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1 Introduction

This deliverable reports about tipeeliminary benchmark solution®8S) for the RAWSEEDS
project. According to the naming convention used in thegubabenchmark solutioronsists
in:

e The description and the software implementation of a SLAybathm.

e The output of the algorithm on a given dataset. Such a damsetmedbenchmarking
problemaccording to the Annex I.

e Computation of the score according to a quality measure faluating the output of the
algorithm according to the benchmarking problem.

In the current version, we performed our evaluation basea et of publicly available datasets
and on parts of the RAWSEEDS datasets (due to reasons of aii)alf-or the final deliver-
able of WP5 (D5.2), we will construct a set of benchmark sohgibased all datasets acquired
within RAWSEEDS and we will additionally provide the resulfsoair semantic place labeling
techniques as well as on multi-robot exploration accordipe Annex I.

In the remainder of this document, we first recall the con@phe base of our perfor-
mance metric. Subsequently, we describe the set of algwsiffrovided by the members of the
RAWSEEDS consortium. For each of these algorithms, we pressat of preliminary bench-
mark solutions. We grouped the benchmarking solutionsisixdbcument based on the sensor
used by the corresponding algorithms (laser data as well@®aoular, stereo, and trinocular
camera data) and based upon the underlying basic prindfpierfded Kalman filter, particle
filter, or graph-optimization).

2 Performance Metric

This section gives a brief review of the used metric whichnisluded in D5.1 to make this
document self-containing but should not be regarded astailootion of D5.1.

One attractive way for measuring the performance of a SLA§b@thm is to consider the
poses of the robot during data acquisition compared to grdurth information rather than
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comparing maps. In this way, we gain two important proper&&st, it allows us to compare the
result of algorithms that generate different types of noatrap representations, such as feature-
maps or occupancy grid maps. Second, the method is invaadhé sensor setup of the robot.
Thus, a result of a graph-based SLAM approach working orr lasge data can be compared,
for example, with the result of vision-based FastSLAM. Th&/@roperty we require is that the
SLAM algorithm estimates the trajectory of the robot givgrabset of poses.

2.1 Benchmarking based on the Trajectory of the Robot

Letz,.r be the poses of the robot estimated by a SLAM algorithm fronetep 1 td". Letz].

be the reference poses of the robot, ideally the true lotstid/e can define a measure that uses
the deformation energy that is needed to deform the estimedgttory into the ground truth.
This can be done — similar to the ideas of the graph mappingdated by Lu and Milios [24] —
by considering the nodes as masses and connections betwegemas springs. Thus, our metric
is based on theslative displacement between poses. Instead of comparitogz* in the global
reference frame, we do the operation based andj* as

1
e(d) = ¥ Z trans(d; ; © 5;:3')2 + rot(0; ; © (5Zj)2, (2)
,J

where N is the number of relative relations arthns(-) and rot(-) are used to separate the
translational and rotation components. We suggest to gedvoth quantities individually. The
mathematical definition of this metric, however, leavesropdich relative displacements;
are included in the summation in Eq. 1. We propose that tteiveldisplacements have to be
provided by thebenchmarking problenwhich according to the Annex I, requires to provide the
log file and the ground truth information.

In addition to Eqg. 1, one can define the metric according tatisolute error rather than the
energy. Then the metric can be specified accordingly as

1
e(d) = N Z |[trans(6; 5 © 67 ;)I| + [|rot(di; © 07 ;)| (2
0

The squared error measures to the average energy per tonstguired to deform the cur-
rent estimate in the ground truth. The absolute error camteggreted as the average metric
displacement between the estimated and the true relatimsformations.

2.2 Benchmarking based on the Trajectory of the Estimated Map

Some SLAM approaches do not estimate the trajectory of thetroEspecially for “camera-
in-hand” systems, only the resulting map of features iscigihy considered. In this case, we
can, however, adapt our metric to operate on the landmarkidmsaaccordingly and not on
the trajectory of the robot. One then considers the relatigplacements of landmarks. The
disadvantage of this technique is that the data associb@bmeen the estimated map and the
ground truth feature map has to be generated by the user. udowibis is the only possibility
for benchmarking given that no trajectory estimate is atdd.
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2.3 Selecting Relative Displacements for Evaluation

The benchmarking problem defines the relative displacesngntused in Eq. 1 for a given
dataset. The information can be extracted from accuratdibgiblue print or by manual mea-
surements or manual scan alignment. This, however, is mbopthe benchmarking solution
and has to be provided by the benchmarking problem.

3 Benchmark Solutionsfor Laser-Based SL AM

In this section, we present benchmarking solutions of tassed SLAM on three different es-
timation algorithms and different datasets. As algorithmes,consider scan-matching as well
as two state-of-the-art SLAM approaches for learning 2[d gnaps from a sequence of laser
observations and odometry measurements.

Due to the unavailability of validated RAWSEEDS datasets aapygm the beginning of this
WP, we present in this section the results of the algorithmévenpublicly available datasets.
For the final deliverable of WP5 (D5.2), the evaluation willdene for all RAWSEEDS datasets
by comparing the outputs of the SLAM algorithms accordintheometric of Eq. 1.

3.1 Scan-Matching

Scan matching is the computation of the incremental, opep toaximum likelihood trajectory
of the robot by matching consecutive scans [23, 4].

The general idea of this approaches can be summarized as$olAt any point — 1 in time,
the robot is given an estimate of its page; and a mapn (1.1, 21.4-1), constructed using the
incremental trajectory estimatg.; ;. After the robot moves further on and after taking a new
measurement,, the robot determines the most likely new pasas

Ty = argmax [p(z | xe, M(T14-1, 21:4-1)) - D(Te | W1, 1)) 3)
Tt

The idea is to trade off the consistency of the measuremehttiaé map (first term on the right-
hand side in (3)) and the consistency of the new pose with thieaa@ction and the previous pose
(second term on the right-hand side in (3)). The map is théenebed by the new measurement
2, using the poseé; as the pose at which this measurement was taken. The kewptiomtof
these approaches lies in the greedy maximization step. edecationz; at timet has been
computed it is not revised afterward so that the robot carewatver from errors affecting the past
pose from which the map is computed (registration errorhoigh they have been proved to be
able to correct enormous errors in odometry, the resultiagswften are globally inconsistent,

In small environments, a scan matching algorithm is gehesalfficient to obtain accurate
maps with a comparably small computational effort. Howgther estimate of the robot trajectory
computed by scan matching is affected by an increasing etnah becomes visible whenever
the robot reenters in known regions after visiting largenown areas (loop closing or place
revisiting).



3.2 Rao-Blackwellized Particle Filtersfor Map Learning

Particle filters are a frequently used technique in robdticgslynamical system estimation. They
have been used to localize robots [9], to build both featnagps [25, 27] and grid-maps [11, 17,
19], and to track objects based on vision data [21]. A patiitler approximates the posterior
by a set of random samples and updates it in a recursive wag. patticle filter framework
specifies how to update the sample set but leaves open howotse&lihe so-called proposal
distribution. The proposal is used to draw the next geramaif samples at the subsequent time
step in the dynamical process. In practice, the design optbposal has a major influence on
the performance and robustness of the filtering processh®arte hand, the closer the proposal
is to the target distribution, the better is the estimatierfgrmance of the filter. On the other
hand, the computational complexity of the calculation ad gfroposal distribution should be
small in order to run the filter online. For this reason, thgamty of particle filter applications
restrict the proposal distribution to a Gaussian since ameetficiently draw samples from such
a distribution.

In our recent work [34] (see attachment to D5.1), we analyized well such Gaussian
proposal distributions approximate the optimal proposdhe context of mapping. It turns out
that Gaussians are often an appropriate choice but these @ttiations in which multi-modal
distributions are needed to appropriately sample the nex¢igtion of particles. Based on this
insight, we present an alternative sampling techniquecdwatppropriately capture distributions
with multiple modes, resulting in more robust mapping syste

The mapping system has been implemented and is available @seansource implemen-
tation under the name GMapping at [35]. GMapping appliesragba filter that requires three
sequential steps to update its estimate. Firstly, one ditasuwsext generation of samples from the
so-called proposal distribution. Secondly, one assigns a weight to each sample. The weights
account for the fact that the proposal distribution is inerahnot equal to the target distribu-
tion. The third step is the resampling step in which the tadigtibution is obtained from the
weighted proposal by drawing particles according to theirght.

In the context of the SLAM problem, one aims to estimate thgttory of the robot as well
as a map of the environment. The key idea of a Rao-Blackwelpzeticle filter for SLAM is to
separate the estimate of the trajectory of the robot from the map: of the environment. This
is done by the following factorization

p(xlztam | Zl:taulzt—l) = p(m ‘ CEl:th:t) 'p(xlzt | Zl:taulzt—l)a (4)

wherez, ., is the observation sequence and_; the odometry information. In practice, the first
term of Eq. (4) is estimated using a particle filter and the@sdderm turns into “mapping with
known poses”.

One of the main challenges in patrticle filtering is to choasepropriate proposal distribu-
tion. The closer the proposal is to the true target distidnytthe more precise is the estimate
represented by the sample set. Typically, one requiresrtmopalr to fulfill the assumption

W(Ilzt | Zl:t,ULt—l) = 7T($t | xl;t—hZl:tyulzt—l)ﬂ(xlzt—l | Zl:t—la“l:t—Z)- (5)



According to Doucet [10], the distribution
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is the optimal proposal for particlewith respect to thevariance of the particle weighthat

satisfies Eq. (5). This proposal minimizes the degeneratthyedadlgorithm (Proposition 4 in [10]).

As a result, the computation of the weights turn into
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Unfortunately, the optimal proposal distribution is in geal not available in closed form or
in a suitable form for efficient sampling. As a result, modicefnt mapping techniques use a
Gaussian approximation of the optimal proposal. This axipration is easy to compute and
allows the robot to sample efficiently. As we will showed id[3he Gaussian assumption is not
always justified. Therefore, we implemented a techniqueistemilar to the Gaussian proposal
approximation but is still able to cover multiple modes.

Our approach is equivalent to computing a sum of weighteds&ans to model the proposal
but does not require the explicit computation of a sum of Gauns.

Our previous method [17] first applies scan-matching on gpeticle basis. It then computes
a Gaussian propos#dr each sampldy evaluating poses around the pose reported by the scan-
matcher. This technique yields accurate results in casamfaodal distribution, but encounters
problems in that it focuses only on the dominant mode to whieh scan-matching process
converges. The left image in Figure 1 illustrates an exanmphéhich the scan-matching process
converges to the dominant peak denoted as “mode 1”. As & rdsulGaussian proposal samples
only from this mode and at most a few particles cover “modeaid(only if the modes are
spatially close). Even if such situations are rarely entenau in practice, we found in our
experiments that they are one of the major reasons for filtergence.

One of the key ideas integrated into our new approach is tadlodeapcan-matching/sampling
procedure to better deal with multiple modes. It consista o step sampling. First, only the
odometry motion model is used to propagate the samplestéddhsique is known from standard
Monte-Carlo localization approaches (c.f. [9]) and allotws particles to cover possible move-
ments of the robot. In a second step, gradient descent satsfimg is applied based on the
observation likelihood and the denominator of Eq. (6). Assult, each sample converges to the
mode in the likelihood function that is closest to its owrrtstg position. Since the individual
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Figure 1. The left image illustrates a 1D likelihood functiand an odometry measurement.
Conventional informed sampling first performs scan-maiglsiarting from the odometry mea-
surement. In this situation, the scan-matcher will find algqeeak in the likelihood function
(most likely mode 1) and the future sample will be drawn fro@aussian centered at this single
mode. The right image illustrates the new approach. It dtaesample first from the odometry
model and applies scan-matching afterwards. When a drawplsdatls into the area colored
black, the scan-matcher will converge to mode 1, othenitiséll converge to mode 2. By sam-
pling first from the odometry, then applying scan-matcharg] finally computing local Gaussian
approximations, multiple modes in the likelihood functeme likely to be covered by the overall
sample set.

particles start from different locations, they are likedycover the different modes in their corre-
sponding likelihood functions as illustrated in the rigimaige of Figure 1. Our approach leads
to sample sets distributed according to a Gausarannd the modem the observation likeli-
hood functions. As we demonstrated in the experimentaltesu[34], this technique leads to
proposal distributions which are closer to the optimal ps&d given in Eg. (6) than the Gaus-
sian approximations; when the distribution has only a €imgbde, the solution is equivalent to
previous approaches [17].

Experimental results obtained with GMapping are depiate8iaction 3.4 of this deliverable.

3.3 Graph-Based SLAM

Approaches to graph-based SLAM focus on estimating the likest configuration of the nodes
and are therefore referred to as maximum-likelihood (Mchteques [14, 24, 29]. The approach
briefly described here belongs to this class of methods. Betailed description see [18, 15, 16,
36].

The goal of graph-based ML mapping algorithms is to find thdigaration of the nodes that
maximizes the likelihood of the observations. ket (z; --- z,)” be a vector of parameters
which describes a configuration of the nodes. &,gtnd(2;; be respectively the mean and the
information matrix of an observation of nogeseen from nodeé. Let f;;(x) be a function that
computes a zero noise observation according to the currefigooation of the nodeg ands.

Given a constraint between nogl@nd node, we can define therror ej; introduced by the



constraint as
eji(x) = fju(x) —dj (11)

as well as theesidualr;; = —ej;(x). LetC = {(j1,41),..., (Jm,im)} be the set of pairs of
indices for which a constraint, ;. exists. The goal of a ML approach is to find the configuration
x* of the nodes that minimized the negative log likelihood @& tbservations. Assuming the
constraints to be independent, this can be written as

x" = argmin Z r5i(x) T Qimis(%). (12)
(4,i)ec

Solving the SLAM problem in its graph-based formulationurees to address two problems:

e Determining a set of spatial relationg between adjacent robot positions from the laser
observations. This step is often referred t@esph construction

e Computing the configuration of pos&$ which best explain the pairwise relations in the
graph and it is calledraph optimizatioror network optimization

In the remainder of this section we first discuss how to costhe graph from a sequence
of laser range observations. Subsequently we introducemtel graph optimization approach
which is based on stochastic gradient descent. Our appreaches higher convergence speeds
by embedding the loopy structure of the SLAM problem in theap@eterization of the graph.

Graph Construction To construct the graph of relations out of a sequence of nneasnts
we determine the relative motion between subsequent sgarefibing the odometry position
via scan matching. In other words, given a pair of subsequadtt positionse; andz;,,, we
determine the transformation, ; ; as

(5“_171' = argmaxp((5 | Ziy i1, U,L) (13)
1

Herez; andz;,; are the laser readings acquired at the tirnasd: + 1 andu; is the odometry
measurement between the paseand the pose:; ;. Ji+ 1,i represents the transformation
which leads to the best overlap of the scans andz;, under the constraint derived from the
odometry measurement. To determine these constraints we use the scan-matclgngthm
vascowhich is part of the open source navigation framework CARMESI.[2

We determine the so called loop closing constraintdetween the current robot location
and some previous locatian by running Monte Carlo Localization [9] in a grid map obtained
from all scans which intersect the current uncertaintypséi of the robot pose. When MCL
converges, we select the previous naglevhich is closer to the MCL estimate; of z; and we
add a new constraint ; = x; © x; to the graph.



Networ k Optimization using Stochastic Gradient Descent Olsonet al.[29] propose to use a
variant of the preconditioned stochastic gradient ded&@D) to address the compute the most
likely configuration of the network’s nodes. The approachmimizes Eq. (12) by iteratively
selecting a constrainj, ) and by moving the nodes of the network in order to decreasertbe
introduced by the selected constraint. Compared to the atdridrmulation of gradient descent,
the constraints are not optimized as a whole but indivigudlhe nodes are updated according
to the following equation:

XH_1 = Xt + - H_ljj?;jSTji (14)

Herex is the set of variables describing the locations of the paséise network andi—! is

a preconditioning matrix.J;; is the Jacobian of;;, €2;; is the information matrix capturing the
uncertainty of the observation,; is the residual, and is the learning rate which decreases
with the iteration. For a detailed explanation of Eq. (14§ refer the reader to our previous
works [18, 29].

In practice, the algorithm decomposes the overall probleim many smaller problems by
optimizing subsets of nodes, one subset for each constilhenever time a solution for one
of these subproblems is found, the network is updated acwgyd Obviously, updating the dif-
ferent constraints one after each other can have antagogfigtcts on the corresponding subsets
of variables. To avoid infinitive oscillations, one uses lg@rning rate\ to reduce the fraction
of the residual which is used for updating the variables.sThakes the solutions of the differ-
ent sub-problems to asymptotically converge towards aifliequm point that is the solution
reported by the algorithm.

Tree Parameterization The posep = {pi,...,p,} of the nodes define the configuration of
the network. The poses can be described by a vectpametersk such that a bidirectional
mapping betweep andx exists. The parameterization defines the subset of vasidbhét are
modified when updating a constraint. Therefore, the way thees are parameterized has a
serious influence on the performance of the system. We peojdoause a tree [18] as an efficient
way of parameterizing the nodes. One can construct a sggimei (not necessarily a minimum
one) from the graph of poses. Given such a tree, we define thenpterization for a node as

T; = Pi — Pparent(i)> (15)

wherep,..ent(i) refers to the parent of noden the spanning tree. As defined in Eq. (15), the tree
stores the differences between poses. This is similar iispiré to the incremental representa-
tion used in the Olson’s original formulation, in that théelience in pose positions (in global
coordinates) is used rather than pose-relative coordirmategid body transformations.

To obtain the difference between two arbitrary nodes basdtetree, one needs to traverse
the tree from the first node upwards to the first common ance$twoth nodes and then down-
wards to the second node. The same holds for computing theadra constraint. We refer to
the nodes one needs to traverse on the tree as the path ofteagund-or exampleP;; is the
path from node to nodej for the constraintj, i). The path can be divided into an ascending



part PJ[[] of the path starting from nodeand a descending pan}j] to nodej. We can then
compute the residual in the global frame by

Th = Zka - Zka + R;0j;. (16)

k-lepl kHleply]

HereR; is the homogeneous rotation matrix of the ppsdt can be computed according to the
structure of the tree as the product of the individual rotatnatrices along the path to the root.
Note that this tree does not replace the graph as an intepisentation. The tree only defines
the parameterization of the nodes.

Let ), = R R] be the information matrix of a constraint in the global frarAecording
to [29], we compute an approximation of the Jacobian as

!
Ji = E Ty — Ty, (17)
kl+lepit] k-lepl]

withZ, = (0 --- 0 I 0 --- 0). Then, the update of a constraint turns into

kth element

XH_l = Xt + )\]P]AM_IQQJ";Z, (18)
where|P;;| refers to the number of nodes ;. In Eq. (18), we replaced the precondition-
ing matrix H-! with its scaled approximatioM ! as described in [29]. This prevents from a
computationally expensive matrix inversion.

Let thelevel of a node be the distance in the tree between the node itstlih@root. We
define thetop nodeof a constraint as the node on the path with the smallest.|€vat parame-
terization implies that updating a constraint will neveaoge the configuration of a node with a
level smaller than the level of the top node of the constraint

To summarize, with our approach named TORO [18, 15, 16] (daelament to D5.1), which
is avaliable as open source at [36], we presented a highlyiesfti solution to the problem of
learning maximum likelihood maps for mobile robots. Ourhteique is based on the graph-
formulation of the simultaneous localization and mappirgbem and applies a gradient descent
based optimization scheme. Our approach extends Ols@usthim by introducing a tree-based
parameterization for the nodes in the graph. This has afgignt influence on the convergence
speed and execution time of the method. Furthermore, itlegais to correct arbitrary graphs
and not only a list of sequential poses. In this way, the cexipl of our method depends on
the size of the environment and not directly on the lengthhef ihput trajectory. This is an
important precondition to allow a robot lifelong map leagiin its environment. Our method
has been implemented and exhaustively tested on simuletperiments as well as on real robot
data. We furthermore compared our method to two existirsgesif-the-art solutions which are
multi-level relaxation and Olson’s algorithm. Our appro@cmverges significantly faster than
both approaches and yields accurate maps with low errors.



Figure 2: Maps obtained by the reference datasets usedwcnBAWSEEDS Benchmark So-
lutions. From left to right: MIT Killian Court, ACES Building ahe University of Texas, Intel
Research Lab Seattle, MIT CSAIL Building, and building 079 Wnmsity of Freiburg.

3.4 Performancesof Laser-Based Approaches

We run open source implementations of the approaches Hdedcabove on well known and
publicly available datasets (see Fig. 2). For obtainingehm ground truth information of these
non RAWSEEDS datasets, we extracted a set of ground truthoredabdy manually matching
sets of nearby scans. We finally measured the performanasschfalgorithm on each dataset
by using Eq 1 and Eq 2.

Often, a “weighting-factor” is used to combine both errants into a single number. In this
evaluation, however, we provide both terms separately fmtter transparency of the results.

We processed the benchmark datasets mentioned above hisialgorithms described at the
beginning of this section. A condensed view of each algorghperformance is given by the
averaged error over all relations. In Table 1 (top) we giveerview on the translational error
of the various algorithms, while Table 1 (bottom) shows thtational error. As expected, it can
be seen that the more advanced algorithms (Rao-Blackwepiasitle filter and graph mapping)
usually outperform scan matching. This is mainly causedheyfact, that scan matching only
locally optimizes the result and will introduce topolodlgaerrors in the maps, especially when
large loops have to be closed. A distinction between RBPF aaqahgnapping seems difficult as
both algorithms perform well in general. On average, grapbmng seems to be slightly better
than a RBPF for mapping.

To visualize the results and to provide more insights aboeitsenchmark solutions, we do
not provide the scores only but also plots showing the erf@agh relation. In case of high
errors in a block of relations, we label the relations in treps This enables us to see not only
where an algorithm fails, but might also provide insides vthgils. Inspecting those situations
in correlation with the map helps to understand the progeif algorithms and give valuable
insights on its capabilities. For two datasets, a detailedyars using these plots is presented in
the following sections.

MIT Killian Court In the MIT Killian Court dataset (also called the infinite ddor dataset),

the robot mainly observed corridors with only few structulteet support accurate pose correc-
tion. The robot traverses multiple nested loops — a challesgpecially for the RBPF-based
technique. We extracted close to 5000 relations betweemy@ases that are used for evalua-

10



Table 1: Quantitative results of different approachesiskts.

Trans. error

Scan Matching

RBPF (50 part.)

Graph Mapping

m | m?

Aces (abs) | 0.173+£0.614 | 0.060+ 0.049 | 0.044+ 0.044
Aces (sqr) 0.407+ 2.726 | 0.006+ 0.011 | 0.004+ 0.009
Intel (abs) 0.220+ 0.296 | 0.070+ 0.083 | 0.031+ 0.026
Intel (sqr) 0.136+ 0.277 | 0.011+ 0.034 | 0.002+ 0.004
MIT (abs) 1.651+ 4.138| 0.1224+ 0.386 | 0.050+ 0.056
MIT (sqr) 19.85+ 59.84 | 0.164+ 0.814 | 0.006+ 0.029
CSAIL (abs)|| 0.106+ 0.325| 0.049+ 0.049 | 0.004+ 0.009
CSAIL (sqr) || 0.117+0.728 | 0.005+ 0.013 | 0.0001+ 0.0005
FR 79 (abs) | 0.258+ 0.427 | 0.061+ 0.044 | 0.056+ 0.042
FR 79 (sqr) | 0.249+ 0.687 | 0.006+ 0.020' | 0.005+ 0.011
Rot. error Scan Matching RBPF (50 part.) Graph Mapping
10~2 rad /?

Aces (abs) 20+ 2.7 21+23 0.7+ 0.7
Aces (sqr) 0.1+0.3 0.09+ 0.21 0.01+0.03
Intel (abs) 15+15 43+6.3 0.7+ 0.7
Intel (sqr) 0.04+ 0.08 0.06+ 2.9 0.01+0.03
MIT (abs) 40+7.8 1.4+ 1.7 1.0+ 15
MIT (sqr) 0.7+ 2.0 0.04+ 0.55 0.03+ 0.57
CSAIL (abs) 24+79 504+ 5.4 0.1+0.2
CSAIL (sqr) 0.7+ 34 0.5+ 1.4 0.0003+ 0.0013
FR 79 (abs) 29+ 3.7 2.6+ 2.7 26+27

FR 79 (sqr) 0.2+ 04 0.1+ 0.3 0.1+0.3

! scan matching has been applied as a preprocessing step.
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Figure 3: The MIT Killian Court dataset. The reference relasi are depicted in light yellow.
The left column shows the results of scan-matching, the laicolumn the result of a GMapping
using 50 samples, and the right column shows the result adiphgbased approach. The regions
marked in the map (boxes and dark blue relations) corresgmoragjions in the error plots having
high error. The rotational error is not plotted due to spaesons.

tion. Figure 3 shows three different results and the comedimg error distributions to illustrate

the capabilities of our method. Regions in the map with higionsistencies correspond to re-
lations having a high error. The absence of significant strecalong the corridors results in

a small or medium re-localization error of the robot in alhquared approaches. In sum, we
can say the graph-based approach outperforms the otheodsedind that error reflects the im-
pression of a human about map quality obtained by visuafipecting the mapping results (the
vertical corridors in the upper part are supposed to be le§ral

Freiburg Indoor Building 079 The building 079 of the University of Freiburg is an example
for a typical office environment. The building consists oearridor which connects the indi-
vidual rooms. Figure 4 depicts the results of the individaigbrithms (scan matching, RBPF,
graph-based). In the first row of Figure 4, the relations igna translational error greater than
0.15m are highlighted in blue.

In the left plot showing the scan matching result, the retaiplotted in blue are generated
when the robot revisits an already known region. Theseioglaare visible in the corresponding
error plots (Figure 4 first column, second and third row). As ba seen from the error plots,
these relations with a number greater than 1000 have a largarthan the rest of the dataset.
The fact that the pose estimate of the robot is sub-optinthtlzat the error accumulates can also
be seen by the rather blurry map and that some walls occur.twiceontrast to that, the more
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Figure 4: This figure shows the Freiburg Indoor Building 078adat. Each column reports the
results of one approach. Left: scan-matching, middle: RBRF gt a graph based algorithm.
Within each column, the top image shows the map, the middieipkhe translational error and
the bottom one is the rotational error.



sophisticated algorithms, namely RBPF and graph mappingldeeto produce consistent and
accurate maps in this environment. Only very few relatidrsasan increased error (illustrated
by dark blue relations).

