per feature, compared to three for XYZ coding. This doubles the

map state vector size, and hence produces a fourfold increase in

the computational cost of the EKF. Our experiments show that

it is essential to retain the inverse depth parametrization for in-

tialization and distant features, but nearby features can be safely

converted to the cheaper XYZ representation, meaning that the

long-term computational cost need not increase significantly.

We have given details on when this conversion should be car-

ried out for each feature to optimize computational efficiency

without sacrificing accuracy.

The experiments presented have validated the method with

real imagery using a handheld camera as the only sensor, both

indoors and outdoors. We have experimentally verified the fol-

lowing the key contributions of our study:

1) real-time performance achieving 30 fps real-time process-

ing for maps up to 60–70 features;

2) real-time loop closing;

3) dealing simultaneously with low and high parallax fea-

tures;

4) nondelayed initialization;

5) low jitter, full 6-DOF monocular SLAM.

In the experiments, we have focused on a map size around

60–100 features because these map sizes can be dealt with in

real time at 30 Hz, and we have focused on the challenging loop

closing issue. Useful future work would be a thorough analysis

of the limiting factors in EKF inverse depth monocular SLAM

in terms of linearity, data association errors, accuracy, map size,

and ability to deal with degenerate motion such as pure rotations

or a static camera for long-time periods.

Finally, our simulations and experiments have shown that

inverse depth monocular SLAM operates well without known

patterns in the scene to fix scale. This result points toward further

work in understanding the role of scale in monocular SLAM (an

avenue that we have begun to investigate in a dimensionless for-

mulation in [6]) and further bridging the gap between sequential

SLAM techniques and structure from motion methods from the

computer vision literature.

APPENDIX

To recover the ideal projective undistorted coordinates hu =
(uu , vu )⊤ from the actually distorted ones gathered by the cam-

era hd = (ud , vd)
⊤

, the classical two parameters radial distor-

tion model [17] is applied:

(

uu

vu

)

=hu

(

ud

vd

)

=

(

u0 + (ud − u0)
(

1 + κ1r
2
d + κ2r

4
d

)

v0 + (vd − v0)
(

1 + κ1r
2
d + κ2r

4
d

)

)

rd =

√

(dx(ud − u0))
2 + (dy (vd − v0))

2
(30)
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where u0 , v0 are the image centers and κ1 , κ2 are the radial

distortion coefficients.

To compute the distorted coordinates from the undistorted

(

ud

vd

)

= hd

(

uu

vu

)

=









u0 +
(uu − u0)

(1 + κ1r2
d + κ2r4

d)

v0 +
(vu − v0)

(1 + κ1r2
d + κ2r4

d)









(31)

ru = rd

(

1 + κ1r
2
d + κ2r

4
d

)

(32)

ru =

√

(dx(uu − u0))
2 + (dy (vu − v0))

2
(33)

where ru is readily computed computed from (33), but rd has to

be numerically solved from (32), e.g, using Newton–Raphson

method; hence, (31) can be used to compute the distorted point.

Undistortion Jacobian ∂hu/∂ (ud , vd) has the following an-

alytical expression:
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(34)

The Jacobian for the distortion is computed by inverting expres-

sion (34)

∂hd

∂ (uu , vu )

∣

∣

∣

∣

(uu ,vu )

=

(

∂hu

∂ (ud , vd)

∣

∣

∣

∣

hd (uu ,vu )

)−1

. (35)
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Large-Scale 6-DOF SLAM With Stereo-in-Hand
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Abstract—In this paper, we describe a system that can carry
out simultaneous localization and mapping (SLAM) in large in-
door and outdoor environments using a stereo pair moving with 6
DOF as the only sensor. Unlike current visual SLAM systems that
use either bearing-only monocular information or 3-D stereo in-
formation, our system accommodates both monocular and stereo.
Textured point features are extracted from the images and stored
as 3-D points if seen in both images with sufficient disparity, or
stored as inverse depth points otherwise. This allows the system to
map both near and far features: the first provide distance and ori-
entation, and the second provide orientation information. Unlike
other vision-only SLAM systems, stereo does not suffer from “scale
drift” because of unobservability problems, and thus, no other in-
formation such as gyroscopes or accelerometers is required in our
system. Our SLAM algorithm generates sequences of condition-
ally independent local maps that can share information related
to the camera motion and common features being tracked. The
system computes the full map using the novel conditionally inde-
pendent divide and conquer algorithm, which allows constant time
operation most of the time, with linear time updates to compute
the full map. To demonstrate the robustness and scalability of our
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following video files. VSLAM_stereo_distribution.avi: Suppose that a point is
located in front of a stereo camera at different distances ranging from 1 to
20 m. The video shows the uncertainty distributions estimated by different
methods when the point position is reconstructed from a noisy stereo pair ob-
servation. Cloud points are samples obtained from the real distribution, red
ellipses represent uncertainties estimated using depth point parameterization,
and the interior of the green regions represent the uncertainties estimated us-
ing inverse depth parameterization. It is clear from the video that the depth
point parameterization is overconfident when the original point is far from
the stereo. VSLAM_local_map.avi: In this video, the process of building a lo-
cal map is shown. The video reproduces the sequence of images captured by
the stereo as well as a top and lateral perspectives of the local map built.
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system, we show experimental results in indoor and outdoor ur-
ban environments of 210 m and 140 m loop trajectories, with the
stereo camera being carried in hand by a person walking at normal
walking speeds of 4–5 km/h.

Index Terms—Linear time, scalability, stereo vision, visual
SLAM.

I. INTRODUCTION: STATE-OF-THE ART IN VISUAL SLAM

T
HE INTEREST in using cameras in simultaneous localiza-

tion and mapping (SLAM) has grown tremendously in re-

cent times. Cameras have become much more inexpensive than

lasers, and also provide texture rich information about scene

elements at practically any distance from the camera. 6-DOF

SLAM systems based on 3-D laser scanners plus odometry have

been demonstrated feasible both indoors and outdoors [2], [3],

as well as vision aided by laser without odometry [4] and vision

aided by an inertial navigation system [5], [6]. But in applica-

tions where it is not practical to carry heavy and bulky sensors,

such as egomotion for people tracking and environment mod-

eling in rescue operations, cameras seem the only light weight

sensors that can be easily adapted to helmets used by rescuers,

or simply worn.

Current visual SLAM research has been focused on the use

of either monocular or stereo vision to obtain 3-D information

from the environment. Quite a few monocular visual SLAM

systems have been demonstrated to be viable for small environ-

ments [7]–[16]. Most are essentially standard extended Kalman

filter (EKF) SLAM systems, and vary in the technique used to

initialize a feature, given the partiality of the bearing only infor-

mation provided by one camera, or in the type of interest points

extracted from the images (be it Harris corners, Shi–Tomasi

corners, scale-invariant feature transform (SIFT) features, or

some combination). Some works have also considered segment

features [17], [18]. Larger environments have been tackled in

hierarchical visual SLAM [19].

A single camera is used in all of these systems, and although

very distant features are potentially detectable, scale unobserv-

ability is a fundamental limitation. Either the scale is fixed in

some way (for example, by observing a known object [16]), or

drift in scale can occur as is reported in the hierarchical visual

SLAM system [19]. Panoramic cameras are also being used in

visual SLAM [20], [21]. Here, the limitation of scale unobserv-

ability is overcome using an additional stereo vision bench for

motion estimation between consecutive frames. In the work of

Royer et at. [22], only monocular images are used. Mapping

is achieved using a batch hierarchical bundle adjustment algo-

rithm to compute all camera as well as interest points locations.

The scale is introduced in the system by manually entering the

length of the path.

1552-3098/$25.00 © 2008 IEEE
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Stereo visual systems provide scale through the baseline

between the cameras, known from calibration. Davison and

Murray demonstrated the first active stereo visual SLAM sys-

tem [23]–[25]. It is based on standard EKF, and thus, has low

scalability also. Under restrictive planar environment assump-

tions, Iocchi et al. built an environment map using stereo [26]. Se

et al. demonstrated a visual stereo SLAM system using SIFT fea-

tures in a small laboratory environment [27]. This system is also

unlikely to scale adequately to large environments or work in

more challenging outdoor scenarios as cross-correlations were

neglected for computational reasons. In [28] and [29], the au-

thors demonstrate an autonomous blimp system for terrain map-

ping using stereo as the only sensor, also using a standard EKF

SLAM algorithm. Saez et al. [30] presented a 6-DOF stereo

visual SLAM system, where egomotion estimation is done by

a 3-D point matching algorithm, and mapping through a global

entropy minimization algorithm in indoor orthogonal scenarios,

with difficult extension to more complex nonorthogonal envi-

ronments.

In [31] and [32], Sim et al. describe a dense visual SLAM

system using Rao–Blackwellized particle filters and SIFT fea-

tures (a similar effort in using Rao–Blackwellized particle filters

and SIFT features for visual SLAM was reported in [15]). Vi-

sual odometry [structure from motion (SFM)] is used to generate

proposals for the sensor motion and global pose estimation algo-

rithms for loop closing. This system works in either monocular

or stereo mode, with cameras mounted on a robot moving in

2-D; sensor trajectories with 6 DOF will require large amounts

of particles for their representation. In [33], the authors also

compare the advantages of separate monocular and stereo ap-

proaches in traditional SLAM frameworks.

In this paper, we show the advantages of being able to ac-

commodate both monocular and stereo information in carrying

out a 6-DOF SLAM with a handheld camera. In the works of

Sola et al. [34] and Lemaire et al. [20], it is also pointed out

that combining visual information at close range as well as at

infinity should improve the performance of visual SLAM.

Since the initial results of [35], great progress has been made

in the related problem of visual odometry [36]–[39]. Visual

odometry systems have the important advantage of constant

time execution. Furthermore, during exploratory trajectories, in

which an environment feature is seen for a certain window of

time and never more, visual odometry can obtain the same preci-

sion in the estimation of the sensor location as a SLAM system,

with a great reduction in cost. Unfortunately, visual odometry

does not cope with loop closings, and thus, eventual drift in these

cases is inevitable. Stereo visual odometry combined with GPS

can result in a mapping system that avoids long-term drift [40],

[41], but unfortunately GPS is not always available. Improving

the precision in sensor location through loop closing is one of

the main advantages of SLAM.

An important limitation of current SLAM systems that use

the standard EKF algorithm is that when mapping large environ-

ments very soon, they face computational as well as consistency

problems [42]. Many efforts have been invested in reducing the

O(n2) cost of the EKF updates. In [43], an information filter,

the dual of the Kalman filter, was used, allowing constant time

updates irrespective of the size of the map. An approximation

is carried out to sparsify the information matrix, which may

lead to map divergency [44]. The treemap algorithm [45] per-

forms updates in O(log n) also by forcing information matrix

sparseness by weak link breakage. In more complicated trajec-

tories, such as lawn mowing, the cost can be more than log

linear [46]. In the smoothing and mapping method [47], the

authors observed that the information matrix is exactly sparse

when all vehicle locations are considered in the stochastic map,

and thus, very efficient techniques can be used to compute

the batch solution (a recent incremental version is described

in [48]).

All of these algorithms use the information form, and thus,

the state and covariance are not readily available. There are al-

ternatives that work on the covariance form, such as the map

joining algorithm [49]. It works on a sequence of local maps of

limited size, and thus, it can cut down the cost of EKF SLAM

considerably, although remaining O(n2). It has the additional

advantage of improving the consistency of the resulting esti-

mation [42]. The divide and conquer algorithm [50] is able

to compute the covariance form of the stochastic map in an

amortized time linear with the size of the map, improving fur-

ther the consistency of the solution. However, in these systems,

local maps are required to be statistically independent. This re-

quires creating a new local map from scratch every time the

current local map size limit has been reached. Consequently,

no sharing of valuable information is possible in a 6-DOF vi-

sual SLAM, such as the camera velocity, or information about

features currently being tracked. This issue has been tackled

in a recent work [51] by using the conditional independence

property.

In this paper, we describe a robust and scalable 6-DOF visual

SLAM system that can be carried in hand at normal walking

speeds of 4–5 km/h, and used to map large indoor and outdoor

environments. In Section II, we summarize the main character-

istics of our system. In Section III, we describe the details of the

visual SLAM system that provides the sequence of condition-

ally independent (CI) local maps, the basic building blocks of

our mapping algorithm. This algorithm, CI divide and conquer

(D&C) SLAM, is explained in Section IV. In Section V, we

describe the two experiments carried out to test the system, an

indoor 200 m loop and an outdoor 140 m loop. In Section VI,

we discuss the results obtained, and finally, in Section VII, we

draw the main conclusions of our work.

II. OUR PROPOSAL

The fundamental characteristics of the system that we de-

scribe in this paper are as follows.

1) Unlike any other visual SLAM system, we consider in-

formation from features, both close and far from the cam-

eras. A stereo provides 3-D information from nearby scene

points, and each camera can also provide bearing only in-

formation from distant scene points. Both types of infor-

mation are incorporated into the map and used to improve

the estimation of both the camera pose and velocity, as

well as the map.
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Fig. 1. Stereo vision system used to acquire the image sequences. (Left)
Experimental setup during the data acquisition for the indoor experiment.

2) Nearby scene points provide scale information through

the stereo baseline, eliminating the intrinsic scale unob-

servability problem of monocular systems.

3) We use Conditionally Independent Divide and Conquer

SLAM algorithm that allows the system to maintain both

camera velocity information and current feature informa-

tion during local map initialization. This adds robustness

to the system without sacrificing precision or consistency

in any way. Being a D&C algorithm, it also allows lin-

ear time execution, enabling the system to be used for

large-scale indoor/outdoor SLAM.