All datasets, the manually verified relations, and map irmage available online [22].

4 Benchmark Solutionsfor Monocular SLAM

In this section, we shortly describe a state-of-the-art BlLalgorithm that operates exclusively
on a stream of single-camera images. Subsequently, weiekola to solve the inherent scaling
problem of monocular SLAM to apply the performance measudrégp 1. We conclude this
section with an evaluation of this algorithm on some dataaetjuired in-house as well as on
some RAWSEEDS datasets.

4.1 Single Camera SLAM

We used a sequential Bayesian approach to visual odometeyilokd in [6],[7]. For complete-
ness we attach the related papers to this deliverable.

The algorithm presented makes use of an Extended Kalmaar Rilth feature points rep-
resented using inverse-depth [6] and considers severalréds of point features per frame,
camera-centered. Compared to the usual EKF-SLAM, alwaysresf to a world reference
frame, we use here a sensor-centered approach, that geshilyes the linearization error.

Another key difference of our approach is the number of memkteatures, which we rise
from tens to about a hundred of them (see figure 5). The au#jabf ground truth in the
RAWSEEDS datasets allowed us to verify that this highly impsothe accuracy of the esti-
mation and also makes the typical monocular SLAM scale,iftviously reported in [8, 30],
almost vanish.

As in any visual estimation problem, the spurious rejecptays a fundamental role in our
algorithm. Spurious rejection algorithms well suited for Bayan estimation —like the classical
JCBB [28] or the recent Active Matching [5]- become computasily intractable due to the
high number of measured features. To overcome this problemadopt a RANSAC-based
spurious rejection algorithm.

4.2 Solving the Scaling Problem of Monocular SLAM for Measuring the
Perfor mance

In order to facilitate posterior comparisons, the publakilableRAWSEED8atasets have been
used to benchmark the monocular SLAM algorithm. The greafiasdge of the RAWSEEDS
datesets is that they have been captured with a multisetatonm both in indoors and outdoors
environment, and ground truth is available. In this papeed different outdoor sequences have
been selected in order to make use of the Real Time Kinematitex@&hcial GPS data existing
in those datasets.
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Figure 5: Example image from the monocular sequence in a RAVI&E#ataset. Whereas
squares represent the image patches of the tracked featlliieses show the predicted uncer-
tainty region where the correspondences will be looked for.
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Our goal is to compare the trajectory estimated by the EKedasual odometry against the
GPS data which we will consider as ground truth. The EKF-SL#djectory will be referred to
the first camera frame of referen€g. To do the comparison, a rigid transformation composed
of a rotationR, translationt and scale factog has to be applied. Such transformation converts
every estimated camera position to the ground truth franmefefence.

eh fL‘g?
ye, | | sR t ygo
26, _{ 0 1} e (19)
1 1

The translation is computed to align the starting positiaihm ws ground truth value, and the
unknown rotation and scale are obtained using a non-linganmzation algorithm, where these
parameters are modified to minimize the error between thematsd trajectory and the GPS
ground truth data.

Finally, the error of each camera position in the reconstdipath is computed as the Eu-
clidean distance between each point of the estimated capaghaand the GPS ground truth,
ignoring the vertical coordinate.

4.3 Benchmark results

Three different sequences from the mentioRRIWSEED $latasets have been used to test the
validity of the algorithm. All sequences have been recontd the same camera,320 x 240
Unibrain with a wide-angle lens capturing3tfps. Camera calibration is provided in the dataset.

In the first sequenceséquence )l composed by900 images, the robot translates for about
125 meters. The second sequensedquence Phas5400 images and the robot describes a larger
trajectory, about85 meters. Finally, a very large challenging sequeseg(ence)3s evaluated
that is composed b®2350 frames 42 minutes of video— in which the robot moves around a
loopy trajectory of630 meters. It is remarkable in this latter sequence that, aghdhe accu-
mulated drift already makes the error noticeable when gudioitith the GPS ground truth data,
the relative error with respect to the trajectory keeps #meslow value as the other two shorter
sequences.

Figures 7,8 and 9 shows the estimated trajectory (in redjl@@&PS ground truth (in green)
over a top view extracted from Google maps for each one of theesees. From plain visual
inspection, it can be seen in these figures that the estinti@@dtory is not very far from the
GPS trajectory. Table 2 gives detailed information aboetgtrors obtained in the trajectory. As
an illustration of the distribution of the errors, figure 1@els its histogram for thé30 meters
monocular sequence.

5 Benchmark Solutionsfor Stereo SLAM

In this section we describe our preliminary benchmark smufor stereo-based SLAM. This
family of approaches utlilzes exclusively a sequence okst@nage pairs to compute a feature
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Figure 6: Example of images taken from 68$) metres monocular sequence.

Table 2: EKF-based visual odometry estimation errors irthihee experiments.

er

Trajectory Mean Maximum % mean error oy
length [m] error [m] | error [m] | the trajectory
125 2.0 4.6 1.6%

185 2.1 6.0 1.1%

630 13.2 23.1 2.1%
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Figure 7: Estimation results ini&5 metres trajectory over a Google maps top view. Estimated

trajectory is shown in red; GPS data is plotted in green. Meaor of the estimated trajectory
is 2.0 metres. Red dot shows the beginning of the trajectory, anchmexv shows its initial
direction.
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Figure 8: Estimation results ini&5 metres trajectory over a Google maps top view. Estimated
trajectory is shown in red; GPS data is plotted in green. Maaor of the estimated trajectory

is 2.1 metres. Red dot shows the beginning of the trajectory, ancanexv shows its initial
direction.
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Figure 9: Estimation results in@0 metres trajectory over a Google maps top view. Estimated
trajectory is shown in red; GPS data is plotted in green. Mezaor of the estimated trajectory

is 13.2 metres. Red dot shows the beginning of the trajectory, ancunexlv shows its initial
direction.
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map of the environment. In the following we present a stdttre-art approach which is able to
construct maps of large scale environments. We validatedpbroach on some datasets acquired
in house. The results of our approach are shown in SectiorF6rzhe final deliverable of WP5,
we plan to run the approach on the RAWSEEDS datasets and tawonstset of benchmark
solutions using the metric described in Section 4.2.

5.1 Stereo Camera SLAM using Conditionally Independent L ocal M aps

In this section we describe our stereo-SLAM system whiokgrdtes a set of novel technologies
which allow us to gather most of the information availablé¢ha stereo features.

We consider information from features both close and fanftbe cameras. Stereo provides
3D information from nearby scene points, and each cameralsarprovide bearing only infor-
mation from distant scene points. Both types of informatimmiacorporated into the map and
used to improve the estimation of both the camera pose andityglas well as the map. Nearby
scene points provide scale information through the steaselme, eliminating the intrinsic scale
unobservability problem of monocular systems.

Furthermore our system is able to operate in large envirotsri®y decomposing the whole
map in local-maps of limited size. We use Conditionally Inglegent SLAM [33], that allows the
system to maintain both camera velocity information andentrfeature information during local
map initialization. This adds robustness to the systemawitbacrificing precision or consistency
in any way. Using the CI-Graph algorithm we can extend the gmiogs of the Cl-submaps to
more complex robot trajectories and map topologies.

Feature Detection and Representation A stereo camera can provide depth estimation of
points up to a certain distance determined by the baselineska left and right cameras. There-
fore, we differentiate two regions: a region close to the e&as and visible by both, in which
stereo behaves as a range and bearing sensor. The secomdegitin of features far from the
cameras or seen by only one, in which the stereo becomes acmian@amera, only provid-
ing bearing measurements of such points. To take advanfag&totypes of information, we
combine 3D points and inverse depth poirii3)((see [6]) in the state vector in order to build a
map and estimate the camera trajectory. Despite its piepeeach inverse depth point needs an
over-parametrization of six values instead of a simpleedhzoordinates spatial representation.
This produces a computational overhead in the EKF. Workiitg & stereo camera, which can
estimate the depth of points close to the camera, raises bike guestion of when a feature
should be initialized using &D or anID representation.

The system produces sequences of local maps of limited si#aiaing both types of fea-
tures using an EKF SLAM algorithm. Most recent submappircgmegues are based on building
local maps of limited size that are statisticatigependenf37, 38, 20, 31]. This requirement im-
poses important constraints to the submaps structureabdunformation present in a submap
cannot be used to improve other submap estimates sinceywsbethe independence property
could not be preserved. In addition, same environment feainbserved in different maps have
independent estimations in each map.
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CI-SLAM TheConditionally Independer8LAM algorithm works with maps that are not sta-
tistically independent, but ratheonditionally independent33], and thus allow to share the

valuable information with no increment in computationastcor loss of precision whatsoever.
In Visual SLAM it is very useful to share some state vector ponents between consecutive
submaps: some camera states, such as linear and angulaties)as well as features that are
in the transition region between adjacent submaps and arently being tracked. This allows

us to improve the estimate of relative location between thersyps and continue tracking the
observed features with no interruptions. At the same timesu®imaps inherit the computational
efficiency of submapping techniques that, taking into anteusubgroup of the map elements,
can work with covariance/information submatrices of lexitsize. The details of this algorithm
are explained in [32, 33].

5.2 Performancesof Stereo-Camera SLAM

Figure 11: Stereo vision system used to acquire the imageesegs. Picture on the left shows
the experimental setup during the data acquisition fornkdear experiment.

In this section we describe a preliminary validation of tlystem performed on datasets
acquired in-house with the following sensor setup.

The hardware system consists of a stereo camera carrieehdhamal a laptop to record and
process a sequence of images (see fig. 11). Since the camees mdBDOF, we define the
camera state using 12 variables: camera position in 3Dstanteoordinates, camera orientation
in Euler angles, and linear and angular velocities.

We tested the SLAM algorithm with tweR0 x 240 image sequences obtained with the Point
Grey Bumblebee stereo system (see fig. 11). The system psaidex 50 degree field of view
per camera, has a baselinel@tm, limiting the 3D point features initialization up to a distae
close tohm.

An indoor loop (at 48 fps) and an urban outdoor (at 25 fps) Iseguences were captured
carrying the camera in hand, at normal walking speeds-ebkm /hour. Both sequences were
processed in MATLAB with the proposed algorithms on a dgsktomputer with an Intel 4
processor at 2,4GHz.
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Figure 12: Outdoors experiment: 6DOF stereo SLAM on a pustiicare (left). Indoor experi-
ment along a building environment (right). The sequence digslal maps is represented with
respect to the initial reference (top); results obtaingéerafinning the D&C algorithm that joins
and corrects the estimates (middle); final map obtained wineifoop closing constraint is im-
posed (bottom). The scale factor and camera positions aleagel/ered thanks to the combined
observations of 3D points and inverse depth points.
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Figure 13: Stereo visual SLAM recovers the true scale: thielibg environment (top) and the
Public square (bottom) overlapping Google Earth.
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The outdoor sequence is composed of 3441 stereo pairs gdtimea public square of our
home town (see fig. 12, left). The full trajectory is approately 140m long from the initial
camera position. Figure 12 left column, shows the sequehceralitional independent local
maps obtained with the technique described above. Each amdpics 100 features combining
inverse depth and 3D points. The total number of maps buiihduhe stereo sequence is 11.
The result of ClI SLAM without applying the loop closing corsiit is shown in fig. 12, left,
middle. As it can be observed, the precision of the map obthisigood enough to almost align
the first and last submaps after all the trajectory has besersed, even without applying loop
closing constraints. Fig. 12, left, bottom, presents thal fiesult after closing the loop.

The second experiment was carried out inside one of our carpildings in a walk of
approximately210m (see fig. 12, right). The same process was run in order toroathill map
from 8135 stereo pairs. This environment has a particulgreseof difficulty due to ambiguous
texture and the presence of extensive zones of glass windoals as offices, corridors and
cafeterias. This can be noticed in the long distance postisiated in some of the maps, which
are actually inside offices and the cafeteria (see fig.12t,rigp). The result of CI SLAM is
shown in fig. 12 right, middle, and the final result after lodpsing is shown in fig. 12, right,
bottom.

Using the Google Earth tool we can see that the map scalenebtaind the trajectory fol-
lowed by the camera is very close to the real scale. Fig. 8titites comparative results. We
loaded the MATLAB figure in Google Earth and set the scalepatar to the real scale.

In the final version of this deliverable, we will provide béncark solutions based on the
RAWSEEDS datasets.

6 Benchmark Solutionsfor Trinocular SLAM

In this section we provide a benchmark solution for SLAM eys$ which operate on trinocular
camera images and odometry. The benchmark solution pessant based on a system which
uses 3D segments as features. The map is estimated by ahieahapproach which combines
a set of local maps (esimtated using EKF) into a global map &g of graph-optimization.

6.1 Trinocular SLAM with 3D segments

3D segments turn out to be quite a stable primitive, at thegevand also at the scene level. On
the other hand, 3D points are computed in the order of thalsspar 3D segment, so they are
not a synthetic measure of a human-built scene. The presemigdproves that visual SLAM
is possible and reliable, when based on 3D segments fromostéhe work extends the known
hierarchical SLAM algorithm to deal with 3D segments frorareb with a full 6DoF observer
pose; the latter, beside being obvious for outdoor conutioes more appropriate for properly
handling the small imperfections present in indoor condsgi

Extraction of 3D Segments Our system computes the extrema of each segment as a 3D po-

sition. The uncertainty in the perception of each extrem@ssmumed to be Gaussian, which is
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Figure 14: Images captured from: (a): Camera left. (b): Cartmgra(c): Camera right (with
stereo matched segments). (d): 3D segments extraced bynar.se

computed by applying the Jacobians of the trinocular ptmjpmperation [39], [40], [1], [13],
[2], [3] to the noise affecting the pixels in the image. Theethcameras are calibrated with re-
spect to a common reference system, located on the robots®e DLT technique to determine
the three projection matrices. Figure 14 shows a typicaltresour segment extraction routine.

Hierarchical SLAM with 3D segments In our system, we use 3D data from the perception
system mentioned above. The pose of the each extrema of &segnmodeled as a 3D point.
With this information we can approach the full DoF SLAM preiyl to build a 3D map and we
do not constrain the robot to move on the plane.

The estimation technique used in our system is the popularartihical-SLAM approach
proposed by Neir&t al. [12]. The main idea is to subdivide the whole map in two levels
local level and a global level. The local level consists ireaaf submaps. Each of these sub-
maps is estimated using an Extended Kalman Filter. To retheceomplexity of the approach,
the individual maps are treated as independent. The gleballis represented by a graph where
each node describes one submap and the edges represergting exlations between them (i.e.,
the relative position and its uncertainty). At any pointime a global map can be recovered by
graph optimization. These two levels are the two abstradéeel through which it is possible to
observe the world.

This hierarchical decomposition of the problem, is showhnbit the influence of lineariza-
tion errors in the EKF process. Furthermore, it reduces tmepcoational cost of the whole
procedure. See attached paper for a more detailed desaripti
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(a) (e)

Figure 15: Odometry superimposed to the map of the environhgag, uncertainty in odometry
(£30), with view_id (b), odometry (full) superimposed to the base refereméabe submaps

depicted as circles connected by lines (c), bounding baXastydark) and first (bright) submaps
(d), and the base references of the submaps after graplatielaxe).

6.2 Performancesof Trinocular SLAM

We validated our approach by processing a medium-scal@isdiataset acquired at 4th floor
of building U7, Univ. Milano - Bicocca, Milano, Italy. We usedRobuter mobile robot from
Robosoft and a trinocular system which delivers grab thr&ex588 gray-scale images simulta-
neously. We recorded an trinocular image every time thetrolmved for approximately 5 cm.
The overall length of the trajectory is approximatively 200 The results of our approach are
shown in Figures 16 and 17.

In the final version of this deliverable we will evaluate thetirod on multi-sensorial RAWSEEDS
datasets, and we will compare the results with laser bas#ubae using the metric described in
Section 2.
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Figure 16: Birds-eye view of the 6DoF-pose final reconstauctifter graph relaxation, superim-
posed to planimetry.

Figure 17: A 3D view of the 6DoF-pose final reconstructiore solid-circle line is the same as
in Figure 15e.
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7 Conclusion

This deliverable D5.1 “Preliminary Benchmark Solutionsdyides according to the description
of work (Annex I) a set of benchmarking solutions, which jsgidescription and the software
implementation of the corresponding SLAM algorithms, {iig output of the algorithm on a
given benchmarking problem (a dataset), and (iii) the sobrating the output of the algorithm
according to a quality measure defined in the benchmarkiolglem.

For laser based SLAM, we provided benchmarking solutionséan matching, a mapping
system based on a Rao-Blackwellized particle filter (“GMagjirsee attached papers) and a
graph mapping system (“TORQO”, see attached papers) ei@uat a set of different datasets.
We furthermore carried out the evaluations for vision-daSEAM systems. We provided algo-
rithms for monocular, stereo, and trinocular SLAM.

For the final deliverable (D5.1) of WP5, we will carry out thakmations on all RAWSEEDS
datasets and will furthermore present results of our semplaice labeling techniques as well as
on multi-robot exploration according to the Annex I.
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Analyzing Gaussian Proposal Distributions
for Mapping with Rao-Blackwellized Particle Filters

Cyrill Stachniss* Giorgio Grisetti*

Abstract— Particle filters are a frequently used filtering tech-
nique in the robotics community. They have been successfully
applied to problems such as localization, mapping, or tracking.
The particle filter framework allows the designer to freely
choose the proposal distribution which is used to obtain the
next generation of particles in estimating dynamical processes.
This choice greatly influences the performance of the filter.
Many approaches have achieved good performance through
informed proposals which explicitly take into account the
current observation. A popular approach is to approximate
the desired proposal distribution by a Gaussian. This paper
presents a statistical analysis of the quality of such Gaussian
approximations. We also propose a way to obtain the optimal
proposal in a non-parametric way and then identify the error
introduced by the Gaussian approximation. Furthermore, we
present an alternative sampling strategy that better deals with
situations in which the target distribution is multi-modal.
Experimental results indicate that our alternative sampling
strategy leads to accurate maps more frequently that the
Gaussian approach while requiring only minimal additional
computational overhead.

I. INTRODUCTION

Particle filters are a frequently used technique in robotics
for dynamical system estimation. They have been used to
localize robots [4], to build both feature-maps [12], [13]
and grid-maps [7], [8], [9], and to track objects based on
vision data [10]. A particle filter approximates the posterior
by a set of random samples and updates it in a recursive
way. The particle filter framework specifies how to update
the sample set but leaves open how to choose the so-called
proposal distribution. The proposal is used to draw the next
generation of samples at the subsequent time step in the
dynamical process. For example, in the context of localizing
a robot, the odometry motion model is a good choice for
the proposal in that it can be easily sampled and then easily
transformed into the target distribution by such techniques as
weighted importance sampling. In practice, the design of the
proposal has a major influence on the performance and ro-
bustness of the filtering process. On the one hand, the closer
the proposal is to the target distribution, the better is the
estimation performance of the filter. On the other hand, the
computational complexity of the calculation of the proposal
distribution should be small in order to run the filter online.
For this reason, the majority of particle filter applications
restrict the proposal distribution to a Gaussian since one can
efficiently draw samples from such a distribution.

Murphy, Doucet, and colleagues [6], [14] introduced fac-
tored particle filters, known as ‘“Rao-Blackwellization”, as an
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effective means to solve the simultaneous localization and
mapping (SLAM) problem. By applying this factorization,
several efficient mapping algorithms have been presented [7],
[81, [9], [12] and we can note that all of these algorithms have
used Gaussians to obtain the next generation of particles.

In this paper, we analyze how well such Gaussian proposal
distributions approximate the optimal proposal in the context
of mapping. We apply well-founded statistical measures to
carry out the comparisons. To the best of our knowledge,
this question has not been addressed in the context of
particle filter applications in robotics so far. It turns out that
Gaussians are often an appropriate choice but there exist
situations in which multi-modal distributions are needed to
appropriately sample the next generation of particles. Based
on this insight, we present an alternative sampling technique
that has the same complexity as the Gaussian approximation
but can appropriately capture distributions with multiple
modes, resulting in more robust mapping systems.

This paper is organized as follows. After a discussion
of related approaches, we briefly introduce in Section III
the ideas of mapping with Rao-Blackwellized filters. In
Section IV, we explain how to actually represent and sample
from the optimal proposal. We then present an efficient
variant that allows us to deal with multi-modal proposals in
an efficient way. In Section VI, we introduce the statistical
tests that are used in the experimental section for evaluation.

II. RELATED WORK

Particle filters have been applied to various kinds of
robotic state estimation problems such as localization [4],
mapping [7], [8], [9], [12], visual tracking [10], or data
association problems [20]. Murphy, Doucet, and colleagues
were the first that presented an approach based on a
Rao-Blackwellized particle filter that learns grid maps [6],
[14]. The first efficient approach for mapping with Rao-
Blackwellized particle filters was the FastSLAM algorithm
by Montemerlo et al. [13]. It uses a set of Kalman filters to
represent the map features conditioned on a sampled robot
pose. A Gaussian process model is used to sample the odom-
etry motion model and generate the proposal distribution on
the next step. The grid-based variant presented by Haehnel
et al. [9] performs scan-matching as a preprocessing step.
In this way, they are able to draw samples from Gaussians
with lower variances compared to proposals computed based
on the odometry only. This reduces the number of required
particles and allows a robot to maintain a map estimate
online. In contrast to that, Eliazar et al. [7] focus on an
efficient grid map representation which allows the particles



to share a map. Subsequently, Montemerlo et al. published
FastSLAM?2 [12] that uses an informed proposal based on
the most recent sensor observation to restrict the space for
sampling. Again, to efficiently draw the next generation
of particles, the distribution is assumed to be Gaussian.
Grisetti et al. [8] extended FastSLAM2 to deal with large-
scale occupancy grid maps. This technique combines scan-
matching on a per particle basis with informed Gaussian
proposal distributions.

To the best of our knowledge, there exists no evaluation
of how well the Gaussian proposal distributions approximate
the optimal proposal which in general is non-Gaussian in the
context of mapping. There exist approaches that show that
the uncertainty of certain SLAM techniques monotonically
decreases over time. For example, Newman proved this
property for the relative map filter and also showed that
“in the limit, as the number of observations increases, the
relative map becomes perfectly known” [15]. In the context
of particle filters for SLAM, Montemerlo et al. [12] showed
that FastSLAM?2 “converges [...] for a restricted class of
linear Gaussian problems”. It, however, makes no statement
about the validity of Gaussian approximations in real world
settings.

III. LEARNING MAPS
WITH RAO-BLACKWELLIZED PARTICLE FILTERS

A particle filter requires three sequential steps to update its
estimate. Firstly, one draws the next generation of samples
from the so-called proposal distribution 7. Secondly, one
assigns a weight to each sample. The weights account for
the fact that the proposal distribution is in general not equal
to the target distribution. The third step is the resampling step
in which the target distribution is obtained from the weighted
proposal by drawing particles according to their weight.

In the context of the SLAM problem, one aims to estimate
the trajectory of the robot as well as a map of the environ-
ment. The key idea of a Rao-Blackwellized particle filter for
SLAM is to separate the estimate of the trajectory x1.; of
the robot from the map m of the environment. This is done
by the following factorization

P(Iht,m | Zl:t7u1:t—1) =

p(m | T1e, 21:0) - P(T1e | 2105 Ut —1), (D

where z1.; is the observation sequence and uq.;—; the odom-
etry information. In practice, the first term of Eq. (1) is
estimated using a particle filter and the second term turns
into “mapping with known poses”.

One of the main challenges in particle filtering is to
choose an appropriate proposal distribution. The closer the
proposal is to the true target distribution, the more precise
is the estimate represented by the sample set. Typically, one
requires the proposal 7 to fulfill the assumption
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is the optimal proposal for particle ¢ with respect to the
variance of the particle weights that satisfies Eq. (2). This
proposal minimizes the degeneracy of the algorithm (Propo-
sition 4 in [5]). As a result, the computation of the weights
turn into
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Unfortunately, the optimal proposal distribution is in gen-
eral not available in closed form or in a suitable form
for efficient sampling. As a result, most efficient mapping
techniques use a Gaussian approximation of the optimal
proposal. This approximation is easy to compute and allows
the robot to sample efficiently. As we will show in this paper,
the Gaussian assumption is not always justified. To provide
examples for this statement, we first compute the optimal
proposal explicitly and then compare it to the Gaussian
approximation. Using the optimal proposal in a mapping
system leads to computationally expensive operations which
are explained in the next section in more detail.

IV. COMPUTING AND SAMPLING
FROM THE OPTIMAL PROPOSAL

This section explains how to compute the optimal proposal
and how to sample from that distribution. In mapping as
well as in many other problems, there is no closed form
solution available but we can arrive at a high-fidelity nu-
merical solution for the likelihood function. In our case,
the numerator of Eq. (3) is the product of the observation
likelihood and the odometry motion model. When using
laser range finders, the dominating factor is the observation
likelihood. To point-wise evaluate the observation likelihood,
we use the so called “beam endpoint model” [19]. In this
model, the individual beams within a scan are considered
to be independent. Furthermore, the likelihood of a beam
is computed based on the distance between the endpoint of
the beam and the closest obstacle from that point. Using
this point-wise evaluation of the observation likelihood, we
can compute a three-dimensional histogram providing the
observation likelihood for the different poses.

The second term in Eq. (3) is the robot motion model.
In this paper, we consider the “banana-shaped” distribu-
tion known from most approaches to Monte-Carlo localiza-
tion [4]. The likelihood for the individual poses is computed



point-wise and is stored in a histogram. This histogram
describes the likelihood function in a non-parametric form.
Histograms, however, are affected by discretization errors.
To smooth this effect, we furthermore apply the Parzen
window/kernel estimator [1] based on the evaluated data
points. Let 7 be the evaluated poses, then this estimator
is defined as

pa) = p(zj) iK (x —th) ®

j=1

where h is called Parzen window. We chose the kernel K (u)

as
1 u?

T exp < 5 ) . )]
This technique allows us to smooth the histogram data and
in this way avoid the discontinuities which are inherent
in the histogram representation itself. Furthermore, we can
make the likelihood of the smoothed histogram arbitrarily
close to the optimal distribution of Eq. (3) by increasing the
resolution of the local grid map and reducing the size of the
histogram bins.

Given this non-parametric estimator, we can perform re-
jection sampling to draw the next generation of particles.
Obviously, this results in a highly inefficient mapping system
with respect to the computation time. However, it allows
us to sample from an arbitrarily close approximation to
the optimal proposal distribution and to compare it to its
Gaussian approximation.

As we will illustrate in the experiments, in most cases
the proposal can be safely approximated by a Gaussian.
This explains why existing methods based on this particular
approximation have been so successful. In certain situations,
however, the distribution is highly non-Gaussian and often
multi-modal so that the Gaussian does not properly approx-
imate the true distribution which in turn can lead to the
divergence of the filter. To overcome this problem, we present
an alternative sampling method in the following section.
This sampling strategy is able to handle multiple modes in
the likelihood functions used as the proposal distribution.
Note that our approach does not require any significant com-
putational overhead compared to existing mapping systems
that apply scan-matching in combination with a Gaussian
proposal [8].

K(u) =

V. EFFICIENT MAPPING
WITH MULTI-MODAL PROPOSAL DISTRIBUTIONS

In this section, we present our alternative sampling strat-
egy that can handle multiple modes in the distributions while
at the same time keeping the efficiency of a Gaussian pro-
posal distribution. Our approach is equivalent to computing
a sum of weighted Gaussians to model the proposal but does
not require the explicit computation of a sum of Gaussians.
Note that an open source implementation of our mapping
system using this technique is available online [18].

Our previous method [8] first applies scan-matching on a
per-particle basis. It then computes a Gaussian proposal for

mode 1 mode 2 mode 1 mode 2

L
odometry measurement convergence to 1 convergence to 2

Fig. 1. The left image illustrates a 1D likelihood function and an odometry
measurement. Conventional informed sampling first performs scan-matching
starting from the odometry measurement. In this situation, the scan-matcher
will find a local peak in the likelihood function (most likely mode 1) and
the future sample will be drawn from a Gaussian centered at this single
mode. The right image illustrates the new approach. It draws the sample
first from the odometry model and applies scan-matching afterwards. When
a drawn sample falls into the area colored black, the scan-matcher will
converge to mode 1, otherwise, it will converge to mode 2. By sampling
first from the odometry, then applying scan-matching, and finally computing
local Gaussian approximations, multiple modes in the likelihood function
are likely to be covered by the overall sample set.

each sample by evaluating poses around the pose reported
by the scan-matcher. This technique yields accurate results
in case of a uni-modal distribution, but encounters problems
in that it focuses only on the dominant mode to which the
scan-matching process converges. The left image in Figure 1
illustrates an example in which the scan-matching process
converges to the dominant peak denoted as “mode 1”. As a
result, the Gaussian proposal samples only from this mode
and at most a few particles cover “mode 2 (and only if the
modes are spatially close). Even if such situations are rarely
encountered in practice, we found in our experiments that
they are one of the major reasons for filter divergence.

One of the key ideas of our approach is to adapt the scan-
matching/sampling procedure to better deal with multiple
modes. It consists of a two step sampling. First, only the
odometry motion model is used to propagate the samples.
This technique is known from standard Monte-Carlo local-
ization approaches (c.f. [4]) and allows the particles to cover
possible movements of the robot. In a second step, gradient
descent scan-matching is applied based on the observation
likelihood and the denominator of Eq. (3). As a result, each
sample converges to the mode in the likelihood function that
is closest to its own starting position. Since the individual
particles start from different locations, they are likely to
cover the different modes in their corresponding likelihood
functions as illustrated in the right image of Figure 1. Our
approach leads to sample sets distributed according to a
Gaussian around the modes in the observation likelihood
functions. As we will demonstrate in the experimental re-
sults, this technique leads to proposal distributions which are
closer to the optimal proposal given in Eq. (3) than the Gaus-
sian approximations; when the distribution has only a single
mode, the solution is equivalent to previous approaches [8].

VI. STATISTICAL TESTS

To analyze how close the Gaussian proposal as well as
our new proposal are to the optimal proposal distribution,
we make use of three statistical measures. First, we apply
the Anderson-Darling test on normality [2]. This test is
reported to be one of the most powerful tests in statistics
for detecting most departures from normality. This test is



superior to the Kolmogorov-Smirnov test and has a similar
performance than the Shapiro-Wilk test [16]. Second, we use
the Kullback-Leibler divergence [11] to measure the distance
between distributions. Third, we make use of a measure
taken from the Cramér-von-Mises test [3], [21] to identify
differences between distribution.

Given a set of n samples {y' < ... < y™} in ascending
order of magnitude, the Anderson-Darling (AD) test com-
putes the A statistic as

o - 2k -1 k _ n+l—k
A=—n k; — [In F(y")+In(1-F(y"*' )], (10)

where [’ is the cumulated density function (CDF) of the
distribution that is assumed to have generated the samples.
In our case, F' is the CDF of the normal distribution.
To determine if the samples are generated by a Gaussian

or not, one needs to test if
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where c¢ is the Anderson-Darling test value for normal
distributions corresponding to a desired level of significance.
For example, for a 95% confidence test of normality, the
corresponding c is 0.752.

This test allows us to check if the optimal proposal is in
fact a Gaussian distribution. An interesting property of the
AD test is that it also provides a confidence level for its
result. To apply this test, we only need to draw a sample
set from the optimal proposal and compute Eq. (10) and
Eq. (11). Performing this test for all proposals generated
during a mapping experiment provides a measure of how
often a sample set is generated from a wrong distribution.

Besides the Anderson-Darling test, we apply the Kullback-
Leibler divergence (KLD) which is a frequently used tech-
nique to measure the distance between two arbitrary distribu-
tions. This allows us to also compare our proposal given in
the previous section to the optimal proposal distribution. A
KLD value of zero indicates that the distributions are equal
and the higher the KLD, the bigger is the difference between
them. The KLD between p and f is defined as

/ (@) - log <§Zg>)> da.

The KLD takes into account a quotient between two distri-
butions. This can give a high weight to differences in the
tails of the distributions (see Eq. (12), where f(x) is small).
An alternative measure for comparison is used in the
Cramér-von-Mises test [3], [21]. It measures the disparity
of two distributions by taking into account their cumulative
density functions (CDF). Since it does not use a quotient
as the KLD does, it gives less weight to the tails of
the distribution. It computes the integral over the squared
distances between the CDFs. Let p and f be the distributions
to compare and P and F' the corresponding CDFs. Then,

[1P@) - F@)P ap(a)

Y

KLD(p,f) = 12)
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TABLE I
PROPOSAL DISTRIBUTIONS WHICH ARE REGARDED AS GAUSSIANS
ACCORDING TO THE ANDERSON-DARLING TEST (95% CONFIDENCE).

Dataset Gaussian Non-Gauss | Multi-modal
proposal (unimodal) | proposal
Intel Research Lab 89.2% 7.2% 3.6%
FHW Museum 84.5% 10.4% 5.1%
Belgioioso 84.0% 10.4% 5.6%
MIT CSAIL 78.1% 15.9% 6.0%
MIT Killian Court 75.1% 19.1% 5.8%
Freiburg Bldg. 79 74.0% 19.4% 6.6%

provides a measure about the similarity of both distributions
which is zero if both are equal.

The three techniques presented here are used in our
experiments to identify the differences between the individ-
ual proposals and to illustrate potential weaknesses of the
Gaussian proposals.

VII. EXPERIMENTS

The experiments presented in this paper are all based on
real world data. We furthermore used freely available datasets
to perform our analysis. The learned maps and the datasets
used here are available online [17].

A. Quality of Gaussian Proposals

In the first experiment, we carried out the Anderson-
Darling (AD) test with a confidence of 95% to determine
if the optimal proposal can be considered as Gaussian. The
results of the test are described in Table I. As can be seen,
depending on the dataset, in the optimal proposal was non-
Gaussian in 10% to 26% of all cases.

By visually inspecting the datasets and resulting maps,
we observed two different scenarios in which non-Gaussian
situations occurred. Firstly, we often observed non-Gaussian
observation likelihood functions in highly cluttered environ-
ments where small changes in the position led to substantial
changes of the likelihood. Multi-modal distributions are
likely to occur and Gaussians are not well suited to serve as
a proposal in these cases. Secondly, non-Gaussian proposals
occurred when the robot was moving in environments with
long corridors, a fact that surprised us. At first sight, this may
appear counterintuitive since corridors are well-structured
environments. However, in positions where the robot cannot
observe the end of the corridor with its sensor, the likelihood
along the main axis of the corridor is almost constant which
is highly non-Gaussian and can lead to a negative result of
the AD test. One example is MIT Killian Court, consisting
mainly of long corridors. Note that even if the AD test fails
in such situations, Gaussians can be still good proposals.

In addition to testing acceptance as a Gaussian distribution,
we analyzed the distance between the optimal proposal and
its Gaussian approximation based on the KLD and the
measure from the Cramér-von-Mises test (which is referred
to as CvM in the remainder of this paper). Figure 2 plots the
frequencies of the individual KLD and CvM values for the
Intel and FHW datasets. As can be seen, the approximation
error was small (values close to zero) in 94% to 97% of
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Fig. 2. Difference between the optimal proposal and the Gaussian
approximation based on the Intel Research Lab (first row) and the FHW
dataset (second row). The images on the left depict the frequencies of the
individual Kullback-Leibler divergence values and the images on the right
show the frequencies of the distance measure based on the Cramér-von-
Mises test (see Eq. (13)). The right-most bin contains also all values larger
or equal 0.4 (KLD) and 0.2 (CvM).

all cases. In all other cases, however, the distributions were
substantially different. This fact is represented by the peak
in the right-most bin of the histograms which contains all
values larger or equal than 0.4 (KLD) and 0.2 (CvM). This
peak corresponds to situations with multi-modal distributions
which can only be badly approximated by a Gaussian. Note
that similar results were obtained for the other datasets (see
first row of Figure 3).

B. Multi-Modal Proposal Distribution

In the next experiment, we evaluated the alternative sam-
pling strategy proposed in this paper. We used the KLD to
compare our new proposal to the optimal proposal distribu-
tion. To actually perform the comparison, we computed all
modes of the distribution explicitly, which is not required in
the mapping system itself as described in Section V. To do
so, we drew a set of samples and performed a gradient ascent
in the likelihood function to find the individual modes. The
modes were then approximated by Gaussians according to
the sampled points.

The results of the comparison are shown in Figure 3
for different datasets. The plots in the first row show the
KLD distance between the optimal proposal and its Gaussian
approximation. The plots in the second row depict the
corresponding comparison of our new proposal to the optimal
one.

As can be seen, we obtained distributions that no longer
approximated a significant fraction of the proposal distribu-
tions with large error (i.e., the right-most bin of the distance
histograms). In contrast to this, the Gaussian approach ap-
proximates the optimal proposal inappropriately in 3% to 6%
of all cases. The comparisons using the CvM value showed
similar results and are omitted due to reasons of space.

Approaches using the Gaussian proposal have shown to
build highly accurate maps of most datasets (compare the
experiments in [8]) but there exist situations in which such
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Fig. 4. Resulting map of the MIT CSAIL dataset using a Gaussian proposal
(left) and our new approach (right). The Gaussian approach fails due to
highly non-Gaussian likelihood functions in the cluttered room (illustrated
for a given orientation 6 in the top image). Trajectory length: 385m,
recording time: 7 min, average speed: 0.9m/s.

TABLE 11
EXECUTION TIME ON A 2.8 GHz PC WITH A P4 SINGLE CORE CPU.

Dataset N Execution time
optimal [ [8] | new method

MIT Killian Court 80 155 h 112 min 113 min
Freiburg Bldg. 79 30 84 h 62 min 62 min
Intel Research Lab 30 40 h 29 min 29 min
FHW Museum 30 38 h 27 min 27 min
Belgioioso 30 18 h 13 min 13 min
MIT CSAIL 30 10 h 7 min 7 min

techniques are likely to fail. This is especially the case if
the dominant mode in the likelihood function is not the
correct one. Such a situation occurs, for example, in the
CSAIL dataset [17] recorded at MIT. Our expectation is
that modeling multiple modes in the proposal distribution
leads to more robust filters. We carried out 10 experiments
with different random seeds and evaluated the success rate
of the approach using the Gaussian proposal and our new
method. Using the Gaussian approximation for the proposal
distribution, the final map had the correct topology (all
loops closed, etc.) in only 20% of trials whereas our new
approach generated a correct map every time. Figure 4 shows
example maps using the Gaussian proposal (left) and our new
approach (right).

C. Runtime

In principle, it is possible to avoid Gaussian approxi-
mations in the proposal distribution. The main disadvan-
tage when sampling from the optimal proposal is the high
computational overhead. To illustrate this overhead, Table II
shows the execution time for the individual approaches
as well as the number of samples used (N). As can be
seen, sampling from the optimal proposal is not suitable
for practical applications since it took up to one week to
correct a single dataset. In contrast to this, the computational
overhead of our new approach is negligible. It allows a robot
to learn an accurate map online while moving through the
environment.
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The plots in the first row show the KLD between optimal proposal and its Gaussian approximation for different datasets. The plots in the second

row depict the corresponding KLD between the optimal proposal and the proposal proposed in this paper. The right-most bin contains also all values larger
or equal to 0.4. The right-most bin illustrates the mayor drawback of the Gaussian approximation since it described the situations in which the optimal
proposal is highly non-Gaussian (e.g., multi-modal). Our new approach, however, can better deal with such situations.

VIII. CONCLUSION

In this paper, we analyzed how well Gaussian proposal
distributions approximate the optimal proposal in the context
of the application of Rao-Blackwellized particle filters to
the simultaneous localization and mapping problem. We
demonstrated that in around 5% of all cases, the Gaussian ap-
proximation is not sufficient to model the likelihood function.
As such situations are one of the sources for the divergence
of the filter, we presented an alternative sampling technique
that is able to deal with multi-modal distributions while
maintaining the same efficiency as the Gaussian proposal.
This resulted in a more robust approach to mapping with
Rao-Blackwellized particle filters. In experiments carried out
with real data, we showed the efficiency and robustness of
our approach.
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Abstract—1In 2006, Olson et al. presented a novel approach to
address the graph-based simultaneous localization and mapping
problem by applying stochastic gradient descent to minimize
the error introduced by constraints. Together with multi-level
relaxation, this is one of the most robust and efficient maxi-
mum likelihood techniques published so far. In this paper, we
present an extension of Olson’s algorithm. It applies a novel
parameterization of the nodes in the graph that significantly
improves the performance and enables us to cope with arbitrary
network topologies. The latter allows us to bound the complexity
of the algorithm to the size of the mapped area and not to
the length of the trajectory as it is the case with both previous
approaches. We implemented our technique and compared it to
multi-level relaxation and Olson’s algorithm. As we demonstrate
in simulated and in real world experiments, our approach
converges faster than the other approaches and yields accurate
maps of the environment.

I. INTRODUCTION

Models of the environment are needed for a wide range of
robotic applications, including search and rescue, automated
vacuum cleaning, and many others. Learning maps has there-
fore been a major research focus in the robotics community
over the last decades. Learning maps under uncertainty is
often referred to as the simultaneous localization and map-
ping (SLAM) problem. In the literature, a large variety of
solutions to this problem can be found. The approaches mainly
differ due to the underlying estimation technique such as
extended Kalman filters, information filters, particle filters, or
least-square error minimization techniques.

In this paper, we consider the so-called “graph-based” or
“network-based” formulation of the SLAM problem in which
the poses of the robot are modeled by nodes in a graph [2,
5, 6, 7, 11, 13]. Constraints between poses resulting from
observations or from odometry are encoded in the edges
between the nodes.

The goal of an algorithm designed to solve this problem
is to find the configuration of the nodes that maximizes the
observation likelihood encoded in the constraints. Often, one
refers to the negative observation likelihood as the error or the
energy in the network. An alternative view to the problem is
given by the spring-mass model in physics. In this view, the
nodes are regarded as masses and the constraints as springs
connected to the masses. The minimal energy configuration of
the springs and masses describes a solution to the mapping
problem. Figure 1 depicts such a constraint network as a
motivating example.

A popular solution to this class of problems are iterative
approaches. They can be used to either correct all poses
simultaneously [6, 9, 11] or to locally update parts of the
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Fig. 1. The left image shows an uncorrected network with around 100k poses
and 450k constraints. The right image depicts the network after applying our
error minimization approach (100 iterations, 17s on a P4 CPU with 1.8GHz).

network [2, 5, 7, 13]. Depending on the used technique,
different parts of the network are updated in each iteration.
The strategy for defining and performing these local updates
has a significant impact on the convergence speed.

Our approach uses a tree structure to define and efficiently
update local regions in each iteration. The poses of the indi-
vidual nodes are represented in an incremental fashion which
allows the algorithm to automatically update successor nodes.
Our approach extends Olson’s algorithm [13] and converges
significantly faster to a network configuration with a low error.
Additionally, we are able to bound the complexity to the size
of the environment and not to the length of the trajectory.

The remainder of this paper is organized as follows. After
discussing the related work, Section III explains the graph-
based formulation of the mapping problem. Subsequently, we
explain the usage of stochastic gradient descent to find network
configurations with small errors. Section V introduces our
tree parameterization and in Section VI we explain how to
obtain such a parameterization tree from robot data. We finally
present our experimental results in Section VIIL.

II. RELATED WORK

Mapping techniques for mobile robots can be classified
according to the underlying estimation technique. The most
popular approaches are extended Kalman filters (EKFs), sparse
extended information filters, particle filters, and least square
error minimization approaches. The effectiveness of the EKF
approaches comes from the fact that they estimate a fully
correlated posterior about landmark maps and robot poses [10,
14]. Their weakness lies in the strong assumptions that have
to be made on both, the robot motion model and the sensor
noise. Moreover, the landmarks are assumed to be uniquely



identifiable. There exist techniques [12] to deal with unknown
data association in the SLAM context, however, if certain
assumptions are violated the filter is likely to diverge [8].

Frese’s TreeMap algorithm [4] can be applied to compute
nonlinear map estimates. It relies on a strong topological
assumption on the map to perform sparsification of the in-
formation matrix. This approximation ignores small entries in
the information matrix. In this way, Frese is able to perform
an update in O(logn) where n is the number of features.

An alternative approach is to find maximum likelihood maps
by least square error minimization. The idea is to compute
a network of relations given the sequence of sensor read-
ings. These relations represent the spatial constraints between
the poses of the robot. In this paper, we also follow this
way of formulating the SLAM problem. Lu and Milios [11]
first applied this approach in robotics to address the SLAM
problem using a kind of brute force method. Their approach
seeks to optimize the whole network at once. Gutmann and
Konolige [6] proposed an effective way for constructing such
a network and for detecting loop closures while running an
incremental estimation algorithm. Howard et al. [7] apply
relaxation to localize the robot and build a map. Duckett
et al. [2] propose the usage of Gauss-Seidel relaxation to
minimize the error in the network of constraints. In order to
make the problem linear, they assume knowledge about the
orientation of the robot. Frese et al. [S] propose a variant of
Gauss-Seidel relaxation called multi-level relaxation (MLR).
It applies relaxation at different resolutions. MLR is reported
to provide very good results and is probably the best relaxation
technique in the SLAM context at the moment.

Note that such maximum likelihood techniques as well as
our method focus on computing the best map and assume that
the data association is given. The ATLAS framework [1] or
hierarchical SLAM [3], for example, can be used to obtain
such data associations (constraints). They also apply a global
optimization procedure to compute a consistent map. One can
replace such optimization procedures by our algorithm and in
this way make ATLAS or hierarchical SLAM more efficient.

The approach closest to the work presented here is the
work of Olson et al. [13]. They apply stochastic gradient
descent to reduce the error in the network. They also propose
a representation of the nodes which enables the algorithm to
perform efficient updates. The approach of Olson et al. is
one of the current state-of-the-art approaches for optimizing
networks of constraints. In contrast to their technique, our
approach uses a different parameterization of the nodes in
the network that better takes into account the topology of
the environment. This results in a faster convergence of our
algorithm.

Highly sophisticated optimization techniques such as MLR
or Olson’s algorithm are restricted to networks that are built
in an incremental way. They require as input a sequence of
robot poses according to the traveled path. First, this makes it
difficult to use these techniques in the context of multi-robot
SLAM. Second, the complexity of the algorithm depends on
the length of the trajectory traveled by the robot and not on
the size of the environment. This dependency prevents to use
these approaches in the context of lifelong map learning.

One motivation of our approach is to build a system that
depends on the size of the environment and not explicitely
on the length of the trajectory. We designed our approach in
a way that it can be applied to arbitrary networks. As we
will show in the remainder of this paper, the ability to use
arbitrary networks allows us to prune the trajectory so that
the complexity of our approach depends only on the size
of the environment. Furthermore, our approach proposes a
more efficient parameterization of the network when applying
gradient descent.

III. ON GRAPH-BASED SLAM

Most approaches to graph-based SLAM focus on estimating
the most-likely configuration of the nodes and are therefore
referred to as maximum-likelihood (ML) techniques [2, 5, 6,
11, 13]. They do not consider to compute the full posterior
about the map and the poses of the robot. The approach
presented in this paper also belongs to this class of methods.

The goal of graph-based ML mapping algorithms is to find
the configuration of the nodes that maximizes the likelihood
of the observations. For a more precise formulation consider
the following definitions:

e x = (21 x,)T is a vector of parameters which
describes a configuration of the nodes. Note that the
parameters x; do not need to be the absolute poses of the
nodes. They are arbitrary variables which can be mapped
to the poses of the nodes in real world coordinates.

 0j; describes a constraint between the nodes j and 4. It
refers to an observation of node j seen from node 7. These
constraints are the edges in the graph structure.

e j; is the information matrix modeling the uncertainty
of 5]‘1'.

o fji(x) is a function that computes a zero noise observation
according to the current configuration of the nodes j and
1. It returns an observation of node j seen from node i.

Given a constraint between node j and node ¢, we can define
the error ej; introduced by the constraint as

eji(x) = [fji(x) = dji (D)
as well as the residual r;;
rii(%) = —eji(x). 2)

Note that at the equilibrium point, e;; is equal to O since
fji(x) = 4;;. In this case, an observation perfectly matches
the current configuration of the nodes. Assuming a Gaussian
observation error, the negative log likelihood of an observation
i is

T

Fji(x) (f5i(x) = 650)" Qi (fi(x) = d51) ()
e5i(x) T Qieji(x) 4)
T’ji(X)TjST‘ji(X). (5)

Under the assumption that the observations are independent,
the overall negative log likelihood of a configuration x is

K

F(x) = Y Fulx) 6)
(j,1)eC
= Z Tji(X)TjSTji(X). (7)

(j,3)€C



Here C = {(j1,%1),..., (Jm,in)} is set of pairs of indices
for which a constraint §;, ;,, exists.

The goal of a ML approach is to find the configuration x*
of the nodes that maximizes the likelihood of the observations.
This can be written as

x* = argmin F(x). )
xX
IV. STOCHASTIC GRADIENT DESCENT
FOR MAXIMUM LIKELIHOOD MAPPING

Olson et al. [13] propose to use a variant of the pre-
conditioned stochastic gradient descent (SGD) to address the
SLAM problem. The approach minimizes Eq. (8) by iteratively
selecting a constraint (j,¢) and by moving the nodes of the
network in order to decrease the error introduced by the
selected constraint. Compared to the standard formulation
of gradient descent, the constraints are not optimized as a
whole but individually. The nodes are updated according to
the following equation:

Xt+1 —

x4\ H_lJ};jST]‘i ©)
~—_— ————
AX]’i

Here x is the set of variables describing the locations of the
poses in the network and H™! is a preconditioning matrix. .J;;
is the Jacobian of f};, £2;; is the information matrix capturing
the uncertainty of the observation, and r;; is the residual.

Reading the term Axj; of Eq. (9) from right to left gives
an intuition about the sequential procedure used in SGD:

e 7j; is the residual which is the opposite of the error vector.
Changing the network configuration in the direction of the
residual 7;; will decrease the error ej;.

o {2;; represents the information matrix of a constraint.
Multiplying it with r;; scales the residual components
according to the information encoded in the constraint.

. J};: The role of the Jacobian is to map the residual term
into a set of variations in the parameter space.

o« H is the Hessian of the system and it represents the
curvature of the error function. This allows us to scale
the variations resulting from the Jacobian depending on
the curvature of the error surface. We actually use an
approximation of H which is computed as

H ~ Z JJZQﬂJ};
(
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(10)

Rather than inverting the full Hessian which is computa-
tionally expensive, we approximate it by

[diag(H)]~". (11)

e A is a learning rate which decreases with the iteration
of SGD and which makes the system to converge to an
equilibrium point.

H' ~

In practice, the algorithm decomposes the overall problem
into many smaller problems by optimizing the constraints
individually. Each time a solution for one of these subproblems
is found, the network is updated accordingly. Obviously,
updating the different constraints one after each other can have
opposite effects on a subset of variables. To avoid infinitive

oscillations, one uses the learning rate to reduce the fraction
of the residual which is used for updating the variables.
This makes the solutions of the different sub-problems to
asymptotically converge towards an equilibrium point that is
the solution reported by the algorithm.

This framework allows us to iteratively reduce the error
given the network of constraints. The optimization approach,
however, leaves open how the nodes are represented (parame-
terized). Since the parameterization defines also the structure
of the Jacobians, it has a strong influence on the performance
of the algorithm.

The next section addresses the problem of how to parame-
terize a graph in order to efficiently carry out the optimization
approach.

V. NETWORK PARAMETERIZATIONS

The poses p = {pi1,...,pn} Of the nodes define the
configuration of the network. The poses can be described by a
vector of parameters x such that a bijective mapping g between
p and x exists
(12)

x = g(p) p=g '(x).

As previously explained, in each iteration SGD decomposes
the problem into a set of subproblems and solves them
successively. In this work, a subproblem is defined as the
optimization of a single constraint. Different solutions to the
individual subproblems can have antagonistic effects when
combining them.