Our 6-DOF hardware system consists of a stereo camera car-

ried in hand and a laptop to record and process a sequence of

images (see Fig. 1). Since the camera moves in 6 DOF, we de-

fine the camera state using 12 variables: camera position in 3-D

Cartesian coordinates, camera orientation in Euler angles, and

linear and angular velocities. It is known that a stereo camera can

provide depth estimation of points up to a certain distance deter-

mined by the baseline between left and right cameras. Therefore,

two regions can be differentiated: a region close to the cameras

and visible by both, in which the stereo behaves as a range and

bearing sensor. The second is the region of features far from

the cameras or seen by only one, in which the stereo becomes

a monocular camera, providing bearing only measurements of

such points. To take advantage of both types of information, we

combine 3-D points and inverse depth (ID) points (introduced

in [52]) in the state vector in order to build a map and estimate

the camera trajectory. The system produces sequences of local

maps of limited size containing both types of features using an

EKF SLAM algorithm. As we detail in Section IV, these local

maps are joined into a full map using the CI D&C SLAM algo-

rithm, obtaining as final result a full stochastic map containing

all tracked features, and the final and intermediate camera states

from each local map. This system is highly scalable: local maps

are built in constant time, regardless of the size of the envi-

ronment, and the CI D&C algorithm requires amortized linear

time.

During the feature tracking process, the right image is cho-

sen as reference to initialize new features. Interest points are

detected and classified according to their disparity with the left

image. Those points whose disparity reveals a close distance

are initialized as 3-D features, otherwise they are modeled as

ID points and initialized using the bearing information obtained

from the right image. When the camera moves, these features

are tracked in order to update the filter and produce the corre-

sponding corrections. To track a feature, its position is predicted

in both images inside a bounded region given by the uncertainty

in the camera motion and the corresponding uncertainty of the

feature.

The process to select, initialize, and manage these features is

detailed in the next section.

III. VISUAL SLAM SYSTEM

A. State Representation

The state vector that represents a local submap xB contains

the final camera location xc and the location of all features xf1 :n

with respect to the map base reference B, the initial camera lo-

cation. Some features are codified using the ID parametrization

that model points that are at infinity in xID . Additionally, Carte-

sian 3-D parametrization is used to represent depth points in

x3D :

xB =

[

xc

xf1 :n

]

=





xc

xID

x3D



 . (1)

The camera is described by the position of its optical center

in Cartesian coordinates r, its orientation in Euler angles Ψ, its

linear velocity v, and its angular velocity w. In order to carry

out the prediction process, the camera motion follows a constant

velocity model with zero mean Gaussian noise in the linear and

angular accelerations

xc =







r

Ψ
v

w






. (2)

Image corners classified as depth points are transformed to

3-D points, given the disparity information provided by the

stereo pair. Section III-D describes the criterion adopted to select

points as depth points. Since the stereo camera provides rectified

images, the backprojection equations to obtain a 3-D point are

based on a pinhole camera model that relates image points and

3-D points using the following transformation function:

x3D = f(ur , vr , ul , vl)

= [x, y, z]T

=

[

b(ur − u0)

d
,
b(vr − v0)

d
,
fb

d

]T

(3)

where (ur , vr ) and (ul , vl) are the pixels on the right and left

images, and d = (ul − ur ) is the horizontal disparity. The re-

mainder terms in the equations are the calibrated parameters

of the camera, i.e., the central pixel of the image (u0 , v0), the

baseline b, and the focal length f .

Given the camera location xc i
, an ID point is defined in [52]

as

xID =







ri

θi

φi

ρi






. (4)
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Fig. 2. Points detected using a stereo camera. Projection of map features on both left and middle images. (Right) We show feature uncertainties from a lateral
perspective. 3-D feature uncertainties are drawn using darker ellipses whereas we use samples to show the ID feature uncertainties. The accompanying video
VSLAM local map.avi illustrates the process of building a single local submap.

This vector depends on the optical center ri of the camera from

which the feature was first observed, the direction of the ray

passing through the image point (i.e., azimuth θi , elevation φi),

and the inverse of its depth, ρi = 1/di .

B. Selection and Management of Trackable Points

To ensure tracking stability of map features, distinctive points

have to be selected. Following a similar idea as the one presented

in [53], we use the Shi–Tomasi variation of the Harris corner

detector to select good trackable image points and their corre-

sponding 11 × 11 surrounding patch.

From the first step, the right image is split using a regular

grid; the point with the best detector response per grid cell is

selected (see Fig. 2). At each step, we use only those features

that fall in the field of view (FOV) of the camera when they are

projected along with their uncertainties on right and left images.

Using the patch associated with each feature, a matching search

based on normalized cross-correlation is performed inside the

projected uncertainty region, as introduced in [24]. During the

following steps, those cells that become and remain empty for

a given time are monitorized to initialize a new feature when a

good point is detected. In this way, features can be uniformly

distributed in the image, improving the amount of information

gathered from the scene, and therefore the map estimate. The

approach is accompanied by a feature management strategy so

that nonpersistent features are deleted from the state vector to

avoid an unnecessary growth in population.

C. Measurement Equation

At each step, we apply the active search process described

before such that, for each projected feature in the stereo image,

a match is found after performing normalized cross-correlation.

Thus, a new observation z given by the matched pixel is used to

update the state of the camera and the map.

In the right camera, the equation that defines the relation

between the ith ID feature x
i
ID and its observation z

r i

ID is given

by the following measurement equation:

z
r i

ID = hr
ID (xc ,x

i
ID ) + υ

= projection(⊖xc ⊕ x
i
ID) + υ (5)

where hr
ID is the function that projects the ID feature to the right

camera and υ is a zero mean Gaussian noise with σp standard

deviation that represents the projection error in pixels. Alterna-

tively, we can define the measurement equation that relates the

inverse point observation on the left image by

z
li
ID = hl

ID(xc ,x
i
ID ) + υ

= projection(⊖xc ⊕ xcr c l
⊕ x

i
ID) + υ (6)

where the displacement of the left camera optical center with

respect to the right camera is given by the rigid transformation

xcr c l
= [0 b 0]T .

In a similar way, we describe observations corresponding to

3-D map features in the right and left cameras as

z
r i

3D = hr
3D (xc ,x

i
3D ) + υ

= projection(⊖xc ⊕ x
i
3D ) + υ

z
li
3D = hl

3D (xc ,x
i
3D )

= projection(⊖xc ⊕ xcr c l
⊕ x

i
ID) + υ.

Note that we use ⊕ and ⊖ operators in order to denote the

corresponding compositions and inversions of transformations.

They represent different transformations depending on the kind

of parametrization used to express a feature. In [49], the defini-

tions for 2-D transformations were introduced, dealing mainly

with point features and line features. In [54], the operations

have been extended for 3-D ID and depth points. Details of

the calculation of the corresponding Jacobians to propagate the

uncertainties correctly can also be found in [54].

Fig. 2 shows the prediction of these 3-D ID features that fall

inside the FOV of each of the cameras. A good advantage of

using a stereo camera is that although a feature can disappear

from the FOV of one camera, information to update the state is

available if the feature can be still found in the other. As it will

be shown in the experiments, this fact is of extreme importance

when the camera rotates or turns around a corner, since features

escape very fast from the FOV of a single camera, making the

estimation of the camera location in these moments very weak.

D. Depth Points Versus ID Points

Current research on monocular SLAM has shown that the

ID parametrization is suitable to represent the distribution of
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Fig. 3. Simulated experiment of a point reconstruction from a stereo pair observation for a point at (left) 5-, (middle) 10-, and (right) 15-m distance. The point
clouds are samples from the real distribution of the point location, given that the pixel noise in the images is Gaussian. Dark red ellipses represent the uncertainty
region for the point location when the back projection equations of a depth point are linearized. Light green regions represent the uncertainty in the point using the
ID parametrization. The accompanying video VSLAM stereo distribution.avi shows the real and approximate uncertainties.

features at infinity as well as close points, allowing to perform

an undelayed initialization of features. Despite its properties,

each ID point needs an overparametrization of six values instead

of a simpler three coordinates spatial representation [55]. This

produces a computational overhead in the EKF. Working with a

stereo camera, which can estimate the depth of points close to

the camera, raises the subtle question of when a feature should

be initialized using a 3-D or an ID representation.

In order to clarify this issue, we have designed a simulated

experiment to study the effect of the linearization in both rep-

resentations when a point is initialized using the stereo infor-

mation. In this simulated experiment, the variance of the pixel

noise (σp = 1 pixel) and the actual intrinsic parameters of the

stereo camera used, such as the baseline, are taken into account

to implement the simulation. The experimental setup consists of

a stereo pair where the left camera is located at the origin of the

reference frame, with its principal axis pointing along Z and the

X axes pointing to the right. The right camera is at b = 12 cm in

X . We consider a point that is in the middle between both cam-

eras at different distances in Z. Given a noisy pixel observation,

the uncertainty region of a reconstructed point is sampled and

plotted in Fig. 3 for three different point distances: 5,10, and

15 m. The uncertainty region of the 3-D representation, which

is calculated using a linearization of (3) and evaluated in the

ground truth, is represented by the dark red ellipse. The corre-

sponding uncertainty region of the linearized ID representation

is bounded by the light gray lines in the plot. Notice that the ID

parametrization models very accurately the real uncertainty for

the studied distances. However, although the dark ellipse covers

the real distribution at 5 m quite accurately, for longer distances,

the ellipse overestimates the uncertainty in the region close to

the cameras and is overconfident for far distances.

This empirical analysis suggests choosing a threshold of 5 m.

A point closer than 5 m is initialized using a 3-D representation,

a more distant point is parameterized as an ID point.

ID features can be transitioned to 3-D points, reducing signif-

icantly the number of DOF. Conversion requires an analysis of

the linearity of the functions that model both depth point and ID

point distributions. In [55], this issue is considered by using a

linearity index. Such analysis makes it possible to decide when

Fig. 4. Binary tree representing the hierarchy of maps that are created and
joined in D&C SLAM. The red line shows the sequence in which maps are
created and joined.

an inverse point distribution is well approximated with the over-

parameterized coding. Switching from ID to depth depends on

a linearity threshold derived from the analysis.

IV. CI D&C SLAM

D&C SLAM has proved to be a good algorithm in mini-

mizing the computational complexity of EKF-based SLAM and

improving consistency of the resulting estimate [50]. The al-

gorithm allows us to efficiently join several local maps into a

single state vector using map joining in a hierarchical tree struc-

ture (see Fig. 4). Local maps can be obtained in constant time,

regardless of the size of the environment, and the map joining

operations can be performed in an amortized linear time. The

D&C SLAM algorithm was, however, conceived for statistically

independent sequences of local maps. This requires creating a

new local map from scratch every time the current local map

size limit has been reached. Consequently, it is not possible

to share valuable information in a 6-DOF visual SLAM, such

as the camera velocity, or information about features currently

being tracked.

In this section, we describe the CI D&C SLAM algorithm,

which is able to work with maps that are not statistically inde-

pendent, but rather conditionally independent, and thus, allow

sharing of the valuable information with no increment in com-

putational cost or loss of precision whatsoever.
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A. CI Local Maps

In visual SLAM, it can be very useful to share some state

vector components between consecutive submaps: some camera

states, such as linear and angular velocities, as well as features

that are in the transition region between adjacent submaps and

are currently being tracked. This allows us to improve the es-

timate of relative location between the submaps and continue

tracking the observed features with no interruptions. Neverthe-

less, special care is needed to join the submaps in a single map

since their estimates are not independent anymore.

The novel technique to achieve these requirements is based

on the concept of CI local maps presented in [51]. Here, we

present a brief summary of the technique.

Suppose that a local map 1 has been built and we want to start

a new submap 2 not from scratch, but sharing some elements

in common with 1. Submap 1 is described by the following

probability density function:

p(xA ,xC |za) = N

([

x̂Aa

x̂Ca

]

,

[

PAa
PAC a

PC Aa
PCa

])

(7)

where xA are the components of the current submap that only

belong to map 1, xC are the elements that will be shared with

map 2, and za the observations gathered during the map con-

struction. Notice that upper case subindices are for state vector

components whereas lower case subindices describe which ob-

servations z have been used to obtain the estimate.

Submap 2 is then initialized with the result of marginalizing

out the noncommon elements from submap 1:

p(xC |za) =

∫

p(xA ,xC |za) dxA = N (x̂Ca
, PCa

). (8)

During the trajectory along map 2, new observations zb are gath-

ered about the common components xC as well as observations

of new elements xB that are incorporated into the map. When

map 2 is finished, its estimate is finally described by

p(xC ,xB |za , zb) = N

([

x̂Ca b

x̂Ba b

]

,

[

PCa b
PC Ba b

PBCa b
PBa b

])

(9)

where the subindices in the estimates x̂Ca b
and x̂Ba b

reveal

that both sets of observations za and zb have been used in the

estimation process. This means that submap 2 is updated with

all the information gathered by the sensor. But observe that map

1 in (7) has been updated with the observation za but not with

the more recent observations zb .

Fig. 5 shows a Bayesian network that describes the proba-

bilistic dependencies between elements of submaps 1 and 2. As

it can be seen, the only connection between the set of nodes

(xA , za ) and (xB , zb ) is through node xC , i.e., both subgraphs

are d-separated given xC [56]. This implies that nodes xA and

za are CI of nodes xB and zb given node xC . Intuitively, this

means that if xC is known, submaps 1 and 2 do not carry any

additional information about each other.

Fig. 5. Bayesian network that describes the relations between two consecutive
submaps.