The parameterization g defines also the subset of variables
that are modified by a single constraint update. A good
parameterization defines the subproblems in a way that the
combination step leads only to small changes of the individual
solutions.

A. Incremental Pose Parameterization

Olson et al. propose the so-called incremental pose param-
eterization. Given a set of node locations p; and given a fixed
order on the nodes, the incremental parameters x; can be
computed as follows

Ti = p;—Di-1. (13)

Note that x; is computed as the difference between two
subsequent nodes and not by motion composition. Under this
parameterization, the error in the global reference frame (in-
dicated by primed variables) has the following form

i = pj—(pi®d) (14)
J )
— ( > xk> + (H Rk> 8jis (15)
k=i+1 k=1
N—_———

R;

where @ is the motion composition operator according to Lu
and Milios [11] and ]:Ek the homogenous rotation matrix of the
parameter . The term Ry is defined as the rotation matrix
of the pose py. The information matrix in the global reference
frame can be computed as

O, = RQR]. (16)



According to Olson et al. [13], neglecting the contribution
of the angular terms of zq,...,z; to the Jacobian results in
the following simplified form

J
Jp= Y Ty with Zt=(0--0 I 0--0). (17
k=i+1 k

Here 0 is the 3 by 3 zero matrix and [ is the 3 by 3 identity.
Updating the network based on the constraint (j,4) with
such an Jacobian results in keeping the node ¢ fixed and in
distributing the residual along all nodes between j and i.
Olson et al. weight the residual proportional to j —: which is
the number of nodes involved in the constraint. The parameter
x), of the node k with k =i+ 1,...,7 is updated as follows

Axk = )\wkﬂg,r;,, (18)
where the weight wy, is computed as
; -1
wy = (j — 1) [ > D;f] Dt (19)
m=i+1

In Eq. (19), D) are the matrices containing the diagonal
elements of the k*® block of the Hessian H. Intuitively, each
variable is updated proportional to the uncertainty about that
variable. Note that the simple form of the Jacobians allows us
to update the parameter vector for each node individually as
expressed by Eq. (18).

The approach presented in this section is currently one of the
best solutions to ML mapping. However, it has the following
drawbacks:

« In practice, the incremental parameterization cannot deal
with arbitrarily connected networks. This results from the
approximation made in Eq. (17), in which the angular
components are ignored when computing the Jacobian.
This approximation is only valid if the subsequent nodes
in Eq. (13) are spatially close. Furthermore, the way the
error is distributed over the network assumes that the
nodes are ordered according to poses along the trajectory.
This results in adding a large number of nodes to the
network whenever the robot travels for a long time in
the same region. This requirement prevents an approach
from merging multiple nodes into a single one. Merging
or pruning nodes, however, is a necessary precondition to
allow the robot lifelong map learning.

« When updating a constraint between the nodes j and ¢,
the parameterization requires to change the j-i nodes. As
a result, each node is likely to be updated by several
constraints. This leads to a high interaction between con-
straints and will typically reduce the convergence speed
of SGD. For example, the node k will be updated by all
constraints (j',4') with ¢/ < k < j’. Note that using an
intelligent lookup structure, this operation can be carried
out in O(logn) time where n is the number of nodes in the
network [13]. Therefore, this is a problem of convergence
speed of SGD and not a computational problem.

B. Tree Parameterization

Investigating a different parameterization which preserves
the advantages of the incremental one but overcomes its
drawbacks is the main motivation for our approach. First,
our method should be able to deal with arbitrary network
topologies. This would enable us to compress the graph
whenever robot revisits a place. As a result, the size of the
network would be proportional to the visited area and not to
the length of the trajectory. Second, the number of nodes in
the graph updated by each constraint should mainly depend
on the topology of the environment. For example, in case of a
loop-closure a large number of nodes need to be updated but
in all other situations the update is limited to a small number
of nodes in order to keep the interactions between constraints
small.

Our idea is to first construct a spanning tree from the (arbi-
trary) graph. Given such a tree, we define the parameterization
for a node as

Z; = DPi — Pparent(i)s (20)

where pparens(s) refers to the parent of node ¢ in the spanning
tree. As defined in Eq. (20), the tree stores the differences
between poses. As a consequence, one needs to process the
tree up to the root to compute the actual pose of a node in the
global reference frame.

However, to obtain only the difference between two arbi-
trary nodes, one needs to traverse the tree from the first node
upwards to the first common ancestor of both nodes and then
downwards to the second node. The same holds for computing
the error of a constraint. We refer to the nodes one needs to
traverse on the tree as the path of a constraint. For example,
P;i is the path from node 4 to node j for the constraint (j, 7).
The path can be divided into an ascending part 73][-;] of the

path starting from node ¢ and a descending part P][;r] to node j.
We can then compute the error in the global frame by

¢ = pj— (pi® ) @1
= pj— (pi+ Ridji) (22)
= Y mpm— Y wue — Ridi. (23)

kl+] eP[.:f]

_7 Wolepy]
Here R; is the rotation matrix of the pose p;. It can be
computed according to the structure of the tree as the product
of the individual rotation matrices along the path to the root.

Note that this tree does not replace the graph as an internal
representation. The tree only defines the parameterization of
the nodes. It can furthermore be used to define an order in
which the optimization algorithm can efficiently process the
constraints as we will explain in the remainder of this section.
For illustration, Figure 2 (a) and (b) depict two graphs and
possible parameterization trees.

Similar to Eq. (16), we can express the information matrix
associated to a constraint in the global frame by

Q) RiQRT.

As proposed in [13], we neglect the contribution of the
rotation matrix R; in the computation of the Jacobian. This ap-
proximation speeds up the computation significantly. Without

(24)
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(a) and (b): Two small example graphs and the trees used to determine the parameterizations. The small grey connections are constraints introduced

by observations where black ones result from odometry. (c) Processing the constraints ordered according to the node with the smallest level in the path avoids
the recomputation of rotational component of all parents. The same holds for subtrees with different root nodes on the same level.

this approximation the update of a single constraint influences
the poses of all nodes up to the root.
The approximation leads to the following Jacobian:

Z Ty — Z Ty

ki eplt] kl-lepl ]

Ty = (25)

Compared to the approach described in the previous section,
the number of updated variables per constraint is in practice
smaller when using the tree. Our approach updates |Pj|
variables rather than j — 7. The weights wj, are computed as

-1

J
—1 —1
we =[Pl | Y. Dy, Dy,
mePj;

(26)

where Dy, is the k-th diagonal block element of H. This results
in the following update rule for the variable xj

Al‘k =

Awy, - (T, 1, 5) - Vs 27
where the value of s(zy, j,%) is +1 or —1 depending on where

the parameter xj, is located on the path Pj;:

+1if 2 € Pl

28
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Our parameterization maintains the simple form of the
Jacobians which enables us to perform the update of each
parameter variable individually (as can be seen in Eq. (27)).
Note that in case one uses a tree that is degenerated to a list,
this parameterization is equal to the one proposed by Olson
et al. [13]. In case of a non-degenerated tree, our approach
offers several advantages as we will show in the experimental
section of this paper.

The optimization algorithm specifies how to update the
nodes but does not specify the order in which to process
the constraints. We can use our tree parameterization to sort
the constraints which allows us to reduce the computational
complexity of our approach.

To compute the residual of a constraint (j,¢), we need to
know the rotational component of the node ¢. This requires to
traverse the tree up to the first node for which the rotational
component is known. In the worst case, this is the root of the
tree.

Let the level of a node be the distance in the tree between
the node itself and the root. Let z;; be the node in the path of
the constraint (j,4) with the smallest level. The level of the
constraint is then defined as the level of zj;.

Our parameterization implies that updating a constraint will
never change the configuration of a node with a level smaller
than the level of the constraint. Based on this knowledge, we
can sort the constraints according to their level and process
them in that order. As a result, it is sufficient to access the
parent of z;; to compute the rotational component of the node ¢
since all nodes with a smaller level than z;; have already been
corrected.

Figure 2 (c) illustrates such a situation. The constraint (7, 4)
with the path 4, 3, 2, 7 does not change any node with a smaller
level than the one of node 2. It also does not influence other
subtrees on the same level such as the nodes involved in the
constraint (9, 8).

In the following section, we describe how we actually build
the tree given the trajectory of a robot or an arbitrary network
as input.

VI. CONSTRUCTION OF THE SPANNING TREE

When constructing the parameterization tree, we distinguish
two different situations. First, we assume that the input is a
sequence of positions belonging to a trajectory traveled by
the robot. Second, we explain how to build the tree given an
arbitrary graph of relations.

In the first case, the subsequent poses are located closely
together and there exist constraints between subsequent poses
resulting from odometry or scan-matching. Further constraints
between arbitrary nodes result from observations when revis-
iting a place in the environment. In this setting, we build our
parameterization tree as follows:

1) We assign a unique id to each node based on the

timestamps and process the nodes accordingly.
2) The first node is the root of the tree (and therefore has
no parent).
3) As the parent of a node, we choose the node with the
smallest id for which a constraint to the current node
exists.
This tree can be easily constructed on the fly. The Fig-
ures 2 (a) and (b) illustrates graphs and the corresponding
trees. This tree has a series of nice properties when applying
our optimization algorithm to find a minimal error configura-
tion of the nodes. These properties are:
o The tree can be constructed incrementally: when adding
a new node it is not required to change the existing tree.

o In case the robot moves through nested loops, the inter-
action between the updates of the nodes belonging to the
individual loops depends on the number of nodes the loops
have in common.



e When retraversing an already mapped area and adding
constraints between new and previously added nodes, the
length of the path in the tree between these nodes is small.
This means that only a small number of nodes need to be
updated.

The second property is illustrated in Figure 2 (a). The two
loops in that image are only connected via the constraint
between the nodes 3 and 7. They are the only nodes that are
updated by constraints of both loops.

The third property is illustrated in Figure 2 (b). Here, the
robot revisits a loop. The nodes 1 to 4 are chosen as the parents
for all further nodes. This results in short paths in the tree when
updating the positions of the nodes while retraversing known
areas.

The complexity of the approach presented so far depends
on the length of the trajectory and not on the size of the
environment. These two quantities are different in case the
robot revisits already known areas. This becomes important
whenever the robot is deployed in a bounded environment for
a long time and has to update its map over time. This is also
known as lifelong map learning. Since our parameterization
is not restricted to a trajectory of sequential poses, we have
the possibility of a further optimization. Whenever the robot
revisits a known place, we do not need to add new nodes to
the graph. We can assign the current pose of the robot to an
already existing node in the graph.

Note that this can be seen as an approximation similar to
adding a rigid constraint neglecting the uncertainty of the
corresponding observation. However, in case local maps (e.g.,
grid maps) are used as nodes in the network, it makes sense
to use such an approximation since one can localize a robot
in an existing map quite accurately.

To also avoid adding new constraints to the network, we can
refine an existing constraint between two nodes in case of a
new observation. Given a constraint 5;}) between the nodes j

and ¢ in the graph and a new constraint 5](-?) based on the
current observation. Both constraints can be combined to a
single constraint which has the following information matrix
and mean:

jS =
5 =

(29)
(30)

Q) + ol
— 1 1 2 2
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As a result, the size of the problem does not increase when
revisiting known locations. As the experiments illustrate, this
node reduction technique leads to an increased convergence
speed.

In case the input to our algorithm is an arbitrary graph
and no natural order of the nodes is provided, we compute
a minimal spanning tree to define the parameterization. Since
no additional information (like consecutive poses according
to a trajectory) is available, we cannot directly infer which
parts of the graph are well suited to form a subtree in the
parameterization tree. The minimal spanning tree appears
to yield comparable results with respect to the number of
iterations needed for convergence in all our experiments.

Fig. 3. The map of the Intel Research Lab before (left) and after (right)
execution of our algorithm (1000 nodes, runtime <1s).

VII. EXPERIMENTS

This section is designed to evaluate the properties of our
tree parameterization for learning maximum likelihood maps.
We first show that such a technique is well suited to generate
accurate occupancy grid maps given laser range data and
odometry from a real robot. Second, we provide simulation
experiments on large-scale datasets. We furthermore provide
a comparison between our approach, Olson’s algorithm [13],
and multi-level relaxation by Frese et al. [5]. Finally, we
analyze our approach and investigate properties of the tree
parameterization in order to explain why we obtain better
results then the other methods.

A. Real World Experiments

The first experiment is designed to illustrate that our ap-
proach can be used to build maps from real robot data. The
goal was to build an accurate occupancy grid map given the
laser range data obtained by the robot. The nodes of our graph
correspond to the individual poses of the robot during data
acquisition. The constraints result from odometry and from
the pair-wise matching of laser range scans. Figure 3 depicts
two maps of the Intel Research Lab in Seattle. The left one is
constructed from raw odometry and the right one is the result
obtained by our algorithm. As can be seen, the corrected map
shows no inconsistencies such as double corridors. Note that
this dataset is freely available on the Internet.

B. Simulated Experiments

The second set of experiments is designed to measure the
performance of our approach quantitatively. Furthermore, we
compare our technique to two current state-of-the-art SLAM
approaches that work on constraint networks, namely multi-
level relaxation by Frese et al. [5] and Olson’s algorithm [13].
In the experiments, we used the two variants of our method:
the one that uses the node reduction technique described in
Section VI and the one that maintains all the nodes in the
graph.

In our simulation experiments, we moved a virtual robot
on a grid world. An observation is generated each time the
current position of the robot was close to a previously visited
location. We corrupted the observations with a variable amount
of noise for testing the robustness of the algorithms. We
simulated different datasets resulting in graphs with a number
of constraints between around 4,000 and 2 million.



Fig. 4. Results of Olson’s algorithm (first row) and our approach (second row) after 1, 10, 50, 100, 300 iterations for a network with 64k constraints. The
black areas in the images result from constraints between nodes which are not perfectly corrected after the corresponding iteration (for timings see Figure 6).

Fig. 5. The result of MLR strongly depends on the initial configuration of
the network. Left: small initial pose error, right: large initial pose error.

Figure 4 depicts a series of graphs obtained by Olson’s
algorithm and our approach after different iterations. As can
be seen, our approach converges faster. Asymptotically, both
approaches converge to a similar solution.

In all our experiments, the results of MLR strongly de-
pended on the initial positions of the nodes. In case of a good
starting configuration, MLR converges to an accurate solution
similar to our approach as shown in Figure 5 (left). Otherwise,
it is likely to diverge (right). Olson’s approach as well as our
technique are more or less independent of the initial poses of
the nodes.

To evaluate our technique quantitatively, we first measured
the error in the network after each iteration. The left image
of Figure 6 depicts a statistical experiments over 10 networks
with the same topology but different noise realizations. As
can be seen, our approach converges significantly faster than
the approach of Olson et al. For medium size networks, both
approaches converge asymptotically to approximatively the
same error value (see middle image). For large networks,
the high number of iterations needed for Olson’s approach
prevented us from showing this convergence experimentally.
Due to the sake of brevity, we omitted comparisons to EKF and
Gauss Seidel relaxation because Olson et al. already showed
that their approach outperforms such techniques.

Additionally, we evaluated in Figure 6 (right) the average
computation time per iteration of the different approaches.
As a result of personal communication with Edwin Olson,
we furthermore analyzed a variant of his approach which is
restricted to spherical covariances. It yields similar execution
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Fig. 7. The average amplitude of the oscillations of the nodes due to the
antagonistic effects of different constraints.

times per iteration than our approach. However, this restricted
variant has still the same converge speed with respect to the
number of iterations than Olson’s unrestricted technique. As
can be seen from that picture, our node reduction technique
speeds up the computations up to a factor of 20.

C. Analysis of the Algorithm

The experiments presented above illustrated that our algo-
rithm offers significant improvements compared to both other
techniques. The goal of this section is to experimentally point
out the reasons for these improvements.

The presented tree parameterization allows us to decompose
the optimization of the whole graph into a set of weakly
interacting problems. A good measure for evaluating the
interaction between the constraints is the average number [
of updated nodes per constraint. For example, a network with
a large value of [ has typically a higher number of interacting
constraints compared to networks with low values of [. In all
experiments, our approach had a value between 3 and 7. In
contrast to that, this values varies between 60 and 17,000 in
Olson’s approach on the same networks. Note that such a high
average path length reduces the convergence speed of Olson’s
algorithm but does not introduce a higher complexity.

The optimization approach used in this paper as well as
in Olson’s algorithm updates for each constraint the involved
nodes to minimize the error in the network. As a result,
different constraints can update poses in an antagonistic way
during one iteration. This leads to oscillations in the position
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For the 1.9M constraints network, the executing of MLR required memory swapping and the result is therefore omitted.

of a node before convergence. Figure 7 illustrates the average
amplitude of such an oscillations for Olson’s algorithm as well
as for our approach. As can be seen, our techniques converges
faster to an equilibrium point. This a further reason for the
higher convergence speed of our approach.

D. Complexity

Due to the nature of gradient descent, the complexity of
our approach per iteration depends linearly on the number of
constraints. For each constraint (j,7), our approach modifies
exactly those nodes which belong to the path P;; in the
tree. Since each constraint has an individual path length,
we consider the average path length [. This results in an
complexity per iteration of O(M - 1), where M is the number
of constraints. In all our experiments, [ was approximatively
log N, where N is the number of nodes. Note that given our
node reduction technique, M as well as N are bounded by the
size of the environment and not by the length of the trajectory.

A further advantage of our technique compared to MLR
is that it is easy to implement. The function that performs a
single iteration requires less than 100 lines of C++ code. An
open source implementation, image and video material, and
the datasets are available at the authors’ web-pages.

VIII. CONCLUSION

In this paper, we presented a highly efficient solution to
the problem of learning maximum likelihood maps for mo-
bile robots. Our technique is based on the graph-formulation
of the simultaneous localization and mapping problem and
applies a gradient descent based optimization scheme. Our
approach extends Olson’s algorithm by introducing a tree-
based parameterization for the nodes in the graph. This has a
significant influence on the convergence speed and execution
time of the method. Furthermore, it enables us to correct
arbitrary graphs and not only a list of sequential poses. In
this way, the complexity of our method depends on the size
of the environment and not directly on the length of the input
trajectory. This is an important precondition to allow a robot
lifelong map learning in its environment.

Our method has been implemented and exhaustively tested
on simulation experiments as well as on real robot data. We
furthermore compared our method to two existing, state-of-
the-art solutions which are multi-level relaxation and Olson’s

algorithm. Our approach converges significantly faster than
both approaches and yields accurate maps with low errors.
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Online Constraint Network Optimization
for Efficient Maximum Likelihood Map Learning

Giorgio Grisetti* Dario Lodi Rizzinit

Abstract— In this paper, we address the problem of incremen-
tally optimizing constraint networks for maximum likelihood
map learning. Our approach allows a robot to efficiently
compute configurations of the network with small errors while
the robot moves through the environment. We apply a variant
of stochastic gradient descent and use a tree-based parame-
terization of the nodes in the network. By integrating adaptive
learning rates in the parameterization of the network, our algo-
rithm can use previously computed solutions to determine the
result of the next optimization run. Additionally, our approach
updates only the parts of the network which are affected by the
newly incorporated measurements and starts the optimization
approach only if the new data reveals inconsistencies with
the network constructed so far. These improvements yield an
efficient solution for this class of online optimization problems.

Our approach has been implemented and tested on simu-
lated and on real data. We present comparisons to recently
proposed online and offline methods that address the problem
of optimizing constraint network. Experiments illustrate that
our approach converges faster to a network configuration with
small errors than the previous approaches.

I. INTRODUCTION

Maps of the environment are needed for a wide range of
robotic applications such as search and rescue, automated
vacuum cleaning, and many other service robotic tasks.
Learning maps has therefore been a major research focus in
the robotics community over the last decades. Learning maps
under uncertainty is often referred to as the simultaneous
localization and mapping (SLAM) problem. In the literature,
a large variety of solutions to this problem can be found.
The approaches mainly differ in the underlying estimation
technique. Typical techniques are Kalman filters, information
filters, particle filters, network based methods which rely on
least-square error minimization techniques.

Solutions to the SLAM problem can be furthermore di-
vided into online an offline methods. Offline methods are
so-called batch algorithms that require all the data to be
available right from the beginning [1], [2], [3]. In contrast to
that, online methods can re-use an already computed solution
and update or refine it. Online methods are needed for
situations in which the robot has to make decisions based on
the model of the environment during mapping. Exploring an
unknown environment, for example, is a task of this category.
Popular online SLAM approaches such as [4], [5] are based
on the Bayes’ filter. Recently, also incremental maximum-
likelihood approaches have been presented as an effective
alternative [6], [7], [8].
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Fig. 1. Four snapshots created while incrementally learning a map.

In this paper, we present an efficient online optimization
algorithm which can be used to solve the so-called “graph-
based” or “network-based” formulation of the SLAM prob-
lem. Here, the poses of the robot are modeled by nodes
in a graph and constraints between poses resulting from
observations or from odometry are encoded in the edges
between the nodes. Our method belongs to the same class of
techniques of Olson’s algorithm or MLR [8]. It focuses on
computing the best map and it assumes that the constraints
are given. Techniques like the ATLAS framework [9] or
hierarchical SLAM [10], for example, can be used to obtain
the necessary data associations (constraints). They also apply
a global optimization procedure to compute a consistent
map. One can replace these optimization procedures by our
algorithm and in this way make them more efficient.

Our approach combines the ideas of adaptive learning
rates with a tree-based parameterization of the nodes when
applying stochastic gradient descent. This yields an online
algorithm that can efficiently compute network configura-
tions with low errors. An application example is shown in
Figure 1. It depicts four snapshots of our online approach
during a process of building a map from the ACES dataset.

II. RELATED WORK

A large number of mapping approaches has been presented
in the past and a variety of different estimation techniques
have been used to learn maps. One class of approaches uses
constraint networks to represent the relations between poses
and observations.



Lu and Milios [1] were the first who used constraint
networks to address the SLAM problem. They proposed a
brute force method that seeks to optimize the whole network
at once. Gutmann and Konolige [11] presented an effective
way for constructing such a network and for detecting loop
closures while running an incremental estimation algorithm.
Frese et al. [8] described a variant of Gauss-Seidel relaxation
called multi-level relaxation (MLR). It applies relaxation at
different resolutions.

Olson et al. [2] were the first who applied a variant
of stochastic gradient descent to compute solutions to this
family of problems. They propose a representation of the
nodes which enables the algorithm to perform efficient
updates. Our previously presented method [3] introduced
the tree parameterization that is also used in this paper.
Subsequently, Olson et al. [6] presented an online variant of
their method using adaptive learning rates. In this paper, we
integrate such learning rates into the tree-based parameteri-
zation which yields a solution to the online SLAM problem
that outperforms the individual methods.

Kaess el al. [7] proposed an on-line version of the smooth-
ing and mapping algorithm for maximum likelihood map
estimation. This approach relies on a QR factorization of
the information matrix and integrates the new measurements
as they are available. Using the QR factorization, the poses
of the nodes in the network can be efficiently retrieved by
back substitution. Additionally they keep the matrices sparse
via occasional variable reordering. Frese [12] proposed the
Treemap algorithm which is able to perform efficient updates
of the estimate by ignoring the weak correlations between
distant locations.

The contribution of this paper is an efficient online ap-
proach for learning maximum likelihood maps. It integrates
adaptive learning rates into a tree-based network optimization
technique using a variant of stochastic gradient descent. Our
approach presents an efficient way of selecting only the part
of the network which is affected by newly incorporated data.
Furthermore, it allows to delay the optimization so that the
network is only updated if needed.

III. STOCHASTIC GRADIENT DESCENT FOR MAXIMUM
LIKELIHOOD MAPPING

Approaches to graph-based SLAM focus on estimating
the most likely configuration of the nodes and are therefore
referred to as maximum-likelihood (ML) techniques [8], [1],
[2]. The approach presented in this paper also belongs to this
class of methods.

The goal of graph-based ML mapping algorithms is to find
the configuration of the nodes that maximizes the likelihood
of the observations. Let x = (z1 - - xn)T be a vector of
parameters which describes a configuration of the nodes. Let
0;; and €);; be respectively the mean and the information
matrix of an observation of node j seen from node 7. Let
fji(x) be a function that computes a zero noise observation
according to the current configuration of the nodes j and <.

Given a constraint between node j and node i, we can

define the error e;; introduced by the constraint as
fii(x) — 65 (1)

as well as the residual r;; = —eji(x). Let C =
{{1,41),---,{Jnm,ia)} be the set of pairs of indices for
which a constraint ¢;, ;,, exists. The goal of a ML approach
is to find the configuration x* of the nodes that minimized
the negative log likelihood of the observations. Assuming the
constraints to be independent, this can be written as

X*:argmin Z Tji(X)TjSTji(X). 2)
X iec

eji(x) =

In the remainder of this section we describe how the general
framework of stochastic gradient descent can be used for
minimizing Eq. (2) and how to construct a parameterization
of the network which increases the convergence speed.

A. Network Optimization using Stochastic Gradient Descent

Olson et al. [2] propose to use a variant of the pre-
conditioned stochastic gradient descent (SGD) to address
the compute the most likely configuration of the network’s
nodes. The approach minimizes Eq. (2) by iteratively se-
lecting a constraint (j,4) and by moving the nodes of the
network in order to decrease the error introduced by the
selected constraint. Compared to the standard formulation
of gradient descent, the constraints are not optimized as a
whole but individually. The nodes are updated according to
the following equation:

e

Xt +)\ 'H_IJJC-Z;jSTjZ’ (3)
Here x is the set of variables describing the locations of
the poses in the network and H~! is a preconditioning
matrix. Jj; is the Jacobian of fj;, €2;; is the information
matrix capturing the uncertainty of the observation, r;; is
the residual, and ) is the learning rate which decreases with
the iteration. For a detailed explanation of Eq. (3), we refer
the reader to our previous works [3], [2].

In practice, the algorithm decomposes the overall problem
into many smaller problems by optimizing subsets of nodes,
one subset for each constraint. Whenever time a solution for
one of these subproblems is found, the network is updated
accordingly. Obviously, updating the different constraints one
after each other can have antagonistic effects on the corre-
sponding subsets of variables. To avoid infinitive oscillations,
one uses the learning rate A\ to reduce the fraction of the
residual which is used for updating the variables. This makes
the solutions of the different sub-problems to asymptotically
converge towards an equilibrium point that is the solution
reported by the algorithm.