B. CI Map Joining

Consider two consecutive CI local maps. We are interested in

joining the maps into a single stochastic map described by

p(xA ,xB ,xC |za , zb)

= N









x̂Aa b

x̂Ca b

x̂Ba b



 ,





PAa b
PACa b

PABa b

PC Aa b
PCa b

PC Ba b

PBAa b
PBCa b

PBa b







 . (10)

Taking into account the submap conditional independence prop-

erty, it can be demonstrated [51] that the optimal map result of

the joining can be computed using

K = PAC a
P−1

Ca

= PAC a b
P−1

Ca b
(11)

x̂Aa b
= x̂Aa

+ K(x̂Ca b
− x̂Ca

) (12)

PAa b
= PAa

+ K(PC Aa b
− PC Aa

) (13)

PAC a b
= KPCa b

(14)

PABa b
= KPC Ba b

. (15)

Using this technique, we can build local maps that have ele-

ments in common, and then retrieve the global information in

a consistent manner. After the joining, the elements belonging

to the second map are transformed to the base reference of the

first map.

C. Actual Implementation for Stereo

The D&C SLAM algorithm of [50] can be adapted to work

with conditional independent local maps simply by using the

CI map joining operation described before. As we mentioned

before, since the camera moves in 6 DOF, the camera state is

composed of its position using 3-D Cartesian coordinates, the

orientation in Euler angles, and its linear and angular velocities.

3-D points and ID points are included as features in the state

vector. When a local map mi is finished, the final map estimate

is given by

mi .x̂ =







x̂R i R j

v̂R i R j

x̂R i F1 :m

x̂R i Fm + 1 :n






(16)
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Fig. 6. (a) Outdoors experiment: 6-DOF stereo SLAM on a public square. (Top row) Both XY projection and (top-middle row) YZ projection are shown in order
to illustrate the precision obtained. (b) Indoor experiment along a building environment. (Bottom-middle row) XY projection and (bottom row) YZ projection.
(Left column) The sequence of CI local maps is represented with respect to the initial reference; (middle column) results obtained after running the D&C algorithm
that joins and corrects the estimates; (right column) final map obtained when the loop closing constraint is imposed. The scale factor and camera positions are well
recovered due to the combined observations of 3-D points and ID points. The accompanying videos VSLAM video outdoor.avi and VSLAM video indoor.avi
show the full execution of the outdoor and indoor experiments.

where x̂R i R j
is the final camera location Rj with respect to the

initial one, Ri and v̂R i R j
are the linear and angular velocities,

x̂R i F1 :m
are 3-D and ID features that will only remain in the

current map, and x̂R i Fm + 1 :n
are 3-D and ID features that will

be shared with the next submap mj .

Since the current camera velocity v̂R i R j
and some features

x̂R i Fm + 1 :n
are used to initialize the next local map, these ele-

ments have to be computed with respect to the base reference

of the second map Rj :

mi .x̂ =



















x̂R i R j

v̂R i R j

x̂R i F1 :m

x̂R i Fm + 1 :n

· · ·
⊖x̂R i R j

⊕ v̂R i R j

⊖x̂R i R j
⊕ x̂R i Fm + 1 :n



















=





x̂Aa

· · ·
x̂Ca



 (17)

where the new elements define the common part x̂Ca
and the

original map defines x̂Aa
. Notice that the appropriate composi-

tion operation has to be applied for each transformed component

and that the corresponding covariance elements have to be added

to the map.

In local mapping, a base reference has to be identified to start

a new map. This common reference is represented by the final

vehicle position, which is the case of Rj between mi and mj .

The initial state vector of the next submap is then given by

mj .x̂ =











x̂R j R j

⊖x̂R i R j
⊕ v̂R i R j

⊖x̂R i R j
⊕ v̂R i R j

⊖x̂R i R j
⊕ x̂R i Fm + 1 :n











(18)

where x̂R j R j
represents the location of the camera in the new

reference frame with initial zero uncertainty and zero correlation
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with the rest of the elements of the initial map. Notice that the

initial velocity brought from the previous map has been repli-

cated twice. One of the copies will change as the camera moves

through the new map carrying the current camera velocity. The

other copy will remain fixed and, together with the transformed

features, will be the common elements with the previous map.

The same process is successively repeated with all local maps.

D. Continuous Data Association in Each Local Map

Recent work on large environments [19] has shown that the

joint compatibility test [57] helps avoiding map corruption in the

visual SLAM by rejecting measurements that come from mov-

ing objects. This framework is suitable in environments with a

limited number of observations. However, a branch and bound

algorithm implementation of (JCBB) has limited use when the

number of observations per step is large. In this paper, we have

obtained more efficient results using the randomized joint com-

patibility version RJC proposed in [50], in which, in the spirit of

RANSAC, a joint compatibility (JC) test is run with a fixed set

of p randomly selected measurements. In this case, correlation

between patches and individual χ2 tests is used to obtain candi-

date matches. If all p measurements and their matches are jointly

compatible, we apply the nearest neighbor rule to match the re-

maining measurements. Once a full hypothesis H is obtained,

we check JC to avoid false positives. The process is repeated t
times with adaptive RANSAC, limiting the probability of miss-

ing a correct association.

E. Map Matching

The property of sharing common elements solves the data

association problem between consecutive local maps [50]. This

requires us to solve data association only in loop closing sit-

uations. We use the map matching algorithm of [19] in order

to detect a previously visited area. The algorithm finds corre-

spondences between features in different local maps, taking into

account the texture and the relative geometry between the fea-

tures. If sufficient corresponding features are found, an ideal

measurement equation that imposes the loop closing constraint

is applied in the final map.

V. EXPERIMENTS IN URBAN OUTDOOR AND INDOOR

ENVIRONMENTS

In order to demonstrate the robustness and scalability of the

visual SLAM system that we propose, we have gathered two

320× 240 image sequences with a stereo system (see Fig. 1).

The system provides a 65× 50 degree FOV per camera, and has

a baseline of 12 cm, limiting the 3-D point features initialization

up to a distance close to 5 m.

An indoor loop (at 48 fps) and an urban outdoor (at 25 fps)

loop sequences were captured carrying the camera in hand, at

normal walking speeds of 4–5 km/h. Both sequences were pro-

cessed in MATLAB with the proposed algorithms on a desktop

computer with an Intel 4 processor at 2.4 GHz. The higher frame

rate for the indoor experiment helps in reducing the probability

Fig. 7. Running time per step of all associated processes; a detailed analysis
of (left) the features extraction, local mapping (labeled as local maps), and data
association (DA) times; (right) total time per step where the peaks represent
the joins performed by the CI D&C algorithm. (Top) Outdoor environment: the
public square. (Bottom) Indoor environment.

of mismatches given that the environment includes brick walls

providing ambiguous texture information.

The outdoor sequence is composed of 3441 stereo pairs gath-

ered in a public square of our home town (see Fig. 6 top row).

The full trajectory is approximately 140 m long from the ini-

tial camera position. Fig. 6, left column, shows the sequence of

conditional independent local maps obtained with the technique

described in Section IV-A. Each map contains 100 features

combining ID and 3-D points. The total number of maps built

during the stereo sequence is 11. The result of D&C without

applying the loop closing constraint is shown in Fig. 6, middle

column. As it can be observed, the precision of the map obtained

is good enough to almost align the first and last submaps after

all the trajectory has been traversed, even without applying loop

closing constraints. Fig. 6, right column, presents the final result

after closing the loop.

The second experiment was carried out inside one of our

campus buildings in a walk of approximately 210 m (see Fig. 6,

bottom row). The same process was run in order to obtain a full

map from 8135 stereo pairs. This environment has a particular

degree of difficulty due to ambiguous texture and the presence

of extensive zones of glass windows such as offices, corridors,

and cafeterias. This can be noticed in the long distance points

estimated in some of the maps, which are actually inside offices

and the cafeteria (see Fig. 6, left column). The result of CI D&C

is shown in Fig. 6, middle column, and the final result after loop

closing is shown in Fig. 6, right column.

Our 6-DOF SLAM system, even implemented in MATLAB,

does not exceed 2 s per step, which is the worst case when

building CI local maps. Fig. 7 shows how the system running

time remains constant in most of the steps. Moreover, time

peaks that appear when CI D&C takes place are below 8 s for

the square experiment and 14 s for the indoor experiment, which

are the maximum times required in the last step.
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Fig. 8. Comparison of the outdoor and indoor maps obtained before the loop closure using three different techniques. (Left) Monocular SLAM with ID points,
(middle) stereo SLAM with 3-D points, and (right) the proposed stereo SLAM with 3-D points and ID points.

Using the Google Earth tool, we can see that the map scale

obtained and the trajectory followed by the camera is very close

to the real scale. Fig. 9 illustrates comparative results. We loaded

the MATLAB figure in Google Earth and set the scale parameter

to the real scale. Given that we had neither GPS nor compass

measurements for the initial locations of the camera that are the

base reference of each map, the position and orientation of the

figure over the map were adjusted by hand. It can be noticed that

angles between the square sides and the shape of the walls of the

surrounding environment have been captured with precision.

VI. DISCUSSION

As presented in Section I, several works have demonstrated

successful visual SLAM systems in small environments us-

ing monocular or stereo cameras. There are several important

factors that limit the extension of these results to large-scale

environments.

First, the computational complexity and consistency of the

underlying SLAM technique. In this paper, we have presented

a novel algorithm that builds CI local maps in constant time

and combines them in an optimal way in amortized linear time.

Although the experiments presented here were processed in

MATLAB, we expect that the extension to stereo of our current

real-time implementation [19] will be able to build local maps up

to 100 features in real time, with updates at 25 Hz. The D&C map

joining, loop detection, and loop closing can be implemented

on a separate thread, taking advantage of current multiple core

processors.

In the case of monocular SLAM, another important limiting

factor is the intrinsic unobservability of the scale. This problem

can be addressed using additional sensors such as the vehicle
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Fig. 9. Stereo visual SLAM recovers the true scale. (Top) Building environ-
ment and (bottom) the public square overlapping Google Earth.

odometry, GPS, or inertial units. When they are not available,

the scale can be initialized using some a priori knowledge

about the environment such as the size of a known object visible

at the start [16] or the initial speed of the camera. However, in

large environments, unless scale information is injected on the

system periodically, the scale of the map can slowly drift (see,

for example, the experiments in [19]). Another critical issue

appears when the scene is mostly planar and perpendicular to

the optical axis. In this situation, with a monocular camera, it

is very difficult to distinguish between camera translation and

rotation, unless a wide FOV is used.

To illustrate these difficulties, we have processed our indoor

and outdoor experiments using only the information from the

right camera. As we are now using a bearing only system, all the

features are initialized using the ID representation. To bootstrap

the system, we have introduced a initial estimated speed for the

camera of 1 m/s. Apart from that, our visual SLAM algorithm

remains unchanged. The resulting maps are represented in the

left column of Fig. 8. As it can be seen, the scale obtained by the

system drifts (compare the beginning of the loop with the end).

Also, in the outdoor experiment, at a certain point, the system

misinterprets the camera translation as a rotation, and the map

gets corrupted. Here, we are using a camera with FOV of 65◦.

The results obtained in the same environment with an FOV of

90◦ are significantly more robust [51]. In the indoor experiment

with a monocular camera, as the objects are much closer to the

camera, most of the features disappear fast from the FOV when

the camera turns, leading to a bad estimation of its position and

consequently divergence in the map estimate.

We have also processed the sequences with our SLAM algo-

rithm using conventional stereo, i.e., changed to initialize all the

features whose disparity is larger than one pixel as 3-D points.

Features without disparity are discarded because its depth can-

not be computed by stereo. The immediate benefit is that the

true environment scale is observable and the map corruption

disappears (Fig. 8, middle column). However, for points that are

more than 10 m away from the camera, a Gaussian in xyz is a

bad approximation for its true uncertainty. This is the reason for

the map deformation that is clearly visible in the lower part of

the outdoor experiment, where many features are at about 20 m

from the camera.

The proposed system (Fig. 8, right column) combines the

advantages of stereo and bearing only vision. On the one hand,

the true scale is precisely obtained due to the 3-D information

obtained by the stereo camera from close point features. On the

other hand, the region with useful point features extends up to

infinity due to the ID representation developed for bearing-only

SLAM. The depth of the features that are far from the camera

can be precisely recovered by the system if they are seen from

viewpoints that are separated enough. In that case, they can be

upgraded to 3-D points for better efficiency [55]. Otherwise, they

remain as ID points and still provide very valuable orientation

information that improves map precision and keeps the SLAM

system stable when few close features are observed.

VII. CONCLUSION

In this paper, we have shown that 6-DOF visual mapping of

large environments can be efficiently and accurately carried out

using a stereo camera as the only sensor. One of the contributions

of the paper is that information from features nearby and far from

the cameras can be simultaneously incorporated to represent the

3-D structure more precisely. Using close points provides scale

information through the stereo baseline avoiding “scale-drift,”

while ID points are useful to obtain angular information from

distant scene points.

Another contribution of the paper is the combination of two

recent local mapping techniques to improve consistency and

reduce complexity in the SLAM process. Using CI local maps

[51], our system is able to properly share information related

to the camera motion model and common features between

consecutive maps. Smoother transitions from map to map are

achieved as well as better relative locations between local maps.

By means of the simplicity and efficiency of the CI D&C SLAM

algorithm, we can recover the full map very efficiently. The
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combination of both techniques adds robustness to the process

without sacrificing precision.

In [50], we describe the performance of D&C SLAM when

the vehicle carries out different types of trajectories. For some

trajectories, the cost of map joining can increase at some steps,

depending of the size of the overlap between the maps to be

joined: doing exploration, the overlap is constant and the cost

of map joining is small, when completing a loop traversal for a

second time the overlap between the maps is total and the cost

of joining will be much higher. Although we are able to close

large indoor and outdoor loops, the algorithm used for loop

closing strongly depends on detecting sets of features already

stored in the map when the same area is revisited. It would be

interesting to analyze other types of algorithms for loop closing,

for instance, the image to map algorithm proposed in [58].

Moreover, as we assume smooth motions, the relocation al-

gorithm presented in [58] would enable the system to avoid

failures in case of jitter.

There is also a restriction of the system to estimate pitch

orientation due to the use of Euler angles. A combined solution

using quaternions can mitigate the problem. This will be part of

our future research.

Apart from upward looking cameras and jitter, there are no

limitations to manoeuver the camera freely: it can be used in

environments that include stairs and other terrain accidents. This

kind of experiment will be part of the evaluation process for

future work.

We will also focus on comparing our system with other stereo

vision techniques such as visual odometry. We are very inter-

ested in studying the fusion of the stereo camera with other

sensors like GPS or inertial systems in order to compare the

precision obtained. We will consider other types of feature de-

tectors as well, and their effect in the final result.
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CI-Graph: An efficient approach for Large Scale SLAM

Pedro Piniés, Lina M. Paz, Juan D. Tardós

Abstract— When solving the Simultaneous Localization and
Mapping (SLAM) problem, submapping and graphical methods
have shown to be valuable approaches that provide significant
advantages over the standard EKF solution: they are faster
and can produce more consistent estimates when using local
coordinates. In this paper we present CI-Graph, a submapping
method for SLAM that uses a graph structure to efficiently
solve complex trajectories reducing the computational cost.
Unlike other submapping SLAM approaches, we are able to
transmit and share information through maps in the graph in a
consistent manner by using conditionally independent submaps.
In addition, the current submap always summarizes, without
further computations, all information available making CI-
Graph be an intrinsically “up to date” algorithm. Moreover,
the technique is also efficient in memory requirements since it
does not need to recover the full covariance matrix. To evaluate
CI-Graph performance, the method has been tested using a
synthetic Manhattan world and Victoria Park data set.

I. INTRODUCTION

Essential tasks in mobile robotics strongly rely, not only

on a precise estimation of the robot location, but also, on

an accurate map estimate of the surrounding environment.

Simultaneous Localization and Mapping algorithms (SLAM)

confront both problems in a single estimation process. The

first consistent solution proposed was based on the Extended

Kalman Filter (EKF) [1], [2]. However, an standard imple-

mentation of the algorithm suffers from memory and time

complexities of O(n2) per step, where n is the total number

of features stored in the map. To reduce the computational

cost, new algorithms take profit of the fact that SLAM is a

sparse problem, i.e., from a given robot position only a lim-

ited number of features is visible. If all features were always

visible then no algorithm could overcome the computational

complexity of the EKF solution since the linearized system

to be solved would be completely full.

Submapping strategies have become interesting ap-

proaches since they work in small regions of the environment

reducing the computational cost of EKF and improving

consistency. Under the assumption of white noise and if no

information is shared between maps, submaps are statisti-

cally independent. This allows submaps to be consistently

joined using Map Joining algorithm [3] or equivalent Con-

strained Local Submap Filter (CLSF) [4] with joining cost

O(n2). More recently, Divide and Conquer SLAM [5] has

shown to provide a more efficient strategy to join local maps

with amortized linear cost in exploration, outperforming past

sequential methods. Despite its high scalability, the main
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limitations of these techniques are their inability to share

information between maps and a memory cost of O(n2).
There are submapping techniques that work on approxi-

mations trading off precision for complexity properties [6].

Some of these techniques combine submaps with a graph

structure that represents adjacency relations between maps.

In ATLAS [7] and CTS [8] for example, nodes of the graph

correspond to submaps and links between nodes represent

relative locations between adjacent submaps. However, in

order to achieve high efficiency, they do not impose loop

constraints to update the graph estimation. Hierarchical

SLAM [9] outperforms these approaches by introducing an

optimization step along the cycles of the graph. Nevertheless,

it still remains as an approximate algorithm since optimized

information is not transmitted to submaps.

In contrast to EKF-based approaches, there is a family

of algorithms that considers the full SLAM problem in a

Smoothing and Mapping (SAM) sense. Graph SLAM and

Square Root SLAM [10], [11], report that the intrinsic

structure of the problem can be modeled as a sparse graph

(obtained from the sparse information matrix) when the

state vector is augmented with the total trajectory. The main

problem of these techniques is that they continuously grow

with the number of robot poses.

Based on EKF, Graphical SLAM [12], builds a compressed

graph of all robot and features poses as nodes. However,

special cases as loop closings need particular manipulations.

Treemap [13], is based on creating a balanced binary tree

structure of the map. The technique uses a detailed graph

granularity to construct the tree, where leaf nodes represent

each map entity (current robot and feature locations) result-

ing in a very complete but complex graph algorithm.

In this work we are interested in methods that do not use

any approximations. We consider the SLAM problem as a

Gaussian Graph model that evolves over time. We propose

CI-Graph SLAM based on [14], a submapping method that

performs EKF updates efficiently reducing its quadratic cost.

Unlike other non-approximated submapping approaches [3],

[4], CI-Graph SLAM builds a spanning tree of conditionally

independent submaps, that allows us to transmit information

between submaps in a consistent manner. Compared to batch

algorithms [10], [11], CI-Graph does not require to augment

the state vector with the full trajectory. Instead, only robot

poses corresponding to map transitions are considered. In CI-

Graph, the nodes do not represent each element of the map

but the CI-submaps. This results in a graph with high level

abstraction of the map that allows a simpler implementation.

Section II is devoted to review conditionally independent

submaps and describes their advantages. CI-Graph approach



is presented in section III. We evaluate the method using a

synthetic Manhattan world and Victoria Park data set. Their

results are described in section IV. In section V we discuss

concerns related to the construction of the map spanning tree.

Finally, we summarize the main advantages of our method

in section VI and draw future lines of work.

II. CONDITIONALLY INDEPENDENT (CI)

SUBMAPS

In submapping algorithms, instead of dealing with a single

total map of an environment, the whole map is divided into

groups of state vector entities (features and/or vehicle poses)

that are processed separately. We call absolute submap,

to a map that is expressed in a global coordinate frame

while a local submap is a submap whose elements are

represented with respect to a local reference frame. Most

recent submapping techniques are based on building local

maps of limited size that are statistically independent [3],

[4], [15], [5]. This requirement imposes important constraints

to the submaps structure. Valuable information present in a

submap cannot be used to improve other submap estimates

since, otherwise, the independence property could not be

preserved. In addition, same environment features observed

in different maps have independent estimations in each map.

Instead of using independent submaps, our CI-Graph

SLAM approach is based on building conditionally indepen-

dent CI-submaps. The previous technique was presented in

[14] and allows CI-submaps to share submap components

and information in a consistent manner. Using absolute

submaps, the final map obtained is the same as with the

classical EKF-SLAM algorithm. If local submaps are used

better consistency properties than the EKF can be achieved.

While techniques based on independent submaps preclude

the use of inertial sensors or sensors that give absolute

measurements such as GPS and compass, our method can

easily use these devices by propagating the information

through CI-submaps without approximations. At the same

time, CI-submaps inherit the computational efficiency of

submapping techniques that, taking into account a subgroup

of the map elements, can work with covariance/information

submatrices of limited size.

The technique presented in [14] is restricted to sequences

of maps forming simple topologies such as single loops.

Even though it has been successfully tested in large envi-

ronments, the generalization to more complex topologies in

which the CI property between maps still hold is not trivial.

The purpose of this paper is to develop a new algorithm that

extents the properties of the CI-submaps to more complicated

trajectories. In order to facilitate the explanation, we will

work for the rest of the paper with absolute submaps, al-

though local submaps can be used as well with the technique.

A. Brief CI-submaps review

Figure 1 shows a Bayesian Network that represents the

stochastic dependencies between a pair of CI-submaps, x1

and x2, that have been built sequentially.

Submap 1 Submap 2

x
A

x
C

x
B

z
b

z
a

Fig. 1. Bayesian Network that describes the probabilistic dependencies
between CI-submaps.

We define the state vectors of the submaps by:

x1 =

[

xA

xC

]

x2 =

[

xB

xC

]

(1)

where xA represents state components that only belong to

the first map, xB is for elements exclusively included in

the second submap and xC represents features and vehicle

states that are shared in common between both. Notice that

common elements xC are replicated in x1 and x2. This

division of the stochastic state variables can be done in

SLAM because it is a sparse problem (features are locally

observable).

In figure 1, we can also observe that the only connection

between the set of nodes (xA, za) and (xB , zb) is through

node xC that, according to Bayesian Network theory [16],

means that both subgraphs are d-separated given xC . This

in turn implies that the components of the submaps are

Conditionally Independent (CI) when xC is known:

p(xA|xB ,xC , za, zb) = p(xA|xC , za)

p(xB |xA,xC , za, zb) = p(xB |xC , zb) (2)

It is precisely by means of the common elements between

maps and the CI Property that we can easily transmit

information between map pairs at any time with no approx-

imations. Suppose now that during the sequential creation

of submaps x1 and x2, the first submap x1 was built

using observations za whereas for x2, in addition to za

measurements, new observations zb were taken into account.

Assuming Gaussian distributions for the map states we have:

p(xA,xC |za) ∼ N

([

x̂Aa

x̂Ca

]

,

[

PAa
PACa

PCAa
PCa

])

(3)

p(xC ,xB |za, zb) ∼ N

([

x̂Cab

x̂Bab

]

,

[

PCab
PCBab

PBCab
PBab

])

(4)

where the lowercase subindexes in the estimates xBab
and

xCab
reveal that both sets of observations za and zb have

been used in the estimation process.

Notice that map x1 is ’out of date’ with respect to map

x2 since the influence of new observations zb is not included

in the estimate. In order to update submap x1 information

from x2 has to be transmitted. The operation of transmitting



information is called back-propagation where ’back’ means

propagation from the updated to the out of date map. To

update submap x1 we only need to recalculate the state

vector and covariance matrix of those elements related to

xA. The back-propagation equations are given by:

K = PACa
P−1

Ca

= PACab
P−1

Cab
(5)

PACab
= KPCab

(6)

PAab
= PAa

+ K(PCAab
− PCAa

) (7)

x̂Aab
= x̂Aa

+ K(x̂Cab
− x̂Ca

) (8)

Observe that to update the first submap we only need the

mean and covariance of the common elements x̂Cab
and

PCab
from the second submap. We can also calculate the

correlation between non-common elements of both maps xA

and xB by:

PABab
= KPCBab

(9)

III. CI-GRAPH ALGORITHM DESCRIPTION

In order to work with complex topologies, the algorithm

proposed is based on building an undirected graph of the

CI-submaps. An undirected graph is defined as a pair G =
(N , EG) where N are the nodes of G and EG are its

undirected edges [17]. In our graph, N is the set of CI-

submaps mi with i = 1 . . . N . An edge connecting two

nodes is created either because the robot makes a transition

between the corresponding submaps or because being the

robot in a submap, it observes a feature that belongs to the

other submap.

In addition, the algorithm builds a spanning tree T (N , ET )
of the graph G, where ET ⊂ EG . A spanning tree T of

a connected undirected graph G is defined as a subgraph

of G which is a tree (it contains no cycles) and connects

all the nodes. Our algorithm ensures that, by construction,

any pair of submaps (mi, mj) that are adjacent in T have

a conditionally independent structure as shown in figure

1, sharing some vehicle and feature states. Each edge in

ET will be labeled with the corresponding shared states.

Given any pair of submaps, mi and mj , there is a unique

path in T connecting them. This path allows us to transmit

information from map to map without loosing the conditional

independence property between submaps. In all graph figures

of the paper, spanning tree edges ET will be depicted using a

continuous line while the remaining edges of G, i.e. EG\ET ,

will be traced with a dashed line.

Two operational levels can be distinguished in the algo-

rithm. Local operations that are only applied to the current

submap mi, and graph operations that are performed through

the graph involving at least two submaps. Most of the time,

the operations carried out when the robot moves inside a CI-

submap are local operations corresponding to standard EKF-

SLAM equations. Graph operations are more sporadic and

can be considered as the interface between CI-submaps. In

the following subsections, the graph operations are explained

in detail as presented in Algorithm 1.

Algorithm 1 : CI-Graph SLAM

z0,R0 = getObservations

m0 = initMap(z0,R0)
[G, T ] = initGraph(m0) {G(N = m0, EG = ∅)}
i = 0 {i for current submap}
for k = 1 to steps do

uk−1,Qk−1 = getOdometry

mi = ekfPrediction(mi,uk−1,Qk−1)
zk,Rk = getObservations

DAk = dataAssociation(mi, zk,Rk)
if revisiting mj then

{Subsection III-C}
for 〈mk,ml〉 in path(mi,mj) do

backPropagation(mk,ml)
copyRobot(mk,ml)

end for

addEdge(〈mi,mj〉, EG\ET )
i = j {Map change}

else if newMap mj then

{Subsection III-A}
addNode(mj ,N )
addEdge(〈mi,mj〉, ET )
copyRobot(mi,mj)
copyActiveFeat(mi,mj)
i = j {Map change}

end if

if reobserved f �∈ mi & f ∈ mj then

{Subsection III-B}
for 〈mk,ml〉 in path(mj ,mi) do

copyFeat(f ,mk,ml)
end for

addEdge(〈mj ,mi〉, EG\ET )
end if

mi = ekfUpdate(mi, zk,Rk,DAk)
mi = addNewFeatures(mi, zk,Rk,DAk)

end for

{Subsection III-D}
updateAllMaps(mi, T ) {Updates T starting from mi}

A. Starting a new submap

Suppose that robot is in submap mi and we decide to start

a new submap mj . The steps followed in the algorithm are:

• Add mj to N
• Add edge 〈mi, mj〉 to ET
• Copy robot pose and last seen features from mi to mj

In fact, the robot pose is copied twice in submap mj .