B. Tree Parameterization

The poses p = {p1,...,pn} of the nodes define the
configuration of the network. The poses can be described
by a vector of parameters x such that a bidirectional map-
ping between p and x exists. The parameterization defines
the subset of variables that are modified when updating a
constraint. An efficient way of parameterizing the node is to



use a tree. One can construct a spanning tree (not necessarily
a minimum one) from the graph of poses. Given such a tree,
we define the parameterization for a node as

Z; = DPi — Pparent(i)s “4)

where pparent(i) refers to the parent of node ¢ in the spanning
tree. As defined in Eq. (4), the tree stores the differences
between poses. This is similar in the spirit to the incremental
representation used in the Olson’s original formulation, in
that the difference in pose positions (in global coordinates)
is used rather than pose-relative coordinates or rigid body
transformations.

To obtain the difference between two arbitrary nodes based
on the tree, one needs to traverse the tree from the first node
upwards to the first common ancestor of both nodes and
then downwards to the second node. The same holds for
computing the error of a constraint. We refer to the nodes
one needs to traverse on the tree as the path of a constraint.
For example, P;; is the path from node ¢ to node j for the
constraint (j,4). The path can be divided into an ascending
part Pj[;] of the path starting from node ¢ and a descending

part P][Z-H to node j. We can then compute the residual in
the global frame by

7"3‘1' = Zxk[—I* Zxk[+]+Ri5jz’~ (5)

kl-lepl] kl+leplt)

Here R; is the homogeneous rotation matrix of the pose p;.
It can be computed according to the structure of the tree
as the product of the individual rotation matrices along the
path to the root. Note that this tree does not replace the
graph as an internal representation. The tree only defines the
parameterization of the nodes.

Let Q) = R;iQ;R] be the information matrix of a
constraint in the global frame. According to [2], we compute
an approximation of the Jacobian as

Yo Ty 6

E Ly —
kl+eplt) kl-lepl]

with Z, = (0 --- 0 1 0 --- 0). Then, the update
~~

. kth element
of a constraint turns into

X = X AP M (7)
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where |Pj;| refers to the number of nodes in P;;. In Eq. (7),
we replaced the preconditioning matrix H~! with its scaled
approximation M~! as described in [2]. This prevents from
a computationally expensive matrix inversion.

Let the level of a node be the distance in the tree between
the node itself and the root. We define the fop node of a
constraint as the node on the path with the smallest level.
Our parameterization implies that updating a constraint will
never change the configuration of a node with a level smaller
than the level of the top node of the constraint.

In principle, one could apply the technique described in
this section as a batch algorithm to an arbitrarily constructed
spanning tree of the graph. However, our proposed method

uses a spanning tree which can be constructed incrementally,
as described in the next section.

IV. ONLINE NETWORK OPTIMIZATION

The algorithm presented in the previous section is a batch
procedure. At every iteration, the poses of all nodes in the
network are optimized. The fraction of the residual used
in updating every constraint decreases over time with the
learning rate A\, which evolves according to an harmonic
progression. During online optimization, the network is dy-
namically updated to incorporate new movements and obser-
vations. In theory, one could also apply the batch version of
our optimizer to correct the network. This, however, would
require to compute a solution from scratch each time the
robot moves or makes an observation which would obviously
lead to an inefficient algorithm.

In this section we describe an incremental version of our
optimization algorithm, which is suitable for solving on-
line mapping problems. As pointed in [6] an incremental
algorithm should have the following properties:

1) Every time a constraint is added to the network, only
the part of the network which is affected by that
constraint should be optimized. For example, when
exploring new terrain, the effects of the optimization
should not perturb distant parts of the graph.

2) When revisiting a known region of the environment it
is common to re-localize the robot in the previously
built map. One should use the information provided
by the re-localization to compute a better initial guess
for the position of the newly added nodes.

3) To have a consistent network, performing an opti-
mization step after adding each constraint is often
not needed. This happens when the newly added con-
straints are adequately satisfied by the current network
configuration. Having a criterion for deciding when to
perform unnecessary optimizations can save a substan-
tial amount of computation.

In the remainder of this section, we present four im-

provements to the algorithm so that it satisfies the discussed
properties.

A. Incremental Construction of the Tree

When constructing the parameterization tree online, we
can assume that the input is a sequence of poses corre-
sponding to a trajectory of the robot. In this case, subsequent
poses are located closely together and there exist constraints
between subsequent poses resulting from odometry or scan-
matching. Further constraints between arbitrary nodes result
from observations when revisiting a place in the environment.

We proceed as follows: the oldest node is the root of the
tree. When adding a node i to the network, we choose as
its parent the oldest node for which a constraint to the node
1 exists. Such a tree can be constructed incrementally since
adding a new node does not require to change the existing
parts of the tree.

The pose p; and parameter x; of a newly added node ¢ is
initialized according to the position of the parent node and



the connecting constraint as

Pi = DPparent(4) @ 57L,parcnt(i) (3
Z; = Pi — Pparent(i)- 9

The parent node represents an already explored part of the
environment and the constraint between the new node and the
parent can be regarded as a localization event in an already
constructed map, thus satisfying Property 2. As shown in the
experiments described below, this initialization appears to be
a good heuristic for determining the initial guess of the pose
of a newly added node.

B. Constraint Selection

When adding a constraint (j,¢) to the graph, a subset of
nodes needs to be updated. This set depends on the topology
of the network and can be determined by a variant of breadth
first visit. Let G; ; be the minimal subgraph that contains the
added constraint and has only one constraint to the rest of
the graph. Then, the nodes that need to be updated are all
nodes of the minimal subtree that contains G; ;. The precise
formulation on how to efficiently determine this set is given
by Algorithm 1.

Data: (j,4): the constraint, G: the graph, 7 the tree.
Result: ./\/’]1 the set of affected nodes, &;;: the affected
constraints.
Queue f = childrenOf(topNode((j, )));
Eji := edgesToChildren(topNode((j,1%)));
foreach (a,b) € &;; do
| (a,b) .mark = true;
end
while f # {} do
Node n := first(f);
n.mark = true
foreach (a,b) € edgesOf(n) do
if {a,b) .mark = true then
| continue;
end
Node m := (a =n)?b : a;
if m = parent(n) or m.mark = true then
| continue;
end
(a,b) .mark = true;
Eji =& U{{a,b)};
if (a,b) € T then
| f=fu{m}
else
| f:= fUchildrenOf(topNode({a, b)));
end

end
f = removeFirst(f);
Nji = Nji U{n};

end
Algorithm 1: Construction of the set of nodes affected by
a constraint. For readability we assume that the frontier f can
contain only the nodes which are not already marked.

Note that the number of nodes in G;; does depend only
on the root of the tree and on the overall graph. It contains
all variables which are affected by adding the new costraint

(@, 7)-

C. Adaptive Learning Rates

Rather than using one learning rate A\ for all nodes, the
incremental version of the algorithm uses spatially adaptive
learning rates introduced in [6]. The idea is to assign an
individual learning rate to each node, allowing different parts
of the network to be optimized at different rates. These
learning rates are initialized when a new constraint is added
to the network and they decrease with each iteration of the
algorithm. In the following, we describe how to initialize and
update the learning rates and how to adapt the update of the
network specified in Eq. (7).

a) Initialization of the learning rates: When a new
constraint (j,4) is added to the network, we need to update
the learning rates for the nodes A; determined in the
previous section. First, we compute the learning rate )\jl for
the newly introduced information. Then, we propagate this
learning rate to the nodes Nj;.e

A proper learning rate is determined as follows. Let 3;;
be the fraction of the residual that would appropriately fuse
the previous estimate and the new constraint. Similar to a
Kalman filter, 3;; is determined as

Bji = Qi (Qi + QPN 7L (10)

where €);; is the information matrix of the new constraint,
and Q‘f;aph is an information matrix representing the uncer-
tainty of the constraints in the network. Based on Eq. (10),
we can compute the learning rate )\;i of the new constraint
as
! M’

Pjil 5@ ‘ﬁ)) -
Here @ represents the row by row division (see [6] for further
details). The learning rate of the constraint is then propagated
to all nodes k € \j; as

N, = maxrow ( (11)

J

Ak max(\g, \},), (12)

where )y is the learning rate of the node k. According
to Eq. (11) constraints with large residuals result in larger
learning rate increases than constraints with small residuals.

b) Update of the network: When updating the network,
one has to consider the newly introduced learning rates.
During an iteration, we decrease the individual learning
rates of the nodes according to a generalized harmonic
progression [13]:

Ak
14+ Mg

In this way, one guarantees the strong monotonicity of Ay
and thus the convergence of the algorithm to an equilibrium
point.

The learning rates of the nodes cannot be directly used
for updating the poses since Eq. (7) requires a learning rate
for each constraint and not for each node. When updating
the network given the constraint (j, ), we obtain an average
learning rate ;\ji from the nodes on Pj; as

< 1
Nji = —— Ak
U P DR

kePj;

Ak

13)

(14)



Then, the constraint update turns into

Axp = 5\3L|’P37|M719;1T;7 (15)
D. Scheduling the Network Optimization

When adding a set of constraints (j, i) € Cyew to a network
without performing an optimization, we can incrementally
compute the error of the network as

E T § : T
Chew — TinjiTji + ’I"injiTji.
(j,i) €Cola (4,%) ECnew

(16)

Here e.e is the new error and C,gq refers to the set of
constraints before the modification.

To avoid unnecessary computation, we perform the opti-
mization only if needed. This is the case when the newly
incorporated information introduced a significant error com-
pared to the error of the network before. We perform an
optimization step if

enew

—_— >
|Cnew| + |Cold|

Here « is a user-defined factor that allows the designer of
a mapping system to adapt the quality of the incremental
solutions to the needs of the specific application.

If we assume that the network in Cyq has already con-
verged, this heuristic triggers an optimization only if a signif-
icant inconsistency is revealed. Furthermore, the optimization
only needs to be performed for a subset of the network and
not for the whole network. The subset is given by

e U

(4,%) ECnew

o max 150 (17)

(7,1)€Co1a 7

Eji- (18)

Here &£;; is the set of constraints to be updated given a new
constraint (j,7) € Cpew. The sets &;i are computed according
to Algorithm 1. This criterion satisfies Property 3 and leads
to an efficient algorithm for incrementally optimizing the
network of constraints.

V. EXPERIMENTS

This section is designed to evaluate the effectiveness
of the proposed methods to incrementally learn maximum
likelihood maps. We first show that such a technique is
well suited to generate accurate grid maps given laser range
data and odometry from a real robot. Second, we provide
simulation experiments to evaluate the evolution of the error
and provide comparisons to our previously proposed tech-
niques [3], [2], [6]. Finally, we illustrate the computational
advantages resulting from our algorithm.

A. Real World Experiments

To illustrate that our technique can be used to learn maps
from real robot data, we used the freely available ACES
dataset. The motivating example shown in Figure 1 depicts
four different maps computed online by our incremental
mapping technique. During this experiment, we extracted
constraints between consecutive poses by means of pairwise
scan matching. Loop closures were determined by localizing

Fig. 2. Network used in the simulated experiments. Left: initial guess.
Right: ground truth.
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Fig. 3.  Statistical experiments showing the evolution of the error per
iteration of the algorithm. Top: situation in which the robot is closes a small
loop. Bottom: closure of a large loop. The statistics have been generated
by considering 10 different realizations of the observation noise along the
same path.

the robot in the previously built map by means of a particle
filter.

As can be seen, our approach leads to accurate maps for
real robot data. Similar results were obtained with all datasets
we found online or recorded on our own.

B. Statistical Experiments on the Evolution of the Error

In the these experiments, we moved a virtual robot on
a grid world. An observation is generated each time the
current position of the robot was close to a previously visited
location. The observations are corrupted by a given amount
of Gaussian noise. The network used in this experiment is
depicted in Figure 2.

We compare our approach named Tree Incremental with
its offline variant [3] called Tree Offline which solves the
overall problem from scratch. In addition to that, we compare
it to the offline version without the tree optimization [2]
called Olson Offline as well as its incremental variant [6]
referred to as Olson Incremental. For space reasons, we omit
comparisons to LU decomposition, EKF, and Gauss-Seidel.
The advantages of our method over these other methods is
similar to those previously reported [2].

To allow a fair comparison, we disabled the scheduling of
the optimization of Eq. (17) and we performed 30 iterations
every time 16 constraints were added to the network. During
the very first iterations, the error of all approaches may show
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an increase, due to the bigger correction steps which result
from increasing the learning rates.

Figure 3 depicts the evolution of the error for all four
techniques during a mapping experiment. We depicted two
situations. In the first one, the robot closed a small loop.
As can be seen, the introduced error is small and thus our
approach corrects the error within 2 iterations. Both incre-
mental techniques perform better than their offline variants.
The approach proposed in this paper outperforms the other
techniques. The same holds for the second situation in which
the robot was closing a large loop. Note that in most cases,
one iteration of the incremental approach can be carried
out faster, since only a subpart of the network needs to be
updated.

C. Runtime Comparison

Finally, we evaluated our incremental version and its of-
fline variant with respect to the execution time. Both methods
where executed only when needed according to our criterion
specified by Eq. (17). We measured the time needed to run
the individual approach until convergence to the same low
error configuration, or until a maximum number of iterations
(30) was reached. As can be seen in Figure 4(top), the
incremental technique requires significantly less operations
and thus runtime to provide equivalent results in terms of
error. Figure 4(bottom) shows the error plot of a comparison
of our approach and Treemap [12] proposed by Frese. As
shown in the error-plot, in the beginning Treemap performs
slightly better than our algorithm, due to the exact calculation
of the Jacobians. However, when closing large loops Treemap
is more sensitive to angular wraparounds (see increase of
the error at constraint 2400 in Figure 4). This issue is
typically better handled by our iterative procedure. Overall,
we observed that for datasets having a small noise Treemap
provides slightly better estimates, while our approach is
generally more robust to extreme conditions.

VI. CONCLUSION

In this paper, we presented an efficient online solution to
the optimization of constraint networks. It can incrementally

learn maps while the robot moves through the environ-
ment. Our approach optimizes a network of constraints
that represents the spatial relations between the poses of
the robot. It uses a tree-parameterization of the nodes and
applies a variant of gradient descent to compute network
configurations with low errors.

A per-node adaptive learning rate allows the robot to re-
use already computed solutions from previous steps, to up-
date only the parts of the network, which are affected by the
newly incorporated information, and to start the optimization
approach only if the new data causes inconsistencies with the
already computed solution. We tested our approach on real
robot data as well as with simulated datasets. We compared
it to recently presented online and offline methods that also
address the network-based SLAM problem. As we showed
in practical experiments, our approach converges faster to a
configuration with small errors.

ACKNOWLEDGMENT

The authors gratefully thank Udo Frese for providing us
his Treemap implementation. This work has partly been
supported by the DFG under contract number SFB/TR-
8 (A3), by the EC under contract number FP6-IST-34120-
muFly, and FP6-2005-IST-6-RAWSEEDS.

REFERENCES

[1] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Journal of Autonomous Robots, vol. 4, 1997.

[2] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose
graphs with poor initial estimates,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), 2006, pp. 2262-2269.

[31 G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree
parameterization for efficiently computing maximum likelihood
maps using gradient descent,” in Proc. of Robotics: Science and
Systems (RSS), Atlanta, GA, USA, 2007. [Online]. Available:
http://www.informatik.uni-freiburg.de/ stachnis/pdf/grisettiO7rss.pdf

[4] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
realtionships in robotics,” in Autonomous Robot Vehicles, 1. Cox and
G. Wilfong, Eds. Springer Verlag, 1990, pp. 167-193.

[5] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping
with unknown data association using FastSLAM,” in Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), Taipei, Taiwan, 2003.

[6] E. Olson, J. Leonard, and S. Teller, “Spatially-adaptive learning rates
for online incremental slam,” in Robotics: Science and Systems,
Atlanta, GA, USA, 2007.

[71 M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Fast incremental

smoothing and mapping with efficient data association,” in Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2007.

U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algo-

rithm for simultaneous localisation and mapping,” IEEE Transactions

on Robotics, vol. 21, no. 2, pp. 1-12, 2005.

[9] M. Bosse, P. Newman, J. Leonard, and S. Teller, “An ALTAS
framework for scalable mapping,” in Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA), Taipei, Taiwan, 2003.

[10] C. Estrada, J. Neira, and J. Tardds, “Hierachical slam: Real-time
accurate mapping of large environments,” [EEE Transactions on
Robotics, vol. 21, no. 4, pp. 588-596, 2005.

[11] J.-S. Gutmann and K. Konolige, “Incremental mapping of large cyclic
environments,” in Proc. of the IEEE Int. Symposium on Computational
Intelligence in Robotics and Automation (CIRA), Monterey, CA, USA,
1999, pp. 318-325.

[12] U. Frese, “Treemap: An o(logn) algorithm for indoor simultaneous
localization and mapping,” Journal of Autonomous Robots, vol. 21,
no. 2, pp. 103-122, 2006.

[13] H. Robbins and S. Monro, “A stochastic approximation method,”
Annals of Mathematical Statistics, vol. 22, pp. 400-407, 1951.

[8

[t}



932

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Inverse Depth Parametrization for Monocular SLAM

Javier Civera, Andrew J. Davison, and J. M. Martinez Montiel

Abstract—We present a new parametrization for point fea-
tures within monocular simultaneous localization and mapping
(SLAM) that permits efficient and accurate representation of un-
certainty during undelayed initialization and beyond, all within
the standard extended Kalman filter (EKF). The key concept
is direct parametrization of the inverse depth of features rela-
tive to the camera locations from which they were first viewed,
which produces measurement equations with a high degree of
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linearity. Importantly, our parametrization can cope with features
over a huge range of depths, even those that are so far from the cam-
era that they present little parallax during motion—maintaining
sufficient representative uncertainty that these points retain the op-
portunity to “come in” smoothly from infinity if the camera makes
larger movements. Feature initialization is undelayed in the sense
that even distant features are immediately used to improve cam-
era motion estimates, acting initially as bearing references but not
permanently labeled as such. The inverse depth parametrization
remains well behaved for features at all stages of SLAM process-
ing, but has the drawback in computational terms that each point is
represented by a 6-D state vector as opposed to the standard three
of a Euclidean XYZ representation. We show that once the depth
estimate of a feature is sufficiently accurate, its representation can
safely be converted to the Euclidean XYZ form, and propose a
linearity index that allows automatic detection and conversion to
maintain maximum efficiency—only low parallax features need be
maintained in inverse depth form for long periods. We present a
real-time implementation at 30 Hz, where the parametrization is
validated in a fully automatic 3-D SLAM system featuring a hand-
held single camera with no additional sensing. Experiments show
robust operation in challenging indoor and outdoor environments
with a very large ranges of scene depth, varied motion, and also
real time 360° loop closing.

Index Terms—Monocular simultaneous localization and map-
ping (SLAM), real-time vision.

I. INTRODUCTION

MONOCULAR camera is a projective sensor that mea-
A sures the bearing of image features. Given an image se-
quence of a rigid 3-D scene taken from a moving camera, it
is now well known that it is possible to compute both a scene
structure and a camera motion up to a scale factor. To infer the
3-D position of each feature, the moving camera must observe it
repeatedly each time, capturing a ray of light from the feature to
its optic center. The measured angle between the captured rays
from different viewpoints is the feature’s parallax—this is what
allows its depth to be estimated.

In offline ““structure from motion (SFM)” solutions from the
computer vision literature (e.g., [11] and [23]), motion and struc-
ture are estimated from an image sequence by first applying a
robust feature matching between pairs or other short overlap-
ping sets of images to estimate relative motion. An optimization
procedure then iteratively refines global camera location and
scene feature position estimates such that features project as
closely as possible to their measured image positions (bundle
adjustment). Recently, work in the spirit of these methods, but
with “sliding window” processing and refinement rather than
global optimization, has produced impressive real-time “visual
odometry” results when applied to stereo sequences in [21] and
for monocular sequences in [20].

An alternative approach to achieving real-time motion and
structure estimation are online visual simultaneous localiza-
tion and mapping (SLAM) approaches that use a probabilistic

1552-3098/$25.00 © 2008 IEEE
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filtering approach to sequentially update estimates of the posi-
tions of features (the map) and the current location of the camera.
These SLAM methods have different strengths and weaknesses
to visual odometry, being able to build consistent and drift-free
global maps, but with a bounded number of mapped features.
The core single extended Kalman filter (EKF) SLAM technique,
previously proven in multisensor robotic applications, was first
applied successfully to real-time monocular camera tracking by
Davison et al. [8], [9] in a system that built sparse room-sized
maps at 30 Hz.

A significant limitation of Davison’s and similar approaches,
however, was that they could only make use of features that
were close to the camera relative to its distance of transla-
tion, and therefore exhibited significant parallax during motion.
The problem was in initializing uncertain depth estimates for
distant features: in the straightforward Euclidean XYZ feature
parametrization adopted, position uncertainties for low parallax
features are not well represented by the Gaussian distributions
implicit in the EKF. The depth coordinate of such features has
a probability density that rises sharply at a well-defined min-
imum depth to a peak, but then, tails off very slowly toward
infinity—from low parallax measurements, it is very difficult to
tell whether a feature has a depth of 10 units rather than 100,
1000, or more. For the rest of the paper, we refer to Euclidean
XYZ parametrization simply as XYZ.

There have been several recent methods proposed for cop-
ing with this problem, relying on generally undesirable special
treatment of newly initialized features. In this paper, we describe
anew feature parametrization that is able to smoothly cope with
initialization of features at all depths—even up to “infinity”—
within the standard EKF framework. The key concept is direct
parametrization of inverse depth relative to the camera position
from which a feature was first observed.

A. Delayed and Undelayed Initialization

The most obvious approach to coping with feature initial-
ization within a monocular SLAM system is to treat newly
detected features separately from the main map, accumulating
information in a special processing over several frames to reduce
depth uncertainty before insertion into the full filter with a stan-
dard XYZ representation. Such delayed initialization schemes
(e.g., [3], [8], and [14]) have the drawback that new features,
held outside the main probabilistic state, are not able to con-
tribute to the estimation of the camera position until finally
included in the map. Further, features that retain low parallax
over many frames (those very far from the camera or close to
the motion epipole) are usually rejected completely because
they never pass the test for inclusion.

In the delayed approach of Bailey [2], initialization is delayed
until the measurement equation is approximately Gaussian and
the point can be safely triangulated; here, the problem was posed
in 2-D and validated in simulation. A similar approach for a
3-D monocular vision with inertial sensing was proposed in [3].
Davison [8] reacted to the detection of a new feature by inserting
a 3-D semiinfinite ray into the main map representing everything
about the feature except its depth, and then, used an auxiliary
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particle filter to explicitly refine the depth estimate over several
frames, taking advantage of all the measurements in a high frame
rate sequence, but again with new features held outside the main
state vector until inclusion.

More recently, several undelayed initialization schemes have
been proposed, which still treat new features in a special way
but are able to benefit immediately from them to improve cam-
era motion estimates—the key insight being that while features
with highly uncertain depths provide little information on cam-
era translation, they are extremely useful as bearing references
for orientation estimation. The undelayed method proposed by
Kwok and Dissanayake [15] was a multiple hypothesis scheme,
initializing features at various depths and pruning those not re-
observed in subsequent images.

Sola et al. [24], [25] described a more rigorous undelayed
approach using a Gaussian sum filter approximated by a fed-
erated information sharing method to keep the computational
overhead low. An important insight was to spread the Gaus-
sian depth hypotheses along the ray according to inverse depth,
achieving much better representational efficiency in this way.
This method can perhaps be seen as the direct stepping stone
between Davison’s particle method and our new inverse depth
scheme; a Gaussian sum is a more efficient representation than
particles (efficient enough that the separate Gaussians can all be
put into the main state vector), but not as efficient as the single
Gaussian representation that the inverse depth parametrization
allows. Note that neither [15] nor [25] considers features at very
large “infinite” depths.

B. Points at Infinity

A major motivation of the approach in this paper is not only
the efficient undelayed initialization, but also the desire to cope
with features at all depths, particularly in outdoor scenes. In
SFM, the well-known concept of a point at infinity is a feature
that exhibits no parallax during camera motion due to its extreme
depth. A star for instance would be observed at the same image
location by a camera that translated through many kilometers
pointed up at the sky without rotating. Such a feature cannot be
used for estimating camera translation but is a perfect bearing
reference for estimating rotation. The homogeneous coordinate
systems of visual projective geometry used normally in SFM
allow explicit representation of points at infinity, and they have
proven to play an important role during offline structure and
motion estimation.

In a sequential SLAM system, the difficulty is that we do not
know in advance which features are infinite and which are not.
Montiel and Davison [19] showed that in the special case where
all features are known to be infinite—in very-large-scale outdoor
scenes or when the camera rotates on a tripod— SLAM in pure
angular coordinates turns the camera into a real-time visual
compass. In the more general case, let us imagine a camera
moving through a 3-D scene with observable features at a range
of depths. From the estimation point of view, we can think of
all features starting at infinity and “coming in” as the camera
moves far enough to measure sufficient parallax. For nearby
indoor features, only a few centimeters of movement will be
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sufficient. Distant features may require many meters or even
kilometers of motion before parallax is observed. It is important
that these features are not permanently labeled as infinite—
a feature that seems to be at infinity should always have the
chance to prove its finite depth given enough motion, or there
will be the serious risk of systematic errors in the scene map.
Our probabilistic SLAM algorithm must be able to represent the
uncertainty in depth of seemingly infinite features. Observing
no parallax for a feature after 10 units of camera translation
does tell us something about its depth—it gives a reliable lower
bound, which depends on the amount of motion made by the
camera (if the feature had been closer than this, we would have
observed parallax). This explicit consideration of uncertainty
in the locations of points has not been previously required in
offline computer vision algorithms, but is very important in a
more difficult online case.