The first copy will represent the current robot position which

changes as the robot moves through the new map. The second

copy will represent the initial position of the robot when it

entered the map. This initial pose remains fixed as a common

element with map mi.

An example can be seen in figure 2. At time k2, submaps

m1 and m2 have been already explored and a new submap

is being created m3. Nodes m1 and m2 share in common a

robot position Rk1
and a feature f4. Submap 3 is initialized
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Fig. 2. Example using CI-Graph SLAM. The figure is divided in three rows that show information about the state of a simulated experiment at three
different instants of time (columns). In the first row, the map of the simulated environment with the current robot position is shown. In the second row, the
graph of relations between submaps will be created according to the state of the estimation. In the last row we will show the state vectors of the estimated
submaps at different moments of time.

with robot Rk2
and feature f6 from submap 2.

B. Re-observing a feature from a different map

This situation occurs when the robot is at submap mi and

observes for the first time a feature that is already included

in a previous submap mj . The process followed is:

• Copy the feature from mj to mi along all nodes of the

path in T
• Add 〈mj , mi〉 to EG\ET
If 〈mk, ml〉 ∈ T represents an edge in the path, to

copy the feature from mk to ml, the feature is first updated

with the information contained in ml using back-propagation

equations (5-8) and the correlations with the elements of ml

are calculated with equation (9).

Figure 2 at time k3 − 1 shows an example of this case.

Feature f3 that belongs to submap m1 is measured by the

robot when it is traversing submap m3. Since edge 〈m1,

m3〉 �∈ T , f3 is transmitted along the path 〈m1, m2〉, 〈m2,

m3〉 that connects both nodes. Observe that the feature is

replicated in all intermediate nodes. Finally, edge 〈m1, m3〉
is included in EG\ET .

C. Revisiting a previous submap

When the algorithm detects that the robot revisits an

already traversed area mj , the transition from the current

submap mi to mj is as follows:

• Update all nodes in the path from mi to mj

• Copy the current robot pose along all nodes of the path

• Add 〈mi, mj〉 to EG\ET

As in the previous subsection, to update submaps in

the path we use the back-propagation equations (5-8) and

to copy the current robot pose, correlations with submaps

elements are calculated with equation (9).



Figure 2 at time k4 shows an example of this operation.

When the robot makes a transition between submaps m4 and

m1, current robot position Rk4
is replicated along all nodes

that are in the path, i.e., along m3, m2 and m1. Finally, edge

〈m4, m1〉 is added to EG\ET and submap m1 becomes the

current map.

D. Updating all maps from the current submap

Using the Graph operations just described, we can assure

that the current submap is always updated with all available

information. In addition, the CI property between submaps

is preserved. An interesting property of the back-propagation

equations is that they can be applied at any moment. They

work correctly even if we back-propagate twice the same

information: the terms inside the parentheses in equations

(7,8) will be zero and the maps will remain unchanged.

This allows us to schedule the back-propagation in moments

with low CPU loads, or when graph operations are required.

If the whole map has to be updated, the back-propagation

equations are recursively applied starting from the current

node and following the spanning tree T .

IV. EXPERIMENTS AND RESULTS

CI-Graph SLAM has been tested using a simulated envi-

ronment that emules a Manhattan World, as the one proposed

in [11], with 2420 point features lying on the walls of a

11 × 11 matrix of building blocks. For this 2D example,

the total space is divided in submaps using a grid cell.

When the robot crosses the border between two cells for

the first time a new submap is initialized. If the arriving

cell has already been traversed we consider that a previous

submap is revisited. The actual size of each submap, is

not limited to the number of features content in a cell

but to the number of features that are observed from it.

For more general situations, 3D environments with complex

topologies and different kind of sensors such as cameras,

the decision to start a new submap can be based on the

maximum number of features allowed in a a map, to limit

computational complexity, or on a maximum value for the

uncertainty of the robot position, to improve the consistency

of the result.

In the Manhattan environment, the vehicle performs a

randomly chosen trajectory of 1600 steps of 1m. Fig. 3 top,

shows a smaller 5× 5 example to give the reader an idea of

the experiment. Each time the vehicle reaches a block corner

(circles), a control input is applied randomly. This kind of

motions allows the robot to perform any trajectory: the robot

can move from one map to its neighbor and performs any

large loops. The motion model noises are assumed to be

gaussian with respectively σxy = 0.05m and σθ = 0.3deg

standard deviations in position and orientation. As the robot

moves, the graph of CI-submaps is created on the fly. Fig.

3 bottom, shows an example of the resulting spanning tree

with nodes numerated in the order they were created.

In this simulated experiment, Monte Carlo runs are par-

ticularly suitable to evaluate the CI-Graph SLAM efficiency.
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Fig. 3. CI-Graph SLAM execution on a Simulated environment of a 5×5
matrix of building blocks of a Manhattan World (top). The environment is
divided up into 36 submaps (nodes) using a cell grid. The darker-red line
represents the estimated trajectory. Ellipses also shows the estimated feature
uncertainties. The final CI-Graph contains direct links (continuos lines) that
forms the spanning tree between nodes (bottom). Indirect links are shown
in dashed lines such that their represents mutual information seen between
adjacent nodes. Thus, there exist a path formed by direct links through
which the information can be transmitted.

We ran 300 samples of our algorithm implemented in MAT-

LAB on a Pentium IV at 2.8GHz. Note that each sample

represents a different random trajectory and so, a different

spanning tree. For the same reason, the number of total

mapped features varies although the environment remains

unmodified. Fig. 4 shows the mean running time per step.

We can see that, for this kind of environment, the algorithm

presents a close to linear running time.

We have also tested CI-Graph SLAM on Victoria Park

data set as it is considered a benchmark for most of

the relevant approaches previously mentioned in section I.

Additionally, Victoria Park data set suits well due to its

complex trajectory topology. As in the Manhattan World

we use a grid cell to divide the space in submaps. Fig. 5
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Fig. 5. CI-Graph SLAM execution on Victoria Park data set. The robot traverses local regions across the environment (left). During exploration, only the
last submap is updated with all information available (top). At the same time, the spanning tree is being created with darker node as the current visited
submap (right). The final result is obtained after building 36 nodes (submaps) using 30m of resolution in x − y dimensions for our cell-grid (bottom).
The accompanying video video CIGraph xvid.mpg (high quality version available http://webdiis.unizar.es/∼ppinies/video CIGraph xvid.avi) shows
a slow execution of CI-Graph SLAM.

top, shows a partial result when the vehicle explores the en-

vironment with known data association. The accompanying

video video CIGraph xvid.avi shows an execution in

slow motion to visualize the CI-submaps building process.

At the same time, it is posible to see that information is

transmitted through direct links of the spanning tree when a

node is discovered or when any two nodes share information.

In addition, we ran EKF SLAM for comparison purposes.

Figure 7 top, shows the running time per step, pointing out

a constant behavior for the CI-Graph approach. Small peaks

in the plot (up to 0.16sec) represents the steps in which

CI-Graph performs propagation. At final step, CI-Graph

computes all optimum submaps propagating the information

in 0.12sec, one third of the time required for EKF SLAM

(0.37sec). The map obtained is exactly the same as EKF

SLAM with an absolute error difference of order 10−10

between vector estimates and of order 10−11 between esti-

mated diagonal covariances. The differences are mainly due

to numerical errors rather than estimation errors. The total

cost plot in fig. 7 bottom, shows evidence about the efficient

performance of CI-Graph SLAM as it is 6.5 times faster

than standard EKF SLAM. From fig. 7 top, we could point

out a constant behavior of the time per step. However it is

difficult to establish this as an insight since the environment

presents a disperse feature distribution. The accompanying

video video CIGraph EKF xvid.avi shows both algo-

rithm executions with same data association both running

at their corresponding execution times. A convex hull is
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Fig. 4. Average running time per step for 300 random runs in 11 × 11
Manhattan World experiment. The environment is mapped with total size
in a interval of n = 947 to n = 2199 point features. Also, for each run,
the submap size does not exceeds 200 features in average.

drawn around the current submap considering its vehicle and

features estimates while submaps already built are drawn in

soft color to see the covered total map. The final updated

result coincides with the final EKF map. Google Earh tool

is used to show map precision on a real image of the

environment (see fig. 6).

V. DISCUSSION

The price paid to maintain the conditional independence

between submaps is some overhead in the size of the maps.

We call overhead to all those elements of a submap that can-

not be observed from it, i.e., robot positions corresponding to

the transitions between submaps and features included in the

current submap because its node is in a path in T between

two nodes that share the features. For example, in figure

2 at t = k4, robot position Rk4
is an overhead element for

submaps 2 and 3. However features f3 and f4 are considered

as intrinsic features of submaps 1, 2 and 3 since they can

be observed from them. To reduce the overhead due to the

robot positions, relocation methods could be applied once the

submaps are well estimated. Regarding replicated features,

the overhead is clearly dependent on the spanning tree used

to transmit information through the graph.

Figure 8 on the left shows a graph with six submaps and its

corresponding spanning tree represented with a continuous

line linking nodes 5 − 4 − 1 − 2 − 3 − 6. Suppose now

that we are in submap 5 and we observe a feature in

submap 6 closing the loop. In order to maintain the CI

property between submaps, instead of directly closing the

loop introducing a continuous link between nodes 5 and

6 we indirectly close the loop by replicating the observed

feature along the submaps in the path between both nodes, as

was explained in subsection III-B. This has the drawback of

increasing the size of all the intermediate submaps increasing

the computational cost. A better alternative would be to

change the spanning tree to one with shorter loops as the

Fig. 6. Final Map obtained after running CI-Graph SLAM on Victoria
Park data set. The map is projected using google Earth tool together with
GPS data (white points).

example shown in Fig. 8 right. The new spanning tree has

better properties because common elements between nodes

linked with a dashed edge are only locally replicated. For

example, common information between nodes 3 and 6 is just

replicated in nodes 4 and 5. Therefore, in order to reduce

the overhead, it is more convenient to generate a spanning

tree with small loops between nodes connected with dashed

edges. It is important to point out that the estimated solution

obtained with any of the possible spanning trees is exactly

the same and, in case of using absolute submaps, identical

to the solution obtained with the EKF. The only difference

is that the overhead introduced by the replicated features can

be reduced and therefore we can improve the computational

behavior of the algorithm. A method to find a good spanning

tree for a given SLAM graph or how to online change a given

spanning tree to a better one is left as future work.

VI. CONCLUSIONS

In this paper we have presented CI-Graph, an extension

of the CI-submaps that allows us to efficiently solve com-

plex map/trajectory topologies reducing the computational

cost without approximations. CI-Graph models the SLAM

process as a Gaussian Graph that evolves over time. Nodes of

the graph correspond to CI-submaps and links between nodes

reveal submap relations due to either robot transitions or co-

visible features. This results in a high level abstraction graph

that allows a simple implementation. By building a spanning

tree of the graph we have shown that information can be

shared and transmitted from map to map without loosing the

conditional independence property between submaps.
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due to updating all submaps. Total execution time of EKF
SLAM vs. CI-Graph SLAM(bottom). The accompanying video
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compute the optimum map.

1

2 3

4 5

6

1

2 3

4 5

6

Fig. 8. A bad (left) and a good (right) spanning trees for the same graph.

One of the advantages of using CI-Graph with respect to

other approaches, is its ability to reduce memory require-

ments when exploring an environment as it does not need to

maintain all covariance matrix entries (correlation terms in

EKF SLAM). We have also shown empirically the efficiency

of CI-Graph SLAM to perform updates. In the presented

experiments, we have obtained a cost per step close to linear

time in the worst case. However, mathematical proofs about

computational cost bounds will be analyzed in future work. A

strategy to choose a good spanning tree to efficiently transmit

information will also be addressed in future research.

CI-submaps have already shown to be very suitable for

applications that involve the use of cameras in large envi-

ronments. Sharing well localized features and camera states

between CI-submaps gives much better results than starting

each new submap from scratch. In future work we expect to

proof that CI-Graph is a very powerful technique to solve

Visual SLAM in large and complex environments.

VII. ACKNOWLEDGMENTS

This research has been funded in part by the European

Union under project RAWSEEDS FP6-IST-045144 and the

Dirección General de Investigación of Spain under project

SLAM6DOF DPI2006-13578.

REFERENCES

[1] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” in Robotics Research, The Fourth Int. Sympo-

sium, O. Faugeras and G. Giralt, Eds. The MIT Press, 1988, pp.
467–474.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and
mapping: part I,” IEEE Robotics & Automation Magazine, vol. 13,
no. 2, pp. 99–110, 2006.

[3] J. D. Tardós, J. Neira, P. M. Newman, and J. J. Leonard, “Robust
mapping and localization in indoor environments using sonar data,”
Int. J. Robotics Research, vol. 21, no. 4, pp. 311–330, 2002.

[4] S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, “An efficient
approach to the simultaneous localisation and mapping problem,” in
Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, Washington
DC, 2002, pp. 406–411.

[5] L. M. Paz, J. D. Tardós, and J. Neira, “Divide and Conquer:
EKF SLAM in O(n),” Aceepted in Transactions on Robotics

(in Print), vol. 24, no. 5, October 2008. [Online]. Available:
http://webdiis.unizar.es/ lpaz/publications archivos/papers/dcslam.pdf

[6] J. J. Leonard and H. J. S. Feder, “A computationally efficient method
for large-scale concurrent mapping and localization,” in Robotics

Research: The Ninth International Symposium, D. Koditschek and
J. Hollerbach, Eds. Snowbird, Utah: Springer Verlag, 2000, pp. 169–
176.

[7] M. Bosse, P. M. Newman, J. J. Leonard, M. Soika, W. Feiten, and
S. Teller, “An atlas framework for scalable mapping,” in Proc. IEEE

Int. Conf. Robotics and Automation, Taipei, Taiwan, 2003, pp. 1899–
1906.

[8] J. Leonard and P. Newman, “Consistent, convergent and constant-time
SLAM,” in Int. Joint Conf. Artificial Intelligence, Acapulco, Mexico,
August 2003.

[9] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical SLAM: real-
time accurate mapping of large environments,” IEEE Trans. Robotics,
vol. 21, no. 4, pp. 588–596, August 2005.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, September 2005.

[11] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous local-
ization and mapping via square root information smoothing,” Int. J.

Robotics Research, vol. 25, no. 12, December 2006.
[12] J. Folkesson and H. Christensen, “Graphical SLAM for outdoor

applications,” Journal of Field Robotics, vol. 23, no. 1, pp. 51–70,
2006.

[13] U. Frese, “Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping,” Autonomous Robots, vol. 21, no. 2, pp.
103–122, September 2006.

[14] P. Piniés and J. D. Tardós, “Large Scale SLAM Building
Conditionally Independent Local Maps: Application to Monocular
Vision,” Accepted in Transactions on Robotics (in print)., vol. 24,
no. 5, October 2008. [Online]. Available: http://webdiis.unizar.es/ jd-
tardos/papers/2008 IEEE TRO Pinies Tardos.pdf

[15] S. Huang, Z. Wang, and G. Dissanayake, “Sparse Local Submap
Joining Filters for building large-scale maps,” Accepted for publication

in IEEE Transactions on Robotics, 2008.
[16] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,

2006.
[17] T. H. Cormen, C. Leiserson, and R. L. Rivest, Introduction to Algo-

rithms, 2nd ed., T. M. Press, Ed., Cambridge, Massashusetts, 2001.



1

Visual SLAM with 3D Segments from Stereo

[Regular Paper]

I. I NTRODUCTION

We present a visual SLAM system that builds a geometric map ofa scene. The scene is observed, i.e., measured, in terms of
3D segments generated by stereo systems. This systems reconstructs the scene with the stable geometric primitive 3D segment.
We can say shortly that 3D segments from stereo constitute a synthetic and representative measure of a human-built scene. The
work extends the known hierarchical SLAM algorithm to deal with 3D segments from stereo, in a full 6DoF observer pose,
which we believe to be appropriate for properly handling also the small imperfections present in indoor conditions, beside
being necessary for outdoor applications. We start with a brief description of the sensor system and then we will presentour
3D Segment Visual SLAM approach.

II. T RINOCULAR SENSORSYSTEM

The perception system we used is a system that reconstructs the scene in terms of 3D segments. In order to give out such
data the system has to deal with segments since the very first (image) processing step, this is the intended meaning of the
term segment-based 3D reconstruction system here used. Segments are represented by the 3D coordinates of their extrema.
This choice is in agreement with realizing the intrinsic 3D nature of indoor environment. Our system has been implemented to
provide 3D extrema approximated using mean and covariance by Jacobian-based uncertainty propagation of Gaussian noise,
both in the pixel detection and in the projection parameters. It bases on the trinocular approach [1], [2], [3], [4], [5],[6]. The
three cameras are calibrated with respect to a common reference system, located on the robot. We use a DLT technique to
determine the three projection matrices. Figure 1 presentsa schematic representation of a trinocular system, where:D is the
3D scene segment,Ci anddi are respectively the projection center and the projection of D for imagei.

Cameras are calibrated altogether with their covariance matrix so that 3D extrema can be estimated altogether with an
associated covariance matrix, to represent the measurement uncertainty as a first order, i.e., normal, probability distribution.
The projection matrices are necessary for the following steps. A features extraction process generates a set of elements (2D
segments in this case) from the images. These segments are described by the coordinates of their extrema ([x1 , y1 , x2 , y2
]). Then the trinocular approach is applied; it bases on trinocular constraint ([5]), to speed up the search for the corresponding
segments. The last stage is the computation of the 3D segments parameters. The 3D support line is first calculated from triplet
of corresponding segments. Then the 3D extrema are computedusing the interpretation lines from each 2D segment; the 3D
segment given in out is the intersection of all such 3D reprojected segments. In Figure 2 we show three images captured
from our trinocular sensor; in particular, (c) represents (superimposed to the image from the right camera) the result after
the image processing and stereo-matching step (the green 2Dsegments are correctly associated while, for the red ones, three
corresponding 2D segments, in all images, have not been found). Figure 2(d) reports the 3D scene reconstruction from these
three images by using the trinocular approach.1

In the following we will refer to aview as to the result of one activation of the perception system. Aview is composed
by a set of observed features and by the movement of the robot in the space w.r.t. the previous position. In our system, it

1Such systems are quite widespread in the computer vision androbotics communities. Our implementation differs from theoriginal only in the use of the
Fast Line Finder algorithm [7]

Fig. 1. 3D segment-based reconstruction for a trinocular stereoscopic system.
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(a) (b)

(c) (d)

Fig. 2. Images captured from: (a): Camera left. (b): Camera top. (c): Camera right (with stereo matched segments). (d): 3D segments extraced by the sensor.

is constituted by the set of 3D segments provided by trinocular system. This segments are identified using: three parameters
for each extremum of the segment (thex,y,z coordinates of the extremum in the space) and the(6, 6) covariance matrix, to
represent the uncertainty of the segment.

Each segment extremum is represented by a point in the 3D space w.r.t. a cartesian reference frame that is fixed w.r.t. the
robot.

III. 3D-6DOF HIERARCHICAL SLAM

In our system, we use 3D data from the perception system mentioned above and the pose is modelled as a full rigid-body
transformation, so it is a 6DoF pose, turning the whole system into a 3D-6DoF Slam system, like the one using 3D points from
a 3D LRF [8] or the original MonoSLAM system by Davison [9]. Inthis work we present a method based on hierarchical
decomposition of the map [10]. In hierarchical SLAM, the main idea is to subdivide the whole map in two levels: a local level
and a global level. The local level is composed by on a set of submaps, represented through Extended Kalman Filters (EKF
hereafter), that have a limited size and they are treated, from a probabilistic point of view, as if they were independent. This
approach allows the generation of blocks (i.e., the submaps) on which to build the global level. The global level is represented
by a graph where each node describes one submap and the edges represent the existing relations between them (i.e., the relative
position and its uncertainty). These two levels are the two abstraction level through which it is possible to observe theworld.
This subdivision, aims at limiting the influence of the errors due to the linearizzation in the EKF process; moreover it aims at
reducing the computational cost. The intent of the following sections is to present this technique in the 3D6DoF case, when
dealing with trinocular segment data.

A. Submap Local Structure

Each submap is generated by the integration of views throughan EKF, whose state is composed by the robot pose and the
location of the observed features w.r.t. the submap reference frame. Each submap has its own local reference frame, called
submap base reference; all measurements refer to it (features and robot pose). Moreover, each submap is assumed to be a
stochastically independent representation of a region of the space; therefore, the submap is unique and independent ofall others,
and, at the local level, no relation exists, to links one submap to the other. This property, as we will see in the following,
has an important effect on the reconstruction process; although we might replicate the same feature in more than a map, this
allows us not to calculate any correlation value between features belonging to the current local submap and the featuresof
every other submap.

When weinitialize a new submap, we first set its base reference on the last robot pose. This means that the current robot
position becomes the origin of the new coordinate system, while its direction is used for the orientation of they axes. The only
relationship we maintain between the new submap and the previous one is represented by the estimate of the last movement
of the robot in the previous submap. This information is recorded inside the global map structure as a constraint betweenthe
two submaps (the edge between the two nodes that identify thesubmaps). After the displacement, the perception system is
activated again and a new view is generated. These data are subsequently integrated into the submap without any need for data
association, since the submap does not contain previously observed feature. The initial position of the robot, when starting
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the whole algorithm, is initialized to the origin ([0, 0, 0, 0, 0, 0]T ) with a null covariance matrix, since it can be assumed to be
perfectly known.

When therobot moves, odometry provides an estimate of the rototraslationx
Rk−1

Rk
between the previous and the actual

position:

x
Rk−1

Rk
= x̂

Rk−1

Rk
+ νk (1)

E[νk] = 0, E[νkνT
j ] = δkjQk (2)

beingν the additive white zero mean odometric process error, andx̂
Rk−1

Rk
the displacement estimate. We use this estimate to

compute the rototraslation between the base reference of the actual submapB and the new robot pose (i.e., the prediction step
in the Kalman Filter)

xB
Rk

= xB
Rk−1

⊕ x
Rk−1

Rk
(3)

with ⊕ representing the composition of transformations, andxB
Rk−1

being the estimate of the robot pose at the previous step,
w.r.t. the base reference of submap B. The new view is then used to compute the integration of the observed features with the
elements in the current submap, as described in the next section.

When the integration phase is ended, we return to the exploration phase, with the consequent movement of the robot. This
procedure continues until some submap closure constraint is not satisfied: then the current submap is closed and a new submap
is initialized at the current robot pose. The constraints used to decide whether a submap should be closed and a new submap
created, are chosen w.r.t. various factors such as attainment of a maximum number of features pertaining to the submap,
overtaking of an a priori limit on the uncertainly of robot pose with respect to the base reference of the submap, nonexistence
of reliable matches between last view features and current submap features, etc. In our implementation we choose to close a
submap using a maximum number of features that could pertainto a submap. In this way we can keep the size of the filter
state as well as the computational complexity limited, being the computational complexity of the EKFO(n2) (wheren is
the state dimension). It should be noticed that the parameters describing submaps and their relationships have an uncertainty
matrix associated. This uncertainty arise from the observation errors during the acquisition process, this is in turn due to both
the measurement noise in the image processing and the drift problem in the odometry measure.

B. Global Graph Structure

The global graph represents the highest abstraction level.This graph allows to maintain the topological relations between the
various submaps that constitute the environment model. Theglobal map is an oriented graph where each node represents an
independent submap, at the local level, while the edges are the spatial relationships (rototraslations) between the base reference
of one submap with respect to the base reference of the different and stocastically independent previous (or next) submap.
The graph data are modeled using vectors to represent the graph edges, matrices to represent the covariance associated to the
edges

x̂ =
[

x̂B0

B1
x̂B1

B2
. . . x̂

Bi−1

Bi
x̂Bi

Bi+1
. . .

]T

(4)

P = diag(PB0

B1
,PB1

B2
, · · · ,PBi

Bi+1
, · · · ) (5)

being x̂
Bi−1

Bi
the estimate of the rototraslation between the base referencesBi−1 andBi, andP

Bi−1

Bi
its covariance matrix.

IV. DATA ASSOCIATION WITH 3D SEGMENTS

Before getting into the details of the local map integrationprocess, it is worth to explain the algorithm used to performdata
association. Suppose we have measured a set of featuresV = {vi} from a certain robot position. Each feature is represented
by its coordinates and its uncertainty. We have also the set of featuresM = {mj} observed and integrated in the map up to
that moment. The purpose of a data-association algorithm isto find a proper hypothesis of correspondences between them (list
of couplesvi andmj) Hk = {< v1, mj1 >, < v2, mj2 >, . . . , < vV , mjV

>}. To generate this hypothesis we must explore
an interpretation tree where each node represents a couple of corresponding features< vi, mj >. Usually the point-to-point
distance is considered an appropriate criterium for singlesegment matching and most of the effort is devoted in finding agood
association strategy for dealing with the exponential complexity of finding the best matches for the whole set of segments in
the view, i.e., the best strategy for association tree traversal. In [11] we have shown that defining a better criterium for 3D
segment matching will result in a better data association, and this is almost independent from the algorithm for interpretation
tree traversal (i.e., data association). The approach we propose is based on a multi-criteria evaluation for associating segments
in the View with segments belonging to the Submap; the reasonfor this change from the point-to-point criterium is mainly
due to the problem of the moving-field-of-view in the sensingsystem, which turns in a moving window on the world feature,
see Figure 3. More precisely the segments extrema are introduced by the reduced field of view of the cameras and are not
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Map   j

View   i

Fig. 3. The “moving window” problem.

always related to real extrema in the world; having a sensingsystem that moves introduce new extrema, and thus new possible
segments, at each step and this can easily become a problem for the classical point-to-point distance.

Initially, we transform the measures of all features belonging to the view taken from the actual robot positionxRk
using

the rototraslation between the base reference of the submapxB and it.
Now we can perform data association using Mahalanobis distance, being all the measurements referred to the common

submap base reference and having covariance matrixes for both view and submap elements. In particular there are three
criterium to validate a hypothesis of match between the viewsegmentFi and the submap segmentFj .