C. Inverse Depth Representation

Our contribution is to show that, in fact, there is a unified and
straightforward parametrization for feature locations that can
handle both initialization and standard tracking of both close
and very distant features within the standard EKF framework.
An explicit parametrization of the inverse depth of a feature
along a semiinfinite ray from the position from which it was
first viewed allows a Gaussian distribution to cover uncertainty
in depth that spans a depth range from nearby to infinity, and per-
mits seamless crossing over to finite depth estimates of features
that have been apparently infinite for long periods of time. The
unified representation means that our algorithm requires no spe-
cial initialization process for features. They are simply tracked
right from the start, immediately contribute to improved cam-
era estimates, and have their correlations with all other features
in the map correctly modeled. Note that our parameterization
would be equally compatible with other variants of Gaussian
filtering such as sparse information filters.

We introduce a linearity index and use it to analyze and prove
the representational capability of the inverse depth parametriza-
tion for both low and high parallax features. The only drawback
of the inverse depth scheme is the computational issue of in-
creased state vector size since an inverse depth point needs
six parameters rather than the three of XYZ coding. As a so-
lution to this, we show that our linearity index can also be
applied to the XYZ parametrization to signal when a feature
can be safely switched from inverse depth to XYZ; the usage of
the inverse depth representation can, in this way, be restricted
to low parallax feature cases where the XYZ encoding departs
from Gaussianity. Note that this “switching,” unlike in delayed
initialization methods, is purely to reduce computational load;
SLAM accuracy with or without switching is almost the same.

The fact is that the projective nature of a camera means that
the image measurement process is nearly linear in this inverse
depth coordinate. Inverse depth is a concept used widely in com-
puter vision: it appears in the relation between image disparity
and point depth in a stereo vision; it is interpreted as the paral-
lax with respect to the plane at infinity in [12]. Inverse depth is
also used to relate the motion field induced by scene points with
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the camera velocity in optical flow analysis [13]. In the track-
ing community, “modified polar coordinates” [1] also exploit
the linearity properties of the inverse depth representation in a
slightly different, but closely related, problem of a target motion
analysis (TMA) from measurements gathered by a bearing-only
sensor with known motion.

However, the inverse depth idea has not previously been prop-
erly integrated in sequential, probabilistic estimation of motion,
and structure. It has been used in EKF-based sequential depth
estimation from camera-known motion [16], and in a multibase-
line stereo, Okutomi and Kanade [22] used the inverse depth to
increase matching robustness for scene symmetries; matching
scores coming from multiple stereo pairs with different base-
lines were accumulated in a common reference coded in in-
verse depth, this paper focusing on matching robustness and
not on probabilistic uncertainty propagation. Chowdhury and
Chellappa [5] proposed a sequential EKF process using inverse
depth, but this was in some way short of full SLAM in its details.
Images are first processed pairwise to obtain a sequence of 3-D
motions that are then fused with an individual EKF per feature.

It is our parametrization of inverse depth relative to the po-
sitions from which features were first observed, which means
that a Gaussian representation is uniquely well behaved, this is
the reason why a straightforward parametrization of monocular
SLAM in the homogeneous coordinates of SFM will not give a
good result—that representation only meaningfully represents
points that appear to be infinite relative to the coordinate origin.
It could be said in projective terms that our method defines sep-
arate but correlated projective frames for each feature. Another
interesting comparison is between our method, where the rep-
resentation for each feature includes the camera position from
which it was first observed, and smoothing/full SLAM schemes,
where all historical sensor pose estimates are maintained in a
filter.

Two recently published papers from other authors have de-
veloped methods that are quite similar to ours. Trawny and
Roumeliotis [26] proposed an undelayed initialization for 2-D
monocular SLAM that encodes a map point as the intersection of
two projection rays. This representation is overparametrized but
allows undelayed initialization and encoding of both close and
distant features, the approach validated with simulation results.

Eade and Drummond presented an inverse depth initialization
scheme within the context of their FastSLAM-based system
for monocular SLAM [10], offering some of the same argu-
ments about advantages in linearity as in our paper. The posi-
tion of each new partially initialized feature added to the map
is parametrized with three coordinates representing its direction
and inverse depth relative to the camera pose at the first observa-
tion, and estimates of these coordinates are refined within a set
of Kalman filters for each particle of the map. Once the inverse
depth estimation has collapsed, the feature is converted to a fully
initialized standard XYZ representation. While retaining the dif-
ferentiation between partially and fully initialized features, they
go further and are able to use measurements of partially ini-
tialized features with unknown depth to improve estimates of
camera orientation and translation via a special epipolar up-
date step. Their approach certainly appears appropriate within
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a FastSLAM implementation. However, it lacks the satisfying
unified quality of the parametrization we present in this paper,
where the transition from partially to fully initialized need not
be explicitly tackled and full use is automatically made of all of
the information available in measurements.

This paper offers a comprehensive and extended version of
our work previously published as two conference papers [7],
[18]. We now present a full real-time implementation of the
inverse depth parameterization that can map up to 50-70 fea-
tures in real time on a standard laptop computer. Experimental
validation has shown the important role of an accurate cam-
era calibration to improve the system performance, especially
with wide-angle cameras. Our results section includes new real-
time experiments, including the key result of vision-only loop
closing. Input test image sequences and movies showing the
computed solution are included in the paper as multimedia
material.

Section II is devoted to defining the state vector, including
the camera motion model, XYZ point coding, and inverse depth
point parametrization. The measurement equation is described
in Section III. Section IV presents a discussion about measure-
ment equation linearization errors. Next, feature initialization
from a single-feature observation is detailed in Section V. In
Section VI, the switch from inverse depth to XYZ coding is
presented, and in Section VII, we present experimental valida-
tions over real-image sequences captured at 30 Hz in large-scale
environments, indoors and outdoors, including real-time perfor-
mance, and a loop closing experiment; links to movies showing
the system performance are provided. Finally, Section VIII is
devoted to conclusions.

II. STATE VECTOR DEFINITION
A. Camera Motion

A constant angular and linear velocity model is used to model
handheld camera motion. The camera state x, is composed
of pose terms: "¢ camera optical center position and q'"' ¢
quaternion defining orientation, and linear and angular velocity
v" and w® relative to world frame W and camera frame C,
respectively.

We assume that linear and angular accelerations a" and o
affect the camera, producing at each step, an impulse of linear
velocity VW = a At and angular velocity Q¢ = o At, with
zero mean and known Gaussian distribution. We currently as-
sume a diagonal covariance matrix for the unknown input linear
and angular accelerations.

The state update equation for the camera is

wc

r5 V¢ + (viV + VIV At
v ' > 5
e a.q | @V xaq((wf +9Q9) At) 0
v W B R v 1
Vi+1 Vi
c c
WI?H wp +9

where q((w¢ + Q)At) is the quaternion defined by the rota-
tion vector (w + Q) At.
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Fig. 1. Feature parametrization and measurement equation.

B. Euclidean XYZ Point Parametrization

The standard representation for scene points ¢ in terms of

Euclidean XYZ coordinates (see Fig. 1) is
xi=(X; Yi Z)". ©)

In this paper, we refer to the Euclidean XYZ coding simply as
XYZ coding.

C. Inverse Depth Point Parametrization

In our new scheme, a scene 3-D point ¢ can be defined by the
6-D state vector:

yi=@ yi z 0 ¢ pi) (3)
which models a 3-D point located at (see Fig. 1)
xi=|Y | =|wv|+-—m(0,¢) “)
Zl* Zj pi
m = (cos ¢; sin §;, —sin ¢;, cos ¢; cos Gi)T . 5)

The y; vector encodes the ray from the first camera position
from which the feature was observed by x;,y;, z;, the camera
optical center, and 6;, ¢; azimuth and elevation (coded in the
world frame) defining unit directional vector m (6;, ¢;). The
point’s depth along the ray d; is encoded by its inverse p; =
1/d;.

D. Full State Vector

As in standard EKF SLAM, we use a single-joint state vector
containing camera pose and feature estimates, with the assump-
tion that the camera moves with respect to a static scene. The
whole state vector x is composed of the camera and all the map
features

i)

III. MEASUREMENT EQUATION

(6)

_ T T T
X = (X/U7y17y27"'

Each observed feature imposes a constraint between the cam-
era location and the corresponding map feature (see Fig. 1).
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Observation of a point y;(x;) defines a ray coded by a direc-
tional vector in the camera frame h® = (h, h, h.)". For
points in XYZ

X;
hC — h?{yz _ RCVV Y, — rW’C ) (7
Zi
For points in inverse depth
, xi
h = h,? =R | p; yi | =V +m(6;, )
Zj
®)

where the directional vector has been normalized using the in-
verse depth. It is worth noting that (8) can be safely used even
for points at infinity, i.e., p; = 0.

The camera does not directly observe h® but its projection
in the image according to the pinhole model. Projection to a
normalized retina, and then, camera calibration is applied:

U fh.’l/'

) — L

u dr hz

()= T ®
" d, h.

where u, v is the camera’s principal point, f is the focal length,
and d,, d, is the pixel size. Finally, a distortion model has to
be applied to deal with real camera lenses. In this paper, we
have used the standard two parameters distortion model from
photogrammetry [17] (see the Appendix for details).

It is worth noting that the measurement equation in in-
verse depth has a sensitive dependency on the parallax angle
a (see Fig. 1). At low parallax, (8) can be approximated by
h¢ ~ R" (m (#;, ¢;)), and hence, the measurement equa-
tion only provides information about the camera orientation and
the directional vector m (6;, ¢; ).

IV. MEASUREMENT EQUATION LINEARITY

The more linear the measurement equation is, the better a
Kalman filter performs. This section is devoted to presenting an
analysis of measurement equation linearity for both XYZ and
inverse depth codings. These linearity analyses theoretically
support the superiority of the inverse depth coding.

A. Linearized Propagation of a Gaussian

Let = be an uncertain variable with Gaussian distribution z ~
N (um, cr%). The transformation of x through the function f is a
variable y that can be approximated with Gaussian distribution:

,_Af| L of

2 —
yNN(Myvo'y)v ty = f (k) s Ty Ox @ % ox

T

® Ha

if the function f is linear in an interval around p, (Fig. 2).
The interval size in which the function has to be linear depends
on o, ; the bigger o, the wider the interval has to be to cover
a significant fraction of the random variable x values. In this
paper, we fix the linearity interval to the 95% confidence region
defined by [y, — 204, e + 20,].
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Fig.2. Firstderivative variationin [y — 20, iz + 204 ] codes the departure
from Gaussianity in the propagation of the uncertain variable through a function.
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Fig. 3. Uncertainty propagation from the scene point to the image. (a) XYZ
coding. (b) Inverse depth coding.

If a function is linear in an interval, the first derivative is
constant in that interval. To analyze the first derivative variation
around the interval [u, — 20, 1, + 20, ], consider the Taylor
expansion for the first derivative:

of _of

%(MI—FAQJ)N 9z

82
L

Azx.
2
1 Ox

1)

Ha

We propose to compare the value of the derivative at the interval
center u,, with the value at the extremes p, + 20,, where the
deviation from linearity will be maximal, using the following
dimensionless linearity index:
o*f
927 20,

_ Ha
L= —5f | (12)

ox

o

When L = 0, the function can be considered linear in the inter-
val, and hence, Gaussianity is preserved during transformation.

B. Linearity of XYZ Parametrization

The linearity of the XYZ representation is analyzed by means
of a simplified model that only estimates the depth of a point
with respect to the camera. In our analysis, a scene point is
observed by two cameras [Fig. 3(a)], both of which are oriented
toward the point. The first camera detects the ray on which the
point lies. The second camera observes the same point from a
distance d; ; the parallax angle « is approximated by the angle
between the cameras’ optic axes.

The point’s location error d is encoded as Gaussian in depth

D =dy +d, d~ N (0,07). (13)
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This error d is propagated to the image of the point in the second
camera u as
x dsin «
U= -

= 14
y dy +dcos a (14)

The Gaussianity of u is analyzed by means of (12), giving the
following linearity index:

(0%u/0d*)20y
Ou/od

4
=7 |cos al .

& (15)

Ld:‘

C. Linearity of Inverse Depth Parametrization

The inverse depth parametrization is based on the same scene
geometry as the direct depth coding, but the depth error is en-
coded as Gaussian in inverse depth [Fig. 3(b)]:

1

D= ; ~ N (0,02 (16)
po—p ’ (0.2)
1
d=D—dy=—"  4==. a7
po (po = p) Po
So, the image of the scene point is computed as
uzgz dsin o _ psin «a (18)
y dy+dcosa  podi (po — p) + pcos «
and the linearity index L, is now
0%u/0p*)2 4 d
Lp:‘(u/p)ap — 2% % osal (19)
Ou/0p 00 d;

D. Depth Versus Inverse Depth Comparison

When a feature is initialized, the depth prior has to cover
a vast region in front of the camera. With the inverse depth
representation, the 95% confidence region with parameters py,
o, is
1 1
po + 20, po — 20,

(20)

This region cannot include zero depth but can easily extend to
infinity.

Conversely, with the depth representation, the 95% region
with parameters dy, o4 is [dy — 204,dy + 204] . This region
can include zero depth but cannot extend to infinity.

In the first few frames, after a new feature has been initial-
ized, little parallax is likely to have been observed. Therefore,
dy/dy = 1 and a = 0 = cos « ~ 1. In this case, the Ly lin-
earity index for depth is high (bad), while the L, linearity index
for inverse depth is low (good): during initialization, the inverse
depth measurement equation linearity is superior to the XYZ
coding.

As estimation proceeds and « increases, leading to more
accurate depth estimates, the inverse depth representation con-
tinues to have a high degree of linearity. This is because in the
expression for L, the increase in the term |1 — (dy/d; )cos ¢
is compensated by the decrease in 40, /p,. For inverse depth
features, a good linearity index is achieved along the whole
estimation history. So, the inverse depth coding is suitable for
both low and high parallax cases if the feature is continuously
observed.

The XYZ encoding has low computational cost, but achieves
linearity only at low depth uncertainty and high parallax. In
Section VI, we explain how the representation of a feature can be
switched over such that the inverse depth parametrization is only
used when needed—for features that are either just initialized
or at extreme depths.

V. FEATURE INITIALIZATION

From just a single observation, no feature depth can be es-
timated (although it would be possible in principle to impose
a very weak depth prior by knowledge of the type of scene
observed). What we do is to assign a general Gaussian prior
in inverse depth that encodes probabilistically the fact that the
point has to be in front of the camera. Hence, due to the linear-
ity of inverse depth at low parallax, the filter can be initialized
from just one observation. Experimental tuning has shown that
infinity should be included with reasonable probability within
the initialization prior, despite the fact that this means that depth
estimates can become negative. Once initialized, features are
processed with the standard EKF prediction-update loop—even
in the case of negative inverse depth estimates—and immedi-
ately contribute to camera location estimation within SLAM.

It is worth noting that while a feature retains low parallax,
it will automatically be used mainly to determine the camera
orientation. The feature’s depth will remain uncertain with the
hypothesis of infinity still under consideration (represented by
the probability mass corresponding to negative inverse depths).
If the camera translates to produce enough parallax, then the
feature’s depth estimation will be improved and it will begin to
contribute more to the camera location estimation.

The initial location for a newly observed feature inserted into
the state vector is

y (fWC"AlWthv po) =2 o % 60, ¢ ﬁz)T (21)
a function of the current camera pose estimate 'V ¢, ¢V ¢, the
image observationh = (u v )", and the parameters determin-
ing the depth prior py, o,,.

The endpoint of the initialization ray (see Fig. 1) is taken
from the current camera location estimate

& 9 &) =t"C (22)
and the direction of the ray is computed from the observed point,
expressed in the world coordinate frame

h" = Ry o (qvf’C) w v ' (23)

where v and v are normalized retina image coordinates. Despite
h"" being a nonunit directional vector, the angles by which we
parametrize its direction can be calculated as

arctan (hiﬂV ,hY )

0\
<¢* ) | arctan (—hZV, \/hj‘f’2 + h?ﬁ)

The covariance of Z;, ¥;, Z;, é,v, and QAS, is derived from the
image measurement error covariance R; and the state covariance
estimate Pk\ k-

The initial value for py and its standard deviation are set em-
pirically such that the 95% confidence region spans a range of

(24)
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depths from close to the camera up to infinity. In our experi-
ments, we set pp = 0.1,0, = 0.5, which gives an inverse depth
confidence region [1.1,—0.9]. Notice that infinity is included
in this range. Experimental validation has shown that the pre-
cise values of these parameters are relatively unimportant to
the accurate operation of the filter as long as infinity is clearly
included in the confidence interval.
The state covariance after feature initialization is

) Pyp 0 0
pr=J1 0 Ry o0 |J7 (25)
0 0 O’Z
I ‘ 0
J= 5y dy oy oy |- (26)
Wa Wv g ey Yy 67117 87,0

The inherent scale ambiguity in a monocular SLAM has usu-
ally been fixed by observing some known initial features that fix
the scale (e.g., [8]). A very interesting experimental observation
we have made using the inverse depth scheme is that sequential
monocular SLAM can operate successfully without any known
features in the scene, and in fact, the experiments we present
in this paper do not use an initialization target. In this case,
of course, the overall scale of the reconstruction and camera
motion is undetermined, although with the formulation of the
current paper, the estimation will settle on a (meaningless) scale
of some value. In a very recent work [6], we have investigated
this issue with a new dimensionless formulation of monocular
SLAM.

VI. SWITCHING FROM INVERSE DEPTH TO XYZ

While the inverse depth encoding can be used at both low and
high parallax, it is advantageous for reasons of computational
efficiency to restrict inverse depth to cases where the XYZ encod-
ing exhibits nonlinearity according to the L, index. This section
details switching from inverse depth to XYZ for high parallax
features.

A. Conversion From Inverse Depth to XYZ Coding

After each estimation step, the linearity index Ly (15) is
computed for every map feature coded in inverse depth

W C Op

hggYZ =%x; —T 0d = pT op =1/Py.y, (6,6)
7
di = |[hYy 4| cosa =m'hyy, thgyzn_l - (27

where X; is computed using (4) and Py, y, is the submatrix 6 x 6
covariance matrix corresponding to the considered feature.

If L, is below a switching threshold, the feature is trans-
formed using (4) and the full state covariance matrix P is trans-
formed with the corresponding Jacobian:

J = diag (I, 6Xi,I> .
Jyi

Py = JPJ' (28)
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Fig. 4. Percentage of test rejections as a function of the linearity index L.

B. Linearity Index Threshold

We propose to use index Ly (15) to define a threshold for
switching from inverse depth to XYZ encoding at the point when
the latter can be considered linear. If the XYZ representation is
linear, then the measurement u is Gaussian distributed (10), i.e.,

ty =0 032 (Sina>203.
(29)

To determine the threshold in L, that signals a lack of lin-
earity in the measurement equation, a simulation experiment
has been performed. The goal was to generate samples from
the uncertain distribution for variable u, and then, apply a stan-
dard Kolmogorov—Smirnov Gaussianty [4] test to these sam-
ples, counting the percentage of rejected hypotheses h. When
u is effectively Gaussian, the percentage should match the test
significance level ay; (5% in our experiments); as the num-
ber of rejected hypotheses increases, the measurement equation
departs from linearity. A plot of the percentage of rejected hy-
potheses h with respect to the linearity index L, is shown in
Fig. 4. It can be clearly seen than when L; > 0.2, h sharply
departs from 5%. So, we propose the L; < 10% threshold for
switching from inverse depth to XYZ encoding.

Notice that the plot in Fig. 4 is smooth (log scale in Lg),
which indicates that the linearity index effectively represents
the departure from linearity.

The simulation has been performed for a variety of values
of o, d;, and o,4; more precisely, all triplets resulting from the
following parameter values:

wn N (s 2)

a(deg) € {0.1,1,3,5,7,10, 20, 30,40, 50, 60, 70}
d;(m) € {1,3,5,7,10,20,50,100}
oq4(m) € {0.05,0.1,0.25,0.5,0.75,1,2,5} .

The simulation algorithm detailed in Fig. 5 is applied to every

triplet {, dq, 04 } to count the percentage of rejected hypotheses
h and the corresponding linearity index L.

VII. EXPERIMENTAL RESULTS

The performance of the new parametrization has been tested
on real-image sequences acquired with a handheld-low-cost
Unibrain IEEE1394 camera, with a 90° field of view and
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illpllt: Dz,d1,0d
output: h, Lg
ou = |22 0y;
as =0.05; //
Lq= t‘l’—ld |cos &
n_rejected=0 ;
N_GENERATED_SAMPLES=1000;
SAMPLE_SIZE=1000;

pu =0; //(29)

Kolm. test sign. level

for j=1 to N_.GENERATED_SAMPLES repeat
{di}j=random_normal (0,02%, SAMPLE_SIZE) ;

//generate a normal sample from N (0, 03);
{ui}j=propagate,from,deptﬁto,irnage ({di}j ,a,dy);// (14)
if rejected==Kolmogorov.Smirnov ({ti};,Hu,0u, Qst)

n_.rejected=n_rejected+l;
endfor
h=100

[n_rejected] .
[N_.GENERATED_SAMPLES] '

Fig.5. Simulation algorithm to test the linearity of the measurement equation.

(b)

Fig. 6. First (a) and last (b) frame in the sequence of the indoor experiment
of Section VII-A. Features 11, 12, and 13 are analyzed. These features are
initialized in the same frame but are located at different distances from the
camera.

320 x 240 resolution, capturing monochrome image sequences
at 30 fps.

Five experiments were performed. The first was an indoor
sequence processed offline with a Matlab implementation, the
goal being to analyze initialization of scene features located
at different depths. The second experiment shows an outdoor
sequence processed in real time with a C++ implementation.
The focus was on distant features observed under low parallax
along the whole sequence. The third experiment was a loop
closing sequence, concentrating on camera covariance evolu-
tion. Fourth was a simulation experiment to analyze the effect
of switching from inverse depth to XYZ representations. In the
last experiment, the switching performance was verified on the
real loop closing sequence. This section ends with a computing
time analysis. It is worth noting that no initial pattern to fix the
scale was used in any of the last three experiments.

A. Indoor Sequence

This experiment analyzes the performance of the inverse
depth scheme as several features at a range of depths are tracked
within SLAM. We discuss three features, which are all detected
in the same frame but have very different depths. Fig. 6 shows
the image where the analyzed features are initialized (frame
18 in the sequence) and the last image in the sequence. Fig. 7
focuses on the evolution of the estimates corresponding to the
features, with labels 11, 12, and 13, at frames 1, 10, 25, and 100.
Confidence regions derived from the inverse depth representa-
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Fig. 7. Feature initialization. Each column shows the estimation history for a

feature horizontal components. For each feature, the estimates after 1, 10, 25,
and 100 frames since initialization are plotted; the parallax angle « in degrees
between the initial observation and the current frame is displayed. The thick
(red) lines show (calculated by a Monte Carlo numerical simulation) the 95%
confidence region when coded as Gaussian in inverse depth. The thin (black)
ellipsoids show the uncertainty as a Gaussian in the XYZ space propagated
according to (28). Notice how at low parallax, the inverse depth confidence
region is very different from the elliptical Gaussian. However, as the parallax
increases, the uncertainty reduces and collapses to the Gaussian ellipse.

tion (thick red line) are plotted in the XYZ space by numerical
Monte Carlo propagation from the 6-D multivariate Gaussians
representing these features in the SLAM EKF. For comparison,
standard Gaussian XYZ acceptance ellipsoids (thin black line)
are linearly propagated from the 6-D representation by means of
the Jacobian of (28). The parallax « in degrees for each feature
at every step is also displayed.

Wheninitialized, the 95% acceptance region of all the features
includes p = 0, so infinite depth is considered as a possibility.
The corresponding confidence region in depth is highly asym-
metric, excluding low depths but extending to infinity. It is clear
that Gaussianity in inverse depth is not mapped to Gaussianity
in XYZ, so the black ellipsoids produced by Jacobian transfor-
mation are far from representing the true depth uncertainty. As
stated in Section I'V-D, it is at low parallax that the inverse depth
parametrization plays a key role.

As rays producing bigger parallax are gathered, the uncer-
tainty in p becomes smaller but still maps to a nonGaussian dis-
tribution in XYZ. Eventually, at high parallax, for all of the fea-
tures, the red confidence regions become closely Gaussian and
well approximated by the linearly propagated black ellipses—
but this happens much sooner for nearby feature 11 than distant
feature 13.

A movie showing the input sequence and estimation
history of this experiment is available as multimedia
data inverseDepth_indoor.avi. The raw input image
sequence is also available at inverseDepth_indoorRaw-
Images.tar.gz.

B. Real-Time Outdoor Sequence

This 860 frame experiment was performed with a
C++ implementation that achieves real-time performance
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Fig. 8. (a) and (b) show frames #163 and #807 from the outdoor experiment

of Section VII-B. This experiment was processed in real time. The focus was
two features: 11 (tree on the left) and 3 (car on the right) at low parallax. Each
of the two figures shows the current images and top-down views illustrating
the horizontal components of the estimation of camera and feature locations
at three different zoom scales for clarity: the top-right plots (maximum zoom)
highlight the estimation of the camera motion; bottom-left (medium zoom)
views highlight nearby features; and bottom-right (minimum zoom) emphasizes
distant features.

at 30 fps with the handheld camera. Here, we high-
light the ability of our parametrization to deal with both
close and distant features in an outdoor setting. The
input image sequence is available at multimedia mate-
rial inverseDepth_ outdoorRawImages.tar.gz. A
movie showing the estimation process is also available at
inverseDepth outdoor.avi.

Fig. 8 shows two frames of the movie illustrating the perfor-
mance. For most of the features, the camera ended up gathering
enough parallax to accurately estimate their depths. However,
being outdoors, there were distant features producing low par-
allax during the whole camera motion.

The inverse depth estimation history for two features is high-
lighted in Fig. 9. It is shown that distant, low parallax fea-
tures are persistently tracked through the sequence, despite the
fact that their depths cannot be precisely estimated. The large
depth uncertainty, represented with the inverse depth scheme, is
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Fig. 9. Analysis of outdoor experiment of Section VII-B. (a) Inverse depth

estimation history for feature 3, on the car, and (b) for feature 11, on a distant
tree. Due to the uncertainty reduction during estimation, two plots at different
scales are shown for each feature. It shows the 95% confidence region, and with
a thick line, the estimated inverse depth. The thin solid line is the inverse depth
estimated after processing the whole sequence. In (a), for the first 250 steps,
zero inverse depth is included in the confidence region, meaning that the feature
might be at infinity. After this, more distant but finite locations are gradually
eliminated, and eventually, the feature’s depth is accurately estimated. In (b),
the tree is so distant that the confidence region always includes zero since little
parallax is gathered for that feature.

successfully managed by the SLAM EKEF, allowing the orienta-
tion information supplied by these features to be exploited.
Feature 3, on a nearby car, eventually gathers enough paral-
lax enough to have an accurate depth estimate after 250 images,
where infinite depth is considered as a possibility. Meanwhile,
the estimate of feature 11, on a distant tree and never displaying
significant parallax, never collapses in this way and zero inverse
depth remains within its confidence region. Delayed intializa-
tion schemes would have discarded this feature without obtain-
ing any information from it, while in our system, it behaves like
a bearing reference. This ability to deal with distant points in
real time is a highly advantageous quality of our parametriza-
tion. Note that what does happen to the estimate of feature 11
as translation occurs is that hypotheses of nearby depths are
ruled out—the inverse depth scheme correctly recognizes that
measuring little parallax while the camera has translated some
distance allows a minimum depth for the feature to be set.

C. Loop Closing Sequence

A loop closing sequence offers a challenging benchmark
for any SLAM algorithm. In this experiment, a handheld
camera was carried by a person walking in small circles
within a very large student laboratory, carrying out two
complete laps. The raw input image sequence is available
at inverseDepth_loopClosingRawImages.tar.gz,
and a movie showing the mapping process at
inverseDepth_loopClosing.avi.

Fig. 10 shows a selection of the 737 frames from the sequence,
concentrating on the beginning, first loop closure, and end of the
sequence. Fig. 11 shows the camera location estimate covariance
history, represented by the 95% confidence regions for the six
camera DOF and expressed in a reference local to the camera.

We observe the following properties of the evolution of the
estimation, focussing, in particular, on the uncertainty in the
camera location.

1) After processing the first few images, the uncertainty in
the depth of features is huge, with highly nonelliptical
confidence regions in the XYZ space [Fig. 10(a)].

2) In Fig. 11, the first peak in the X and Z translation un-
certainty corresponds to a camera motion backward along
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Fig. 10.  Selection of frames from the loop closing experiment of Section VII-
C. For each frame, we show the current image and reprojected map (left),
and a top-down view of the map with 95% confidence regions and camera
trajectory (right). Notice that confidence regions for the map features are far
from being Gaussian ellipses, especially for newly initialized or distant features.
The selected frames are: (a) #11, close to the start of the sequence; (b) #417,
where the first loop closing match, corresponding to a distant feature, is detected;
the loop closing match is signaled with an arrow; (c) #441, where the first loop
closing match corresponding to a close feature is detected; the match is signaled
with an arrow; and (d) #737, the last image, in the sequence, after reobserving
most of the map features during the second lap around the loop.

the optical axis; this motion produces poor parallax for
newly initialized features, and we, therefore, see a reduc-
tion in the orientation uncertainty and an increase in the
translation uncertainty. After frame #50, the camera again
translates in the X-direction, parallax is gathered, and the
translation uncertainty is reduced.

3) From frame #240, the camera starts a 360° circular motion
in the XZ plane. The camera explores new scene regions,
and the covariance increases steadily as expected (Fig. 11).

4) Inframe #417, the first loop closing feature is reobserved.
This is a feature that is distant from the camera, and causes
an abrupt reduction in the orientation and translation un-
certainty (Fig. 11), though a medium level of uncertainty
remains.
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Fig. 11. Camera location estimate covariance along the sequence. The 95%

confidence regions for each of the 6 DOF of camera motion are plotted. Note
that errors are expressed in a reference local to the camera. The vertical solid
lines indicate the loop closing frames #417 and #441.

5) Inframe#441, amuch closer loop closing feature (mapped
with high parallax) is matched. Another abrupt covariance
reduction takes place (Fig. 11) with the extra information
this provides.

6) After frame #441, as the camera goes on a second lap
around the loop, most of the map features are revisited,
almost no new features are initalized, and hence, the un-
certainty in the map is further reduced. Comparing the
map at frame #441 (the beginning of the second lap) and
#737, (the end of the second lap), we see a significant re-
duction in uncertainty. During the second lap, the camera
uncertainty is low, and as features are reobserved, their
uncertainties are noticeably reduced [Fig. 10(c) and (d)].

Note that these loop closing results with the inverse depth

representation show a marked improvement on the experiments
on monocular SLAM with a humanoid robot presented in [9],
where a gyro was needed in order to reduce angular uncertainty
enough to close loops with very similar camera motions.

D. Simulation Analysis for Inverse Depth to XYZ Switching

In order to analyze the effect of the parametrization switching
proposed in Section VI on the consistency of SLAM estimation,
simulation experiments with different switching thresholds were
run. In the simulations, a camera completed two laps of a circular
trajectory of radius 3 m in the X Z plane, looking out radially
at a scene composed of points lying on three concentric spheres
of radius 4.3, 10, and 20 m. These points at different depths
were intended to produce observations with a range of parallax
angles (Fig. 12).

The camera parameters of the simulation correspond with
our real image acquisition system: camera 320 x 240 pixels,
frame rate 30 frames/s, image field of view 90°, measure-
ment uncertainty for a point feature in the image, and Gaussian
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Fig. 12. Simulation configuration for analysis of parametrization switching
in Section VII-D, sketching the circular camera trajectory and 3-D scene, com-
posed of three concentric spheres of radius 4.3, 10, and 20 m. The camera
completes two circular laps in the (X Z)-plane with radius 3 m, and is orien-
tated radially.
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Fig. 13.  Details from the parametrization switching experiment. Camera lo-
cation estimation error history in 6 DOF. (translation in X Y Z, and three orien-
tation angles ¥ 0¢) for four switching thresholds: With L; = 0%, no switching
occurs and the features all remain in the inverse depth parametrization. At
Ly = 10%, although features from the spheres at 4.3 and 10 m are eventually
converted, no degradation with respect to the non-switching case is observed.
At Ly = 40%, some features are switched before achieving true Gaussianity,
and there is noticeable degradation, especially in # rotation around the Y axis.
At Ly = 60%, the map becomes totally inconsistent and loop closing fails.

N (0,1 pixel®). The simulated image sequence contained 1000
frames. Features were selected following the randomized map
management algorithm proposed in [8] in order to have 15
features visible in the image at all times. All our simulation
experiments work using the same scene features in order to
homogenize the comparison.

Four simulation experiments for different thresholds
for switching each feature from inverse depth to XYZ
parametrization were run with Ly € {0%, 10%, 40%, 60%}.
Fig. 13 shows the camera trajectory estimation history in
6 DOF (translation in XY Z, and three orientation angles
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Fig. 14. Parametrization switching on a real sequence (Section VII-E): state
vector size history. Top: percentage reduction in state dimension when using
switching compared with keeping all points in inverse depth. Bottom: total
number of points in the map, showing the number of points in inverse depth and
the number of points in XYZ.

¥ (Rot,), 8(Rot, ), #(Rot., cyclotorsion)). The following con-
clusions can be made.

1) Almost the same performance is achieved with no switch-
ing (0%) and with 10% switching. So, it is clearly ad-
vantageous to perform 10% switching because there is no
penalization in accuracy and the state vector size of each
converted feature is halved.

2) Switching too early degrades accuracy, especially in the
orientation estimate. Notice how for 40% the orientation
estimate is worse and the orientation error covariance is
smaller, showing filter inconsistency. For 60%, the esti-
mation is totally inconsistent and the loop closing fails.

3) Since early switching degrades performance, the inverse
depth parametrization is mandatory for initialization of
every feature and over the long term for low parallax
features.

E. Parametrization Switching With Real Images

The loop closing sequence of Section VII-C was processed
without any parametrization switching, and with switching at
Ly = 10%. A movie showing the results is available at inver-
seDepth_loopClosing ID to XYZ conversion.avi.
As in the simulation experiments, no significant change was
noticed in the estimated trajectory or map.

Fig. 14 shows the history of the state size, the number of
map features, and how their parametrization evolves. At the last
estimation step, about half of the features had been switched; at
this step, the state size had reduced from 427 to 322 (34 inverse
depth features and 35 XYZ), i.e., 75% of the original vector size.
Fig. 15 shows four frames from the sequence illustrating fea-
ture switching. Up to step 100, the camera has low translation
and all the features are in inverse depth form. As the camera
translates, nearby features switch to XYZ. Around step 420, the
loop is closed and features are reobserved, producing a sig-
nificant reduction in uncertainty that allows switching of more
reobserved close features. Our method automatically determines
which features should be represented in the inverse depth or XYZ
forms, optimizing computational efficiency without sacrificing
accuracy.
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Fig. 15. Parametrization switching seen in image space: points coded in in-
verse depth (x) and coded in XYZ (A). (a) First frame, with all features in inverse
depth. (b) Frame #100; nearby features start switching. (c) Frame #470, loop
closing; most features in XYZ. (d) Last image of the sequence.

F. Processing Time

We give some details of the real-time operation of our
monocular SLAM system, running on a 1.8 GHz Pentium M
processor laptop. A typical EKF iteration would implies the
following.

1) A state vector dimension of 300.

2) 12 features observed in the image, a measurement dimen-

sion of 24.

3) 30 fps, so 33.3 ms available for processing.

Typical computing time breaks down as follows: image ac-
quisition, 1 ms.; EKF prediction, 2 ms; image matching, 1 ms.;
and EKF update, 17 ms. This adds up to a total of 21 ms. The
remaining time is used for graphics functions using OpenGL on
an NVidia card and scheduled at a low priority.

The quoted state vector size 300 corresponds to a map size
of 50 if all features are encoded using inverse depth. In indoor
scenes, due to switching maps of up to 60-70, features can be
computed in real time. This size is enough to map many typical
scenes robustly.

VIII. CONCLUSION

We have presented a parametrization for monocular SLAM
that permits operation based uniquely on the standard EKF
prediction-update procedure at every step, unifying initializa-
tion with the tracking of mapped features. Our inverse depth
parametrization for 3-D points allows unified modeling and
processing for any point in the scene, close or distant, or even
at “infinity.” In fact, close, distant, or just-initialized features
are processed within the routine EKF prediction-update loop
without making any binary decisions. Due to the undelayed ini-
tialization and immediate full use of infinite points, estimates
of camera orientation are significantly improved, reducing the
camera estimation jitter often reported in previous work. The
jitter reduction, in turn, leads to computational benefits in terms
of smaller search regions and improved image processing speed.

The key factor is that due to our parametrization of the di-
rection and inverse depth of a point relative to the location
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from which it was first seen, our measurement equation has low
linearization errors at low parallax, and hence, the estimation
uncertainty is accurately modeled with a multivariate Gaussian.
In Section IV, we presented a model that quantifies lineariza-
tion error. This provides a theoretical understanding of the im-
pressive outdoor, real-time performance of the EKF with our
parametrization.

The inverse depth representation requires a 6-D state vector
per feature, compared to three for XYZ coding. This doubles the
map state vector size, and hence produces a fourfold increase in
the computational cost of the EKF. Our experiments show that
it is essential to retain the inverse depth parametrization for in-
tialization and distant features, but nearby features can be safely
converted to the cheaper XYZ representation, meaning that the
long-term computational cost need not increase significantly.
We have given details on when this conversion should be car-
ried out for each feature to optimize computational efficiency
without sacrificing accuracy.

The experiments presented have validated the method with
real imagery using a handheld camera as the only sensor, both
indoors and outdoors. We have experimentally verified the fol-
lowing the key contributions of our study:

1) real-time performance achieving 30 fps real-time process-

ing for maps up to 60-70 features;

2) real-time loop closing;

3) dealing simultaneously with low and high parallax fea-

tures;

4) nondelayed initialization;

5) low jitter, full 6-DOF monocular SLAM.

In the experiments, we have focused on a map size around
60-100 features because these map sizes can be dealt with in
real time at 30 Hz, and we have focused on the challenging loop
closing issue. Useful future work would be a thorough analysis
of the limiting factors in EKF inverse depth monocular SLAM
in terms of linearity, data association errors, accuracy, map size,
and ability to deal with degenerate motion such as pure rotations
or a static camera for long-time periods.

Finally, our simulations and experiments have shown that
inverse depth monocular SLAM operates well without known
patterns in the scene to fix scale. This result points toward further
work in understanding the role of scale in monocular SLAM (an
avenue that we have begun to investigate in a dimensionless for-
mulation in [6]) and further bridging the gap between sequential
SLAM techniques and structure from motion methods from the
computer vision literature.

APPENDIX

To recover the ideal projective undistorted coordinates h,, =
(Uyy 0y )T from the actually distorted ones gathered by the cam-
era hy = (uq, vd)T, the classical two parameters radial distor-
tion model [17] is applied:

wi\ _y (U ug + (ug — ug) (1+ K173 + Kory)
o o\ oy vo + (va — o) (1 + k172 + kord)

ry= \/(dw (g —up))* + (dy (va —v0))°

(30)
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where ug, vy are the image centers and x;, ko are the radial
distortion coefficients.
To compute the distorted coordinates from the undistorted

uy + (uu - ’LL())
uq Uy " (U kard + Rar))
=hy = (3D
Vq Uy, v + (Uu — U
(14 k173 + Kor))
Ty =T4 (1 + mrﬁ + ﬁgrﬁ) 32)
Yy = \/(dl. (uy —u0))* + (dy (va —v0))? (33)

where r,, is readily computed computed from (33), but r; has to
be numerically solved from (32), e.g, using Newton—Raphson
method; hence, (31) can be used to compute the distorted point.

Undistortion Jacobian dh,, /9 (ug, v4) has the following an-
alytical expression:

(1 + K173 + /ﬁgrfl) +
2 (ug — up) dy)* %
(/-ei —1—2/127“5)

Qdf/ (ug — ug) (vg — vp) X

(m + 2K9 r?i)

(1 + /117“3 + mgré) +
2 ((vg — Uo)dy)2 X
(/ii —&—2527"3)

2d2 (vg — vo) (ua — ug) X
(1@'1 + 2/@'27‘3)

(34)
The Jacobian for the distortion is computed by inverting expres-
sion (34)

-1
Ohy

8 (uu 9 UU) (u“ sVy )

h
_( om, 69
6(Ud7vd) hg (uy,v4)
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Large-Scale 6-DOF SLAM With Stereo-in-Hand

Lina M. Paz, Member, IEEE, Pedro Piniés, Member, IEEE, Juan D. Tardds, Member, IEEE,
and José Neira, Member, IEEE

Abstract—In this paper, we describe a system that can carry
out simultaneous localization and mapping (SLAM) in large in-
door and outdoor environments using a stereo pair moving with 6
DOF as the only sensor. Unlike current visual SLAM systems that
use either bearing-only monocular information or 3-D stereo in-
formation, our system accommodates both monocular and stereo.
Textured point features are extracted from the images and stored
as 3-D points if seen in both images with sufficient disparity, or
stored as inverse depth points otherwise. This allows the system to
map both near and far features: the first provide distance and ori-
entation, and the second provide orientation information. Unlike
other vision-only SLAM systems, stereo does not suffer from “scale
drift” because of unobservability problems, and thus, no other in-
formation such as gyroscopes or accelerometers is required in our
system. Our SLAM algorithm generates sequences of condition-
ally independent local maps that can share information related
to the camera motion and common features being tracked. The
system computes the full map using the novel conditionally inde-
pendent divide and conquer algorithm, which allows constant time
operation most of the time, with linear time updates to compute
the full map. To demonstrate the robustness and scalability of our
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20 m. The video shows the uncertainty distributions estimated by different
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servation. Cloud points are samples obtained from the real distribution, red
ellipses represent uncertainties estimated using depth point parameterization,
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and matched, blue for predicted but not matched, and red for matchings rejected
by JCBB. Note: The videos VSLAM_local_map.avi, VSLAM_outdoor.avi, VS-
LAM._indoor.avi, and VSLAM_stereo_distribution.avi have been tested on VLC
media plater: http://www.videolan.org; Windows Media Player with xvid codec
from: http//www.xvid.org/

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.
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system, we show experimental results in indoor and outdoor ur-
ban environments of 210 m and 140 m loop trajectories, with the
stereo camera being carried in hand by a person walking at normal
walking speeds of 4-5 km/h.

Index Terms—Linear time, scalability, stereo vision, visual
SLAM.

I. INTRODUCTION: STATE-OF-THE ART IN VISUAL SLAM

HE INTEREST in using cameras in simultaneous localiza-
T tion and mapping (SLAM) has grown tremendously in re-
cent times. Cameras have become much more inexpensive than
lasers, and also provide texture rich information about scene
elements at practically any distance from the camera. 6-DOF
SLAM systems based on 3-D laser scanners plus odometry have
been demonstrated feasible both indoors and outdoors [2], [3],
as well as vision aided by laser without odometry [4] and vision
aided by an inertial navigation system [5], [6]. But in applica-
tions where it is not practical to carry heavy and bulky sensors,
such as egomotion for people tracking and environment mod-
eling in rescue operations, cameras seem the only light weight
sensors that can be easily adapted to helmets used by rescuers,
or simply worn.

Current visual SLAM research has been focused on the use
of either monocular or stereo vision to obtain 3-D information
from the environment. Quite a few monocular visual SLAM
systems have been demonstrated to be viable for small environ-
ments [7]-[16]. Most are essentially standard extended Kalman
filter (EKF) SLAM systems, and vary in the technique used to
initialize a feature, given the partiality of the bearing only infor-
mation provided by one camera, or in the type of interest points
extracted from the images (be it Harris corners, Shi-Tomasi
corners, scale-invariant feature transform (SIFT) features, or
some combination). Some works have also considered segment
features [17], [18]. Larger environments have been tackled in
hierarchical visual SLAM [19].

A single camera is used in all of these systems, and although
very distant features are potentially detectable, scale unobserv-
ability is a fundamental limitation. Either the scale is fixed in
some way (for example, by observing a known object [16]), or
drift in scale can occur as is reported in the hierarchical visual
SLAM system [19]. Panoramic cameras are also being used in
visual SLAM [20], [21]. Here, the limitation of scale unobserv-
ability is overcome using an additional stereo vision bench for
motion estimation between consecutive frames. In the work of
Royer et at. [22], only monocular images are used. Mapping
is achieved using a batch hierarchical bundle adjustment algo-
rithm to compute all camera as well as interest points locations.
The scale is introduced in the system by manually entering the
length of the path.

1552-3098/$25.00 © 2008 IEEE
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Stereo visual systems provide scale through the baseline
between the cameras, known from calibration. Davison and
Murray demonstrated the first active stereo visual SLAM sys-
tem [23]-[25]. It is based on standard EKF, and thus, has low
scalability also. Under restrictive planar environment assump-
tions, Iocchi et al. built an environment map using stereo [26]. Se
et al. demonstrated a visual stereo SLAM system using SIFT fea-
tures in a small laboratory environment [27]. This system is also
unlikely to scale adequately to large environments or work in
more challenging outdoor scenarios as cross-correlations were
neglected for computational reasons. In [28] and [29], the au-
thors demonstrate an autonomous blimp system for terrain map-
ping using stereo as the only sensor, also using a standard EKF
SLAM algorithm. Saez et al. [30] presented a 6-DOF stereo
visual SLAM system, where egomotion estimation is done by
a 3-D point matching algorithm, and mapping through a global
entropy minimization algorithm in indoor orthogonal scenarios,
with difficult extension to more complex nonorthogonal envi-
ronments.

In [31] and [32], Sim et al. describe a dense visual SLAM
system using Rao—Blackwellized particle filters and SIFT fea-
tures (a similar effort in using Rao—Blackwellized particle filters
and SIFT features for visual SLAM was reported in [15]). Vi-
sual odometry [structure from motion (SFM)] is used to generate
proposals for the sensor motion and global pose estimation algo-
rithms for loop closing. This system works in either monocular
or stereo mode, with cameras mounted on a robot moving in
2-D; sensor trajectories with 6 DOF will require large amounts
of particles for their representation. In [33], the authors also
compare the advantages of separate monocular and stereo ap-
proaches in traditional SLAM frameworks.

In this paper, we show the advantages of being able to ac-
commodate both monocular and stereo information in carrying
out a 6-DOF SLAM with a handheld camera. In the works of
Sola et al. [34] and Lemaire er al. [20], it is also pointed out
that combining visual information at close range as well as at
infinity should improve the performance of visual SLAM.

Since the initial results of [35], great progress has been made
in the related problem of visual odometry [36]-[39]. Visual
odometry systems have the important advantage of constant
time execution. Furthermore, during exploratory trajectories, in
which an environment feature is seen for a certain window of
time and never more, visual odometry can obtain the same preci-
sion in the estimation of the sensor location as a SLAM system,
with a great reduction in cost. Unfortunately, visual odometry
does not cope with loop closings, and thus, eventual drift in these
cases is inevitable. Stereo visual odometry combined with GPS
can result in a mapping system that avoids long-term drift [40],
[41], but unfortunately GPS is not always available. Improving
the precision in sensor location through loop closing is one of
the main advantages of SLAM.

An important limitation of current SLAM systems that use
the standard EKF algorithm is that when mapping large environ-
ments very soon, they face computational as well as consistency
problems [42]. Many efforts have been invested in reducing the
O(n?) cost of the EKF updates. In [43], an information filter,
the dual of the Kalman filter, was used, allowing constant time

updates irrespective of the size of the map. An approximation
is carried out to sparsify the information matrix, which may
lead to map divergency [44]. The treemap algorithm [45] per-
forms updates in O(logn) also by forcing information matrix
sparseness by weak link breakage. In more complicated trajec-
tories, such as lawn mowing, the cost can be more than log
linear [46]. In the smoothing and mapping method [47], the
authors observed that the information matrix is exactly sparse
when all vehicle locations are considered in the stochastic map,
and thus, very efficient techniques can be used to compute
the batch solution (a recent incremental version is described
in [48]).

All of these algorithms use the information form, and thus,
the state and covariance are not readily available. There are al-
ternatives that work on the covariance form, such as the map
joining algorithm [49]. It works on a sequence of local maps of
limited size, and thus, it can cut down the cost of EKF SLAM
considerably, although remaining O(n?). It has the additional
advantage of improving the consistency of the resulting esti-
mation [42]. The divide and conquer algorithm [50] is able
to compute the covariance form of the stochastic map in an
amortized time linear with the size of the map, improving fur-
ther the consistency of the solution. However, in these systems,
local maps are required to be statistically independent. This re-
quires creating a new local map from scratch every time the
current local map size limit has been reached. Consequently,
no sharing of valuable information is possible in a 6-DOF vi-
sual SLAM, such as the camera velocity, or information about
features currently being tracked. This issue has been tackled
in a recent work [51] by using the conditional independence
property.

In this paper, we describe a robust and scalable 6-DOF visual
SLAM system that can be carried in hand at normal walking
speeds of 4-5 km/h, and used to map large indoor and outdoor
environments. In Section II, we summarize the main character-
istics of our system. In Section III, we describe the details of the
visual SLAM system that provides the sequence of condition-
ally independent (CI) local maps, the basic building blocks of
our mapping algorithm. This algorithm, CI divide and conquer
(D&C) SLAM, is explained in Section IV. In Section V, we
describe the two experiments carried out to test the system, an
indoor 200 m loop and an outdoor 140 m loop. In Section VI,
we discuss the results obtained, and finally, in Section VII, we
draw the main conclusions of our work.

II. OUR PROPOSAL

The fundamental characteristics of the system that we de-

scribe in this paper are as follows.

1) Unlike any other visual SLAM system, we consider in-
formation from features, both close and far from the cam-
eras. A stereo provides 3-D information from nearby scene
points, and each camera can also provide bearing only in-
formation from distant scene points. Both types of infor-
mation are incorporated into the map and used to improve
the estimation of both the camera pose and velocity, as
well as the map.
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Fig. 1. Stereo vision system used to acquire the image sequences. (Left)
Experimental setup during the data acquisition for the indoor experiment.

2) Nearby scene points provide scale information through
the stereo baseline, eliminating the intrinsic scale unob-
servability problem of monocular systems.

3) We use Conditionally Independent Divide and Conquer
SLAM algorithm that allows the system to maintain both
camera velocity information and current feature informa-
tion during local map initialization. This adds robustness
to the system without sacrificing precision or consistency
in any way. Being a D&C algorithm, it also allows lin-
ear time execution, enabling the system to be used for
large-scale indoor/outdoor SLAM.

Our 6-DOF hardware system consists of a stereo camera car-
ried in hand and a laptop to record and process a sequence of
images (see Fig. 1). Since the camera moves in 6 DOF, we de-
fine the camera state using 12 variables: camera position in 3-D
Cartesian coordinates, camera orientation in Euler angles, and
linear and angular velocities. It is known that a stereo camera can
provide depth estimation of points up to a certain distance deter-
mined by the baseline between left and right cameras. Therefore,
two regions can be differentiated: a region close to the cameras
and visible by both, in which the stereo behaves as a range and
bearing sensor. The second is the region of features far from
the cameras or seen by only one, in which the stereo becomes
a monocular camera, providing bearing only measurements of
such points. To take advantage of both types of information, we
combine 3-D points and inverse depth (ID) points (introduced
in [52]) in the state vector in order to build a map and estimate
the camera trajectory. The system produces sequences of local
maps of limited size containing both types of features using an
EKF SLAM algorithm. As we detail in Section IV, these local
maps are joined into a full map using the CI D&C SLAM algo-
rithm, obtaining as final result a full stochastic map containing
all tracked features, and the final and intermediate camera states
from each local map. This system is highly scalable: local maps
are built in constant time, regardless of the size of the envi-
ronment, and the CI D&C algorithm requires amortized linear
time.

During the feature tracking process, the right image is cho-
sen as reference to initialize new features. Interest points are
detected and classified according to their disparity with the left
image. Those points whose disparity reveals a close distance
are initialized as 3-D features, otherwise they are modeled as
ID points and initialized using the bearing information obtained
from the right image. When the camera moves, these features
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are tracked in order to update the filter and produce the corre-
sponding corrections. To track a feature, its position is predicted
in both images inside a bounded region given by the uncertainty
in the camera motion and the corresponding uncertainty of the
feature.

The process to select, initialize, and manage these features is
detailed in the next section.