The first criterium considers the support line of segmentFj







x = x′

j + (x′′

j − x′

j)t
y = y′

j + (y′′

j − y′

j)t
z = z′j + (z′′j − z′j)t

(6)

where[x′

j , y
′

j , z
′

j]
T are the coordinates of an extremum of segmentFj and [x′′

j , y′′

j , z′′j ]T are the coordinates of the other. The
distance of a pointP = [xi, yi, zi]

T , e.g., an extremum of aFi segment, from the line is obtained from:

D(P, Fj) =

√

A2 + B2 + C2

(x′′

j − x′

j)
2 + (y′′

j − y′

j)
2 + (z′′j − z′j)

2
, (7)

having definedA = det

[

xi − x′′

j yi − y′

j

x′′

j − x′

j y′′

j − y′

j

]

, B = det

[

xi − x′′

j zi − z′j
x′′

j − x′

j z′′j − z′j

]

, C = det

[

yi − y′′

j zi − z′j
y′′

j − y′

j z′′j − z′j

]

. Having to

deal with the two extrema of segmentFi, the considered distance is:

h(Fi, Fj) =

[

D(F
′

i , Fj)

D(F
′′

i , Fj)

]

(8)

where:F
′

i is the first extremum of the segmentFi, F
′′

i is the second extremum of the segmentFi. It is now possible to
compute the Mahalanobis distance between the two segments and compare it with a threshold by Chi-square test:

D2
h = hT C−1

h
h < χ2

d,α (9)

Ch = HPFj
HT + GPFi

GT (10)

H(6,2) =





∂D(F
′

i ,Fj)
∂Fj

∂D(F
′′

i ,Fj)
∂Fj



 ,G(6,2) =





∂D(F
′

i ,Fj)
∂Fi

∂D(F
′′

i ,Fj)
∂Fi



 (11)

The second criterium checks the angle between the support lines of the two segments: this constraint complements the previous,
to avoid wrong associations of a short segment to another oneperpendicular to it. We can write the two support lines as:







x = a1t + x′

i a1 = (x′′

i − x′

i)
y = b1t + y′

i b1 = (y′′

i − y′

i)
z = c1t + z′i c1 = (z′′i − z′i)

(12)

and






x = a2t + x′

j a2 = (x′′

j − x′

j)
y = b2t + y′

j b2 = (y′′

j − y′

j)
z = c2t + z′j c2 = (z′′j − z′j)

(13)
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the angle between them is:

angleji = cos−1

(

a1a2 + b1b2 + c1c2
√

a2
1 + b2

1 + c2
1

√

a2
2 + b2

2 + c2
2

)

, (14)

and for it we can use again the Chi-square test

D2
ji = anglejiC

−1
angleji

angleji < χ2
d,α (15)

C = FPB
Fj

FT + GPRk

Fi
GT (16)

F =
∂angleji

∂xB
Fj

,G =
∂angleji

∂xRk

Fi

. (17)

The third matching criterion is not a probabilistic one; instead it is related to the projections of the segment extrema on the
other segment; one of the following two conditions has to hold to get an association:

1) at least one of the extrema of the view segment has to project onto the map segment;
2) both the extrema of the view segment project outside the map segment, but the extrema of the map segment project

inside the view segment.

Once defined this set of probabilistic criteria, we can use the joint compatibility branch and boundassociation algorithm to
consider, in each data-association iteration, all featureassociation choices computed until that time and the correlation between
them (see [12] for details). Indeed, the measurements are always correlated by the uncertainly on the robot position (this
information is lost when we use a classical nearest neighborapproach). In this way it is possible to reconsider the previous
couples of features to limit the possibility of accepting false matching. This is obtained by traversing the interpretation tree
using a branch and bound method in conjunction with a joint compatibility test. The quality of a node is represented by the
number of non-null association executed to reach that node.

Given a scoring functionfHk
, the joint compatibility of a hypothesisHk is determined by:

D2
Hk

= fT
Hk

C−1
Hk

fHk
< χ2

d,α (18)

CHk
= HHk

PHT
Hk

+ GHk
SGT

Hk
(19)

whereP is the covariance of the state (robot and features pose),S is the covariance of the observations and:

HHk
=

∂fHk

∂M
,GHk

=
∂fHk

∂V
. (20)

We integrate the three criteria in the joint compatibility branch and bound technique in the following manner. To establish the
correctness of this hypothesis we use the joint compatibility function fHk

:

fHk
=















D(v ′

1 ,mj1 )
D(v ′′

1 ,mj1 )
...

D(v ′

i ,mji )
D(v ′′

i ,mji )















being D the distance between the support line of the submap segment and the extrema of the view segment. To reduce the
amount of computational time required to explore one branch, we, initially, check the third criterion on the couple< vi ,mji >

because it is very selective and fast; subsequently we verify the angle criterium on the same pair, to decrease the possibility
to compute in vain the next step; finally, we use the distance criteria in the joint compatibility test.

V. DATA FUSION AND KALMAN FILTERING

The fusion process is the basic component of the integrationphase. Robustness and efficiency are the characteristics that
allow to generate valid and consistent submaps. The purposeof this process is to integrate, in the world model, the observations
obtained by the sensors (stored in the view structure).

To fuse observed data into a local submap, we use and ExtendedKalman Filter. The well-known approximation problems,
caused by the linearization of the non-linear equations of the fusion computation, are minimized by the use of a world model
constituted by stochastically independent and limited in size submaps. This allows to reduce the errors as the errors are
propagated only inside each single submap; when we start a new submap the uncertainty on the robot pose is re-initialized.
The state of the filter is the union of the vectors representing the features, and the 6DoF robot pose represented byφ, γ, θ,
i.e., the robot orientation (Euler angle III), andx, y, z, i.e., the robot cartesian coordinates, w.r.t. the submap base reference.
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During the prediction, the estimate of the robot posex̂B
Rk−1

at timek−1 is updated with the new motion valuexRk−1

Rk
. This

operation is obtained by the composition of the old robot pose estimate with the odometric data.

x̂B
Fk|k−1

=
[

x̂B
Rk−1

⊕ x̂
Rk−1

Rk
x̂B

F1,k−1
. . . x̂B

Fm,k−1

]T

. (21)

We need the state prediction as well as its uncertainty, especially for the map features in the state; this is obtained by means
of the classical uncertainty propagation [13].

PB
Fk|k−1

= FkP
B
Fk−1

FT
k + GkQkG

T
k (22)

wherePB
Fk−1

is the state covariance before prediction,Qk is the odometric covariance,

Fk =

[

JB 0

0 I

]

,Gk =

[

JR

0

]

, (23)

having definedJB as the Jacobian of thêxB
Rk−1

⊕x̂
Rk−1

Rk
rototraslation w.r.t.̂xB

Rk−1
andJR as the Jacobian of thêxB

Rk−1
⊕x̂

Rk−1

Rk

rototraslation w.r.t.̂xRk−1

Rk
,

Associations, available from the previous phase, are then used to update the predicted state. We move the view data back
to the submap base reference and exploit, as innovation given by the new data, the distance of the endpoints of the view
segment from the support line of the associated segment in the submap. The robot pose, being part of the state, is updated
according to the new view data; in long motion sequences thishelps limiting to some extent the cumulative odometric errors,
see Section VII.

For each pair of corresponding features (observed featureFi and submap featureFji
), the distance between the observation

and the feature estimate in the state filter, is a non-linear measurement functionhiji
taking as arguments the robot pose and

the featuresxB
F . First of all, we need to rototraslate the measurements to refer all data to the same submap base reference:

xB
Fi

= xB
Rk|k−1

⊕ xR
Fi

. (24)

Now we can compute the distance between 3D segments (see Section IV), obtaining:

h(xR
Fi

,xB
Fji,k−1

,xB
Rk|k−1

) =

[

D(x′B
Fi

,xB
Fji,k−1

)

D(x′′B
Fi

,xB
Fji,k−1

)

]

=

[

0
0

]

(25)

This is going to be used as measurement function in the Extended Kalman Filter.
Observed features that have no associated map feature, can be added to the filter state, without any fusion. They are moved

into the submap, by using the estimate of the robot pose, and then became part of the state for the next view integration. The
new integration process is subdivided into two steps. In thefirst phase, we rototraslate the new observations basing on the
estimate of the robot pose (which is in state filterx̂B

Rk|k
), then we extend the filter state and its covariance matrix accordingly.

Beside the specificity of state representation and measurement equations, the described process is nothing more than a standard
EKF algorithm; however a note should be raised about the 3D extrema of integrated segments. The extrema computation is
executed independently on every feature; this is necessaryfor the reliability of the integration process because the uncertainty
on the segment extrema is greater than the uncertainty on thesegment direction.

When we update the estimate of the segment parameters, we need to recalculate the estimate of its 3D extrema. First of all,
we compute the orthogonal projection of the view segment extrema on the support line, the one built on the submap segment
(its estimate is updated before the use); the view segment isrototraslated with respect to the current robot pose, then we
calculate the orthogonal projection of the view segment extrema on the 3D submap segment:

x̂′

proj =







x0 − a(
a(x0−xp)+b(y0−yp)+c(z0−zp)

a2+b2+c2 )

y0 − b(
a(x0−xp)+b(y0−yp)+c(z0−zp)

a2+b2+c2 )

z0 − c(
a(x0−xp)+b(y0−yp)+c(z0−zp)

a2+b2+c2 )






, (26)

wherea = (x1 − x0), b = (y1 − y0), c = (z1 − z0), x′

p =
[

xp yp zp

]T
is the view segment (̂xR

Fi
) extremum rototraslated

w.r.t. x̂B
R and x̂B

Fji
=
[

x0 y0 z0 x1 y1 z1

]T
is the submap segment.

Next, for each submap segment extremum, we compute two distances: the distance between the center of mass of the
segment and its extrema, and between the center of mass of thesegment and the previously computed orthogonal projection.
The estimate of the extrema position is updated only if the distance between the center of mass and the orthogonal projection
is greater than the distance between the center of mass and the extremum. By doing so we obtain that the segment length,
after the computation, will be always equal or longer then before the integration process.

The reason for this is that we do not want to loose newly and partially seen segments.
Moreover, we select the orthogonal projection to update extrema, because the sensor observations are, usually, more accurate

on the measurement of the segment direction w.r.t. the segment endpoints. The orthogonal projection allows to give to the first
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Fig. 4. Submap overlapping

piece of information a major weight with respect to the second one, in order to define the extrema. In addition we compute
the new extrema covariance by means of uncertainty propagation; first we propagate the rototranslation uncertainty,

Pp = FPB
RFT + GPR

Fi
GT (27)

whereF is the Jacobian of the rototraslation̂xB
R ⊕ x̂R

Fi
w.r.t. x̂B

R andG is the Jacobian of the rototraslation̂xB
R ⊕ x̂R

Fi
w.r.t.

x̂R
Fi

; then we propagate the uncertainty in the orthogonal projection:

Pproj = KPB
Fji

KT + HPpH
T (28)

whereK is the Jacobian of the orthogonal projection w.r.t.x̂B
Fji

andH is the Jacobian of the same orthogonal projection w.r.t.
x̂′

p.

VI. L ARGE LOOPCLOSURE

The detection of a large loop closure allows to largely improve the global level representation of the world. By merging two
compatible submaps into a single one, i.e., by imposing a newconstraint to the model, we are able to improve the estimate of
all the submap base references involved in the loop.

Loop closure is a complex activity that involves many steps.The first step is obviouslyloop Detection, i.e., detecting a
submap close to the one just closed, that could be involved ina loop closure. This is obtained by looking for a submap
overlapping to some extent with the one just closed, among the submaps in the neighborhood of the last pose.

The size of the neighborhood considered is a function of submap dimension (i.e., the bounding box of its features) and of
pose uncertainty after propagating the uncertainties in roto-traslations between submaps, from the first base reference:
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x̂B0

Bj
= x̂B0

B1
⊕ x̂B1

B2
⊕ · · · ⊕ x̂

Bj−1

Bj

PB0

B2
= FPB0

B1
FT + GPB1

B2
GT

PB0

B3
= HPB0

B2
HT + KPB2

B3
KT

. . .

PB0

Bj
= WPB0

Bj−1
WT + DP

Bj−1

Bj
DT

(29)

whereF is the Jacobian of the rototraslation̂xB0

B1
⊕ x̂B1

B2
w.r.t. x̂B0

B1
, G is the Jacobian of the rototraslation̂xB0

B1
⊕ x̂B1

B2
w.r.t.

x̂B1

B2
, H is the Jacobian of the rototraslationx̂B0

B2
⊕ x̂B2

B3
w.r.t. x̂B0

B2
, K is the Jacobian of the rototraslationx̂B0

B2
⊕ x̂B2

B3
w.r.t. x̂B2

B3
,

W is the Jacobian of the rototraslation̂xB0

Bj−1
⊕ x̂

Bj−1

Bj
w.r.t. x̂B0

Bj−1
, D is the Jacobian of the rototraslation̂xB0

Bj−1
⊕ x̂

Bj−1

Bj

respect tôxBj−1

Bj
. The bounding box of the features is computed analyzing their extrema.

Whenever a possible loop has been detected, it is necessary to perform againData Association, to verify that the two
submaps match in a significant way and, at the same time, extract the common features. This is obtained by using, again, a
data association procedure that seeks an new hypothesisH that connects each feature in the first submap to the corresponding
feature in the second submap. This hypothesis will be used toestimate both robot pose and feature position in the submaps.

There are different approaches to findH , in this work we use an interpretation tree, see e.g. [14] and[10], with hypothesis

H =











E1 Fj1

E2 Fj2

...
...

Em Fjm











(30)

whereE is the first submap,F is the second submap,ji is the index of the featureFji
associated to the featureEi, andji = 0

when the featureEi hasn’t featureF associated.
Nodes, in this tree, represent an association between features (one pertaining to the first submapEi and one pertaining to

the second submapFji
) and each level describes all possible matching between a feature and the other ones. This structure

has some important properties: the number of levels is equalto the number of features ofE(m); the number of branches that
are coming out from each node is equal to the number of features of F (n)+1, called star-branch, which is used to define the
non-existence of one match; the number of possible solutions is exponential in the number of features ofE: N = (n + 1)m.

Finding a properH turns into finding a path connecting a root of the tree to one ofthe leaves; to do this, we use an adapted
RANSAC algorithm [15] to perform data association with the interpretation tree between submaps having respectivelyn and
m ≤ n features. We generate a valid hypothesis that respects unary and binary constraints, as described below, usingp out of
m features randomly selected, and validate it on the remaining m− p using a joint compatibility test adapted to the 3D-6DoF
problem from [12], also described in the following.

BeingPg the probability of a feature, randomly selected fromE submap, to have a corresponding feature in the other submap
F and beingPfail the probability of not finding a properH when it exist (i.e., how much we accept to fail in data association
to avoid exhaustiveO ((n − 1)m) search in the tree) the number of trials is bounded by⌈

log(Pfail)
log(1−Pg)⌉ and independent on the

number of features. The number of required iterations is recalculated when a new hypothesis is generated. In this way, the
algorithm behavior is adapted to the best current hypothesis.

We use two geometrical constraints to reduce the computational cost during the tree exploration, pruning and trimming some
paths. The advantage in the using of strong constraints is that we can prune a larger number of branches, i.e., we can decrease
the computational complexity of the creation of one hypothesis. The first geometrical constraint is namedunary constraint.
Suppose we have a pair of segmentspij = (Ei, Fj), pertaining to the interpretation tree,

we can impose a geometrical constraint on the length of thesesegments:

ûi = Li =
√

(x′

i − x′′

i )2 + (y′

i − y′′

i )2 + (z′i − z′′i )2 (31)

ûj = Lj =
√

(x′

j − x′′

j )2 + (y′

j − y′′

j )2 + (z′j − z′′j )2 (32)

Pi = PLi
= (

∂Li

∂x′

i

)2P ′

i + (
∂Li

∂x′′

i

)2P ′′

i (33)

Pj = PLj
= (

∂Lj

∂x′

j

)2P ′

j + (
∂Lj

∂x′′

j

)2P ′′

j (34)

by using a Mahalanobis distance to compare the two values:

(Li − Lj)
T (PLi

+ PLj
)−1(Li − Lj) < χ2

1,α. (35)



9

The second geometrical constraint is namedbinary constraint. Suppose we have two pair of segmentspij = (Ei, Fj)
and pkl = (Ek, Fl) with the firsts pertaining to theE submap ((Ei, Ek)) and the seconds to theF submap ((Fj , Fl)). A
binary constraint is a geometric relation between the measures estimate of the features(Ei, Ek) that it is satisfied also by the
corresponding features(Fj , Fl); in this case we consider the angle between them

Ajl = cos−1(
a1a2 + b1b2 + c1c2

√

a2
1 + b2

1 + c2
1

√

a2
2 + b2

2 + c2
2

) (36)

beingB = BF , a1 = (x′′B
Fj

−x′B
Fj

), b1 = (y′′B
Fj

−y′B
Fj

), c1 = (z′′BFj
−z′BFj

), a2 = (x′′B
Fl

−x′B
Fl

), b2 = (y′′B
Fl

−y′B
Fl

), c2 = (z′′BFl
−z′BFl

),
and its covariance

PAjl
= FjP

BF

Fj
FT

j + GlP
BF

Fl
GT

l + FjP
BF

FjFl
FT

j + GlP
BF

FlFj
GT

l (37)

with Fj =
∂Ajl

∂x
BF
Fj

andGl =
∂Ajl

∂x
BF
Fl

. Here the Mahalanobis constraint becomes:

(Aik − Ajl)
T (PAik

+ PAjl
)(Aik − Ajl) < χ2

1,α. (38)

Unary and binary tests, executing only independent comparisons between pairs of segments, do not guarantee the global
consistency of the generated hypothesis by themselves so weapply the joint compatibility test as well. Suppose we have an
hypothesisHi with m couples of corresponding segments (ifji = 0 then the corresponding segment does not exist)

H =











E1 Fj1

E2 Fj2

...
...

Em Fjm











, (39)

we use as compatibility test the distance between the extrema of one segment (e.g., pertaining to submapE) and the straight
line built using the extrema of the other segment (e.g., pertaining to submapF ).

Out of this distance, we build a functionD composed byi functions, such as for each couple inHi:

DHi
(xBE

E ,xBF

F ) =

(

DHi−1
(xBE

E ,xBF

F )

Diji
(xBE

Ei
,xBF

Fji
)

)

(40)

=



















D(x′BE

E1
,xBF

Fj1
)

D(x′′BE

E1
,xBF

Fj1
)

...
D(x′BE

Ei
,xBF

Fji
)

D(x′′BE

Ei
,xBF

Fji
)



















= 0 (41)

wherexBE

Ei
is the coordinate vector forEi, xBF

Fji
is the coordinate vector forFji

, andD is the point-line distance function as
from Equation 7. The joint-compatibility test on hypothesis Hi is thus:

D2
Hi

= DT
Hi

C−1DHi
< χ2

2i,α (42)

CHi
= HHi

PBE

E HT
Hi

+ GHi
PBF

F GT
Hi

(43)

whereHHi
=

∂DHi

∂X
BE
E

andGHi
=

∂DHi

∂X
BF
F

.

Once data-association has been found it is possible to perform Robot Relocationand Local Map Joining, i.e., to estimate
the spatial relationship between the robot pose and its position in the associated submap and thus join the two submaps (in
this exampleE andF ) w.r.t. a common reference frame. This is obtained by using the selected hypothesisHi to estimate the
transformation between the two reference frame and its covariancematrix.

In doing this, we use an Extended Kalman Filter. For each pairof observations in the hypothesis, we have

ẑBF

F = x̂BF

F =
[

x̂BF

R x̂BF

F1
. . . x̂BF

Fn

]T
(44)

RBF

F = PBF

F = diag(PBF

R ,PBF

F1
, . . . ,PBF

Fn
) (45)

and

ẑBE

E = x̂BE

E =
[

x̂BE

R x̂BE

E1
. . . x̂BE

En

]T
(46)

RBE

E = PBE

E = diag(PBE

R ,PBE

E1
, . . . ,PBE

En
). (47)
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describing in the filter state the rototraslation to estimate

x̂BE

BF
= [φ̂, γ̂, θ̂, x̂, ŷ, ẑ]T (48)

we can use the geometrical relationships between the state and the observations described by equations:

hi(z
BE

Ei
, zBF

Fji
,xBE

BF
) =

[

D(z′BE

Ei
,xBE

BF
⊕ zBF

Fji
)

D(z′′BE

Ei
,xBE

BF
⊕ zBF

Fji
)

]

=

[

0
0

]

(49)

Since the observations are uncertain, the equation will notprovide null value, however the filter state will converge totheir
least square solution.

Using the so estimated transformation, it is possible to change the base reference of one of the map into the other, by using
two pairs of features, therefore creating a single submap and moving the robot pose to the new reference frame.

The change base reference process begins with the selectionof two couples of segments from the set of all corresponding
features in the two submaps (hypothesisHi).

Then we calculate the rototraslation between the base reference of one submap (e.g.,F submap) and the features selected
previously. Once we obtain the rototraslation parameters,we can proceed to apply this transformation to all submap features.
he first step is to compose the rototraslation with the robot pose:

x̂Fi

R = x̂Fi

B ⊕ x̂B
R (50)

PFi

R = FPFi

B FT + GPB
RGT (51)

wherex̂Fi

B = −x̂B
Fi

, F is the Jacobian of̂xFi

B ⊕ x̂B
R w.r.t. x̂Fi

B andG is the Jacobian of̂xFi

B ⊕ x̂B
R w.r.t. x̂B

R . The same process
is applied to all submap features.

x̂k =
[

x̂Fi

B ⊕ x̂B
R x̂Fi

B ⊕ x̂B
F1

. . . x̂Fi

B ⊕ x̂B
Fn

]T
(52)

PFi

F = FPFi

B FT + GPB
F GT (53)

whereF is the Jacobian of̂xFi

B ⊕ x̂B
F w.r.t. x̂Fi

B andG is the Jacobian of̂xFi

B ⊕ x̂B
F w.r.t. x̂B

F .
As a result, all submap features will have their coordinatesdescribed w.r.t. to the base reference placed on the chosen

feature pair; thus we can add all the featuresxBF

F to the submapE. In this way we create a single submap with the features
pertaining to both submaps. The computation of the rototraslation is similar to the previous algorithm (the one used to obtain
the rototraslation between features and base reference).

We can now proceed to the fusion phase. This operation is necessary because we have features that are different estimatesof
the same world segment. The submap fusion is analogous to theview segment integration process shown in before; however,
in this process we use a different state equation of the Extended Kalman Filter. In fact, in this case we do not have a set of
views to integrate, but we have only 3D segments with the samebase reference (we have not odometric data).

When the process ends, the corresponding features will be totally correlated with the same mean and covariance. Thereby
one of the two estimates can be removed from the state. At the end we execute a final integration process to recalculate the
3D extrema of the updated segments.

In the very last phase of loop closure we can reduce the uncertainty on the spatial relationships among features, by forcing
the consistency of the links between the base references involved in the loop (topological and metrical closure). Consider the
case of loop closure in Figure VI where we highlight the two submapsB0 andBn+1. Suppose we have to close this single
loop constituted by the following transformations:x0

1 ⊕x1
2 ⊕ · · ·⊕xn−1

n ⊕xn
n+1 wherex0

1 has enough overlapping withxn
n+1.

We fuse at the local levelxn
n+1 with x0

1 as shown so far. Thus we obtain a loop sets up by the transformations:x0
1 ⊕ x1

2 ⊕
· · · ⊕ xn−1

n ⊕ xn
0 . Now we can impose that:

h(x) = x0
1 ⊕ x1

2 ⊕ · · · ⊕ xn−1
n ⊕ xn

0 = 0 (54)

since submapxn
0 is in spatial relation with the submapx0

1. When we have large loops and composed by various rototraslations,
the errors, due to the linearization processes, become pronounced. The techniques introduced during the fusion phase at the
local level don’t allow to compute, with enough accuracy, the transformationsxi

j . For this reason, we formulate the problem
as the estimate of the maximum posterior probability on the relative positions at the global level given theh(x) = 0 loop
closure constraint

min
x

f(x) = min
x

1

2
(x − x̂)TP−1(x − x̂) (55)

To solve this type of problems we use the SQP (Sequential Quadratic Programming) technique [16] derived from the Kuhn-
Tucker equations. The SQP estimate of the transformationsx and their covarianceP can be obtained by the iteration of the
following two equations:
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Fig. 5. Loop Closure

Pi = P0 − P0H
T
i (HiP0H

T
i )−1HiP0 (56)

x̂i+1 = x̂i − PiP
−1
0 (x̂i − x̂0) − P0H

T
i (HiP0H

T
i )−1ĥi (57)

where:x̂0 is the best estimate so far,ĥi = h(x̂i), Hi is the Jacobian ofh(x) evaluated in̂xi. The same process can be used
to close multiple loops at the same time, increasing the number of constraints in the minimization problem.

VII. E XPERIMENTAL ACTIVITY

For the experimental activity we used a Robuter mobile robotfrom Robosoft which computes odometry as a 3DoF pose;
this datum reaches a PC via serial line. On the PC we have an Eltec frame grabber capable to grab three 704x558x8 pixels
images at the same time. Each channel of the frame grabber is connected to a Sony XC75CE camera. Cameras have been
calibrated with a standard DLT approach like in [17]. The robot has been moved inside the 4th floor of building U7, Univ.
Milano - Bicocca, Milano, Italy. Distances between consecutive robot poses, i.e. views, was about 0.05m. The overall distance
travelled has been about 200m.

In Figure 6a the odometric travel is shown, altogether with the environment planimetry. The odometric error is modelled
as zero mean Gaussian, and the propagation of this error is shown in Figure 6b with the usual 99% ellipses; notice that the
actual, i.e. first, poses are in good agreement with the uncertainty propagated up to the last ones; this confirms the correctness
of the probabilistic model of the odometric error. Submap termination is currently set on the cardinality of the features in
the submap; the value used in the reported experiment is 50. In Figure 6c the odometric travel is superimposed to the base
references of the submaps, i.e. what could be considered as the overall result of the integration of views processing. This
figure shows that the integration of views gives a large increase in accuracy, even though this is not enough for obtaininga
geometrically consistent map. When a submap is closed loop-detection is activated; in Figure 6d the bounding boxes of the
first and last submaps, i.e. the ones for which a loop is detected, are shown. On these two submaps Robot Relocation and
Local Map Joining are applied. At the end the two submaps are fused together in a single submap. The geometric consistency
is still not attained at this stage. For this reason we apply Loop Closure, in order to distribute the errors along the whole set
of submaps, i.e. relative poses of submaps. The result of such iterative non-linear optimization (graph relaxation) isshown, in
terms of base references, in Figure 6e.

In order to show the effect of an appropriate modelling of thereality, in particular about the number of pose DoF, we used
the same data-set to run the system with a 3DoF pose. Figure 7apresents a bird-eye view of the reconstruction, before Loop
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(a) (b) (c) (d) (e)

Fig. 6. (a): Odometric travel superimposed to the environment planimetry. (b): Odometric error ellipses (±3σ), with view id. (c): Odometric travel (full)
superimposed to the base references of the submaps (circlesconnected by lines). (d): Bounding boxes of last (darker) and first (lighter) submaps. (e): The
base references of the submaps after graph relaxation, compare with the base references in (c) or (d).

(a) (b)

Fig. 7. Reconstructions before graph relaxation; (a): 3DoF-pose. (b): 6DoF-pose.

Closure, obtained with such setting. On the other hand, the reconstruction, before Loop Closure, obtained with a 6DoF pose
is shown in Figure 7b. Another effect, beside the higher accuracy, which is not perceivable in the pictures, is related tothe
view-to-submap data associations. In the 6DoF-pose reconstruction there are about 15% less missed matches than in the 3DoF
reconstruction. Notice that, even though the overall geometric consistency is obtained in both cases, the final world model is
affected by these errors, i.e. it presents these isolated features. Therefore the higher accuracy of the 6DoF-pose presents also
this relevant effect at the global level, after Loop Closure. A larger accuracy could improve performance in SLAM systems
other than the Hierarchical one.

The 6DoF-pose final reconstruction, projected on the floor, is shown in Figure 8, superimposed to the environment planimetry
for checking the absolute accuracy; a 3D view of it is presented in Figure 9.
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