III. VISUAL SLAM SYSTEM

A. State Representation

The state vector that represents a local submap xp contains
the final camera location x.. and the location of all features x, ,
with respect to the map base reference B, the initial camera lo-
cation. Some features are codified using the ID parametrization
that model points that are at infinity in x;p. Additionally, Carte-
sian 3-D parametrization is used to represent depth points in

X3D-
Xe
:| = | XID

X3D

ey

X,
Xp = |: ¢
Xfin

The camera is described by the position of its optical center
in Cartesian coordinates r, its orientation in Euler angles U, its
linear velocity v, and its angular velocity w. In order to carry
out the prediction process, the camera motion follows a constant
velocity model with zero mean Gaussian noise in the linear and
angular accelerations
r
v

2
v )

X =
w

Image corners classified as depth points are transformed to
3-D points, given the disparity information provided by the
stereo pair. Section III-D describes the criterion adopted to select
points as depth points. Since the stereo camera provides rectified
images, the backprojection equations to obtain a 3-D point are
based on a pinhole camera model that relates image points and
3-D points using the following transformation function:

X3D :f(urvvrauhvl)
= [z,y,2]"

b(uy —ug) b(v, —vy) fb]" 3
B d ’ d T d )
where (u,,v,) and (u;,v;) are the pixels on the right and left
images, and d = (uw; — w, ) is the horizontal disparity. The re-
mainder terms in the equations are the calibrated parameters
of the camera, i.e., the central pixel of the image (ug, vg), the
baseline b, and the focal length f.

Given the camera location x.,, an ID point is defined in [52]
as

“

Xip =
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Points detected using a stereo camera. Projection of map features on both left and middle images. (Right) We show feature uncertainties from a lateral

perspective. 3-D feature uncertainties are drawn using darker ellipses whereas we use samples to show the ID feature uncertainties. The accompanying video
VSLAM_local_map.avi illustrates the process of building a single local submap.

This vector depends on the optical center r; of the camera from
which the feature was first observed, the direction of the ray
passing through the image point (i.e., azimuth 6;, elevation ¢; ),
and the inverse of its depth, p; = 1/d;.

B. Selection and Management of Trackable Points

To ensure tracking stability of map features, distinctive points
have to be selected. Following a similar idea as the one presented
in [53], we use the Shi—-Tomasi variation of the Harris corner
detector to select good trackable image points and their corre-
sponding 11 x 11 surrounding patch.

From the first step, the right image is split using a regular
grid; the point with the best detector response per grid cell is
selected (see Fig. 2). At each step, we use only those features
that fall in the field of view (FOV) of the camera when they are
projected along with their uncertainties on right and left images.
Using the patch associated with each feature, a matching search
based on normalized cross-correlation is performed inside the
projected uncertainty region, as introduced in [24]. During the
following steps, those cells that become and remain empty for
a given time are monitorized to initialize a new feature when a
good point is detected. In this way, features can be uniformly
distributed in the image, improving the amount of information
gathered from the scene, and therefore the map estimate. The
approach is accompanied by a feature management strategy so
that nonpersistent features are deleted from the state vector to
avoid an unnecessary growth in population.

C. Measurement Equation

At each step, we apply the active search process described
before such that, for each projected feature in the stereo image,
a match is found after performing normalized cross-correlation.
Thus, a new observation z given by the matched pixel is used to
update the state of the camera and the map.

In the right camera, the equation that defines the relation
between the ith ID feature x|, and its observation z}, is given
by the following measurement equation:

TP o LT i
zi = hip (Xe; Xip) + v

= projection(©x, @ xip) + v ®)

where hp, is the function that projects the ID feature to the right
camera and v is a zero mean Gaussian noise with o, standard
deviation that represents the projection error in pixels. Alterna-
tively, we can define the measurement equation that relates the
inverse point observation on the left image by
L ! i

zip = hip (Xe, Xip) + v

= projection(©x, @ X, ., ® Xip) +v (6)

where the displacement of the left camera optical center with
respect to the right camera is given by the rigid transformation
X, e, = [000]T.

In a similar way, we describe observations corresponding to
3-D map features in the right and left cameras as

ZQLD = hip (XngD) +wv

= projection(ex, & xjp) + v
Lo gl j
z3p = hyp (Xe, X))
= projection(ox, ® X, ® X%D) +uv.

Note that we use & and © operators in order to denote the
corresponding compositions and inversions of transformations.
They represent different transformations depending on the kind
of parametrization used to express a feature. In [49], the defini-
tions for 2-D transformations were introduced, dealing mainly
with point features and line features. In [54], the operations
have been extended for 3-D ID and depth points. Details of
the calculation of the corresponding Jacobians to propagate the
uncertainties correctly can also be found in [54].

Fig. 2 shows the prediction of these 3-D ID features that fall
inside the FOV of each of the cameras. A good advantage of
using a stereo camera is that although a feature can disappear
from the FOV of one camera, information to update the state is
available if the feature can be still found in the other. As it will
be shown in the experiments, this fact is of extreme importance
when the camera rotates or turns around a corner, since features
escape very fast from the FOV of a single camera, making the
estimation of the camera location in these moments very weak.

D. Depth Points Versus ID Points

Current research on monocular SLAM has shown that the
ID parametrization is suitable to represent the distribution of



950

Distance 5
30, T

w
=}

Distance 10

IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 5, OCTOBER 2008

Distance 15
30, T 3 F |

d distance
- N N
& o &
d distance
- N N
w o w

=)

¥ o

=)

d distance
- N N

=)

0 ¥y o} o}
1 08 06 —04 02 0 02 04 06 08 1 -1 -08 06 04 -02 0 02 04 06 08 1 -1 -08 -06 -04 02 0 02 04 06 08 1

X position x posftion X posftion
Fig. 3. Simulated experiment of a point reconstruction from a stereo pair observation for a point at (left) 5-, (middle) 10-, and (right) 15-m distance. The point

clouds are samples from the real distribution of the point location, given that the pixel noise in the images is Gaussian. Dark red ellipses represent the uncertainty
region for the point location when the back projection equations of a depth point are linearized. Light green regions represent the uncertainty in the point using the
ID parametrization. The accompanying video VSLAM_stereo_distribution.avi shows the real and approximate uncertainties.

features at infinity as well as close points, allowing to perform
an undelayed initialization of features. Despite its properties,
each ID point needs an overparametrization of six values instead
of a simpler three coordinates spatial representation [55]. This
produces a computational overhead in the EKF. Working with a
stereo camera, which can estimate the depth of points close to
the camera, raises the subtle question of when a feature should
be initialized using a 3-D or an ID representation.

In order to clarify this issue, we have designed a simulated
experiment to study the effect of the linearization in both rep-
resentations when a point is initialized using the stereo infor-
mation. In this simulated experiment, the variance of the pixel
noise (0, = 1 pixel) and the actual intrinsic parameters of the
stereo camera used, such as the baseline, are taken into account
to implement the simulation. The experimental setup consists of
a stereo pair where the left camera is located at the origin of the
reference frame, with its principal axis pointing along Z and the
X axes pointing to the right. The right cameraisatb = 12 cmin
X . We consider a point that is in the middle between both cam-
eras at different distances in Z. Given a noisy pixel observation,
the uncertainty region of a reconstructed point is sampled and
plotted in Fig. 3 for three different point distances: 5,10, and
15 m. The uncertainty region of the 3-D representation, which
is calculated using a linearization of (3) and evaluated in the
ground truth, is represented by the dark red ellipse. The corre-
sponding uncertainty region of the linearized ID representation
is bounded by the light gray lines in the plot. Notice that the ID
parametrization models very accurately the real uncertainty for
the studied distances. However, although the dark ellipse covers
the real distribution at 5 m quite accurately, for longer distances,
the ellipse overestimates the uncertainty in the region close to
the cameras and is overconfident for far distances.

This empirical analysis suggests choosing a threshold of 5 m.
A point closer than 5 m is initialized using a 3-D representation,
a more distant point is parameterized as an ID point.

ID features can be transitioned to 3-D points, reducing signif-
icantly the number of DOF. Conversion requires an analysis of
the linearity of the functions that model both depth point and ID
point distributions. In [55], this issue is considered by using a
linearity index. Such analysis makes it possible to decide when
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Fig. 4. Binary tree representing the hierarchy of maps that are created and
joined in D&C SLAM. The red line shows the sequence in which maps are
created and joined.

an inverse point distribution is well approximated with the over-
parameterized coding. Switching from ID to depth depends on
a linearity threshold derived from the analysis.

IV. CID&C SLAM

D&C SLAM has proved to be a good algorithm in mini-
mizing the computational complexity of EKF-based SLAM and
improving consistency of the resulting estimate [50]. The al-
gorithm allows us to efficiently join several local maps into a
single state vector using map joining in a hierarchical tree struc-
ture (see Fig. 4). Local maps can be obtained in constant time,
regardless of the size of the environment, and the map joining
operations can be performed in an amortized linear time. The
D&C SLAM algorithm was, however, conceived for statistically
independent sequences of local maps. This requires creating a
new local map from scratch every time the current local map
size limit has been reached. Consequently, it is not possible
to share valuable information in a 6-DOF visual SLAM, such
as the camera velocity, or information about features currently
being tracked.

In this section, we describe the CI D&C SLAM algorithm,
which is able to work with maps that are not statistically inde-
pendent, but rather conditionally independent, and thus, allow
sharing of the valuable information with no increment in com-
putational cost or loss of precision whatsoever.
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A. CI Local Maps

In visual SLAM, it can be very useful to share some state
vector components between consecutive submaps: some camera
states, such as linear and angular velocities, as well as features
that are in the transition region between adjacent submaps and
are currently being tracked. This allows us to improve the es-
timate of relative location between the submaps and continue
tracking the observed features with no interruptions. Neverthe-
less, special care is needed to join the submaps in a single map
since their estimates are not independent anymore.

The novel technique to achieve these requirements is based
on the concept of CI local maps presented in [51]. Here, we
present a brief summary of the technique.

Suppose that a local map 1 has been built and we want to start
a new submap 2 not from scratch, but sharing some elements
in common with 1. Submap 1 is described by the following

probability density function:
Pac,
we]) o

where x4 are the components of the current submap that only
belong to map 1, x¢ are the elements that will be shared with
map 2, and z, the observations gathered during the map con-
struction. Notice that upper case subindices are for state vector
components whereas lower case subindices describe which ob-
servations z have been used to obtain the estimate.

Submap 2 is then initialized with the result of marginalizing
out the noncommon elements from submap 1:

P(xa,%Xc|2q) ZN([)A(A” ] , { L,

Xc, FPca,

p(xclza) = / p(xa,xc|20) dxs = Nk, Po,).  (8)

During the trajectory along map 2, new observations z; are gath-
ered about the common components x¢ as well as observations
of new elements xp that are incorporated into the map. When
map 2 is finished, its estimate is finally described by

Fep,,
Py D 9

ab

p(Xc,XB |24, 2) N({Xcub} 7 [ Fe,,

XB.,, Ppc,,
where the subindices in the estimates X¢,, and Xp,, reveal
that both sets of observations z, and z; have been used in the
estimation process. This means that submap 2 is updated with
all the information gathered by the sensor. But observe that map
1 in (7) has been updated with the observation z, but not with
the more recent observations z;.

Fig. 5 shows a Bayesian network that describes the proba-
bilistic dependencies between elements of submaps 1 and 2. As
it can be seen, the only connection between the set of nodes
(x4, 2,) and (xp, 2p) is through node x¢, i.e., both subgraphs
are d-separated given x¢ [56]. This implies that nodes x4 and
z, are CI of nodes xp and z;, given node x¢ . Intuitively, this
means that if x¢- is known, submaps 1 and 2 do not carry any
additional information about each other.

Submap 1

Submap 2

Fig.5. Bayesian network that describes the relations between two consecutive
submaps.

B. CI Map Joining

Consider two consecutive CI local maps. We are interested in
joining the maps into a single stochastic map described by

p(xa,Xp,X¢ |24, %)

XA, Ps,,  Pac,, Pas,
=N| |%c,, |, | Pca,, FPe,, Fes,, (10)
XB,, Pga,, Psc,, P,

Taking into account the submap conditional independence prop-
erty, it can be demonstrated [51] that the optimal map result of
the joining can be computed using

K = Pac, Fg!
= Pac,, Po, (11)
x4, = x4, + K(x¢,, — %c,) (12)
Py, =Py, + K(Pca,, —Pca,) (13)
Pic,, = KPo,, (14)
PABab = KPC'BM' (15)

Using this technique, we can build local maps that have ele-
ments in common, and then retrieve the global information in
a consistent manner. After the joining, the elements belonging
to the second map are transformed to the base reference of the
first map.

C. Actual Implementation for Stereo

The D&C SLAM algorithm of [50] can be adapted to work
with conditional independent local maps simply by using the
CI map joining operation described before. As we mentioned
before, since the camera moves in 6 DOF, the camera state is
composed of its position using 3-D Cartesian coordinates, the
orientation in Euler angles, and its linear and angular velocities.
3-D points and ID points are included as features in the state
vector. When a local map m; is finished, the final map estimate
is given by

XR, R,

. VR, R,

XR,F.,
XRiFerl:n

(16)
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to illustrate the precision obtained. (b) Indoor experiment along a building environment. (Bottom-middle row) XY projection and (bottom row) YZ projection.
(Left column) The sequence of CI local maps is represented with respect to the initial reference; (middle column) results obtained after running the D&C algorithm
that joins and corrects the estimates; (right column) final map obtained when the loop closing constraint is imposed. The scale factor and camera positions are well
recovered due to the combined observations of 3-D points and ID points. The accompanying videos VSLAM_video_outdoor.avi and VSLAM_video_indoor.avi

show the full execution of the outdoor and indoor experiments.

where X, g, is the final camera location R; with respect to the
initial one, RR; and Vp, g, are the linear and angular velocities,
XR, F,., are 3-D and ID features that will only remain in the
current map, and Xg, r,, .., are 3-D and ID features that will
be shared with the next submap m;.

Since the current camera velocity Vg, r; and some features
XR,F, ..., are used to initialize the next local map, these ele-
ments have to be computed with respect to the base reference

of the second map R;:

XR R,
VR, R,
XR, Py
kRinrn +1m

a7

m;.X

OXRg,R; D VR,R,
LOXR,R; DXR,F,y 4101

where the new elements define the common part X, and the
original map defines X 4, . Notice that the appropriate composi-
tion operation has to be applied for each transformed component
and that the corresponding covariance elements have to be added
to the map.
In local mapping, a base reference has to be identified to start
a new map. This common reference is represented by the final
vehicle position, which is the case of R; between m; and m;.
The initial state vector of the next submap is then given by
XR, R,
©OXRr,r, DVR, R,
A J . J ( 1 8)
OXR.R; D VRR,
OXR,R; DXR,F, i 1.0
where X g, represents the location of the camera in the new
reference frame with initial zero uncertainty and zero correlation
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with the rest of the elements of the initial map. Notice that the
initial velocity brought from the previous map has been repli-
cated twice. One of the copies will change as the camera moves
through the new map carrying the current camera velocity. The
other copy will remain fixed and, together with the transformed
features, will be the common elements with the previous map.
The same process is successively repeated with all local maps.

D. Continuous Data Association in Each Local Map

Recent work on large environments [19] has shown that the
joint compatibility test [57] helps avoiding map corruption in the
visual SLAM by rejecting measurements that come from mov-
ing objects. This framework is suitable in environments with a
limited number of observations. However, a branch and bound
algorithm implementation of (JCBB) has limited use when the
number of observations per step is large. In this paper, we have
obtained more efficient results using the randomized joint com-
patibility version RJC proposed in [50], in which, in the spirit of
RANSAC, a joint compatibility (JC) test is run with a fixed set
of p randomly selected measurements. In this case, correlation
between patches and individual 2 tests is used to obtain candi-
date matches. If all p measurements and their matches are jointly
compatible, we apply the nearest neighbor rule to match the re-
maining measurements. Once a full hypothesis H is obtained,
we check JC to avoid false positives. The process is repeated ¢
times with adaptive RANSAC, limiting the probability of miss-
ing a correct association.

E. Map Matching

The property of sharing common elements solves the data
association problem between consecutive local maps [50]. This
requires us to solve data association only in loop closing sit-
uations. We use the map matching algorithm of [19] in order
to detect a previously visited area. The algorithm finds corre-
spondences between features in different local maps, taking into
account the texture and the relative geometry between the fea-
tures. If sufficient corresponding features are found, an ideal
measurement equation that imposes the loop closing constraint
is applied in the final map.

V. EXPERIMENTS IN URBAN OUTDOOR AND INDOOR
ENVIRONMENTS

In order to demonstrate the robustness and scalability of the
visual SLAM system that we propose, we have gathered two
320 x 240 image sequences with a stereo system (see Fig. 1).
The system provides a 65 x 50 degree FOV per camera, and has
a baseline of 12 cm, limiting the 3-D point features initialization
up to a distance close to 5 m.

An indoor loop (at 48 fps) and an urban outdoor (at 25 fps)
loop sequences were captured carrying the camera in hand, at
normal walking speeds of 4-5 km/h. Both sequences were pro-
cessed in MATLAB with the proposed algorithms on a desktop
computer with an Intel 4 processor at 2.4 GHz. The higher frame
rate for the indoor experiment helps in reducing the probability

— Time per step 14
DA

2-51 — localmaps |1 12

1 i i s 0
00 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
step step
3 — e ———— 14
— Time per step
DA 12
25 — localmaps | |

%5 7600 2000 3000 4000 5000 6000 7000
step

0 WAL M Mo h,
0 1000 2000 3000 4000 5000 6000 7000 8000
step

Fig. 7. Running time per step of all associated processes; a detailed analysis
of (left) the features extraction, local mapping (labeled as local maps), and data
association (DA) times; (right) total time per step where the peaks represent
the joins performed by the CI D&C algorithm. (Top) Outdoor environment: the
public square. (Bottom) Indoor environment.

of mismatches given that the environment includes brick walls
providing ambiguous texture information.

The outdoor sequence is composed of 3441 stereo pairs gath-
ered in a public square of our home town (see Fig. 6 top row).
The full trajectory is approximately 140 m long from the ini-
tial camera position. Fig. 6, left column, shows the sequence of
conditional independent local maps obtained with the technique
described in Section IV-A. Each map contains 100 features
combining ID and 3-D points. The total number of maps built
during the stereo sequence is 11. The result of D&C without
applying the loop closing constraint is shown in Fig. 6, middle
column. As it can be observed, the precision of the map obtained
is good enough to almost align the first and last submaps after
all the trajectory has been traversed, even without applying loop
closing constraints. Fig. 6, right column, presents the final result
after closing the loop.

The second experiment was carried out inside one of our
campus buildings in a walk of approximately 210 m (see Fig. 6,
bottom row). The same process was run in order to obtain a full
map from 8135 stereo pairs. This environment has a particular
degree of difficulty due to ambiguous texture and the presence
of extensive zones of glass windows such as offices, corridors,
and cafeterias. This can be noticed in the long distance points
estimated in some of the maps, which are actually inside offices
and the cafeteria (see Fig. 6, left column). The result of CI D&C
is shown in Fig. 6, middle column, and the final result after loop
closing is shown in Fig. 6, right column.

Our 6-DOF SLAM system, even implemented in MATLAB,
does not exceed 2 s per step, which is the worst case when
building CI local maps. Fig. 7 shows how the system running
time remains constant in most of the steps. Moreover, time
peaks that appear when CI D&C takes place are below 8 s for
the square experiment and 14 s for the indoor experiment, which
are the maximum times required in the last step.
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Comparison of the outdoor and indoor maps obtained before the loop closure using three different techniques. (Left) Monocular SLAM with ID points,

(middle) stereo SLAM with 3-D points, and (right) the proposed stereo SLAM with 3-D points and ID points.

Using the Google Earth tool, we can see that the map scale
obtained and the trajectory followed by the camera is very close
to the real scale. Fig. 9 illustrates comparative results. We loaded
the MATLAB figure in Google Earth and set the scale parameter
to the real scale. Given that we had neither GPS nor compass
measurements for the initial locations of the camera that are the
base reference of each map, the position and orientation of the
figure over the map were adjusted by hand. It can be noticed that
angles between the square sides and the shape of the walls of the
surrounding environment have been captured with precision.

VI. DISCUSSION

As presented in Section I, several works have demonstrated
successful visual SLAM systems in small environments us-
ing monocular or stereo cameras. There are several important

factors that limit the extension of these results to large-scale
environments.

First, the computational complexity and consistency of the
underlying SLAM technique. In this paper, we have presented
a novel algorithm that builds CI local maps in constant time
and combines them in an optimal way in amortized linear time.
Although the experiments presented here were processed in
MATLAB, we expect that the extension to stereo of our current
real-time implementation [19] will be able to build local maps up
to 100 features in real time, with updates at 25 Hz. The D&C map
joining, loop detection, and loop closing can be implemented
on a separate thread, taking advantage of current multiple core
processors.

In the case of monocular SLAM, another important limiting
factor is the intrinsic unobservability of the scale. This problem
can be addressed using additional sensors such as the vehicle
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Fig. 9. Stereo visual SLAM recovers the true scale. (Top) Building environ-
ment and (bottom) the public square overlapping Google Earth.

odometry, GPS, or inertial units. When they are not available,
the scale can be initialized using some a priori knowledge
about the environment such as the size of a known object visible
at the start [16] or the initial speed of the camera. However, in
large environments, unless scale information is injected on the
system periodically, the scale of the map can slowly drift (see,
for example, the experiments in [19]). Another critical issue
appears when the scene is mostly planar and perpendicular to
the optical axis. In this situation, with a monocular camera, it
is very difficult to distinguish between camera translation and
rotation, unless a wide FOV is used.

To illustrate these difficulties, we have processed our indoor
and outdoor experiments using only the information from the
right camera. As we are now using a bearing only system, all the
features are initialized using the ID representation. To bootstrap
the system, we have introduced a initial estimated speed for the
camera of 1 m/s. Apart from that, our visual SLAM algorithm
remains unchanged. The resulting maps are represented in the
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left column of Fig. 8. As it can be seen, the scale obtained by the
system drifts (compare the beginning of the loop with the end).
Also, in the outdoor experiment, at a certain point, the system
misinterprets the camera translation as a rotation, and the map
gets corrupted. Here, we are using a camera with FOV of 65°.
The results obtained in the same environment with an FOV of
90° are significantly more robust [51]. In the indoor experiment
with a monocular camera, as the objects are much closer to the
camera, most of the features disappear fast from the FOV when
the camera turns, leading to a bad estimation of its position and
consequently divergence in the map estimate.

We have also processed the sequences with our SLAM algo-
rithm using conventional stereo, i.e., changed to initialize all the
features whose disparity is larger than one pixel as 3-D points.
Features without disparity are discarded because its depth can-
not be computed by stereo. The immediate benefit is that the
true environment scale is observable and the map corruption
disappears (Fig. 8, middle column). However, for points that are
more than 10 m away from the camera, a Gaussian in xyz is a
bad approximation for its true uncertainty. This is the reason for
the map deformation that is clearly visible in the lower part of
the outdoor experiment, where many features are at about 20 m
from the camera.

The proposed system (Fig. 8, right column) combines the
advantages of stereo and bearing only vision. On the one hand,
the true scale is precisely obtained due to the 3-D information
obtained by the stereo camera from close point features. On the
other hand, the region with useful point features extends up to
infinity due to the ID representation developed for bearing-only
SLAM. The depth of the features that are far from the camera
can be precisely recovered by the system if they are seen from
viewpoints that are separated enough. In that case, they can be
upgraded to 3-D points for better efficiency [55]. Otherwise, they
remain as ID points and still provide very valuable orientation
information that improves map precision and keeps the SLAM
system stable when few close features are observed.

VII. CONCLUSION

In this paper, we have shown that 6-DOF visual mapping of
large environments can be efficiently and accurately carried out
using a stereo camera as the only sensor. One of the contributions
of the paper is that information from features nearby and far from
the cameras can be simultaneously incorporated to represent the
3-D structure more precisely. Using close points provides scale
information through the stereo baseline avoiding “scale-drift,”
while ID points are useful to obtain angular information from
distant scene points.

Another contribution of the paper is the combination of two
recent local mapping techniques to improve consistency and
reduce complexity in the SLAM process. Using CI local maps
[51], our system is able to properly share information related
to the camera motion model and common features between
consecutive maps. Smoother transitions from map to map are
achieved as well as better relative locations between local maps.
By means of the simplicity and efficiency of the CI D&C SLAM
algorithm, we can recover the full map very efficiently. The
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combination of both techniques adds robustness to the process
without sacrificing precision.

In [50], we describe the performance of D&C SLAM when
the vehicle carries out different types of trajectories. For some
trajectories, the cost of map joining can increase at some steps,
depending of the size of the overlap between the maps to be
joined: doing exploration, the overlap is constant and the cost
of map joining is small, when completing a loop traversal for a
second time the overlap between the maps is total and the cost
of joining will be much higher. Although we are able to close
large indoor and outdoor loops, the algorithm used for loop
closing strongly depends on detecting sets of features already
stored in the map when the same area is revisited. It would be
interesting to analyze other types of algorithms for loop closing,
for instance, the image to map algorithm proposed in [58].

Moreover, as we assume smooth motions, the relocation al-
gorithm presented in [58] would enable the system to avoid
failures in case of jitter.

There is also a restriction of the system to estimate pitch
orientation due to the use of Euler angles. A combined solution
using quaternions can mitigate the problem. This will be part of
our future research.

Apart from upward looking cameras and jitter, there are no
limitations to manoeuver the camera freely: it can be used in
environments that include stairs and other terrain accidents. This
kind of experiment will be part of the evaluation process for
future work.

We will also focus on comparing our system with other stereo
vision techniques such as visual odometry. We are very inter-
ested in studying the fusion of the stereo camera with other
sensors like GPS or inertial systems in order to compare the
precision obtained. We will consider other types of feature de-
tectors as well, and their effect in the final result.
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CI-Graph: An efficient approach for Large Scale SLAM

Pedro Piniés, Lina M. Paz, Juan D. Tardés

Abstract— When solving the Simultaneous Localization and
Mapping (SLAM) problem, submapping and graphical methods
have shown to be valuable approaches that provide significant
advantages over the standard EKF solution: they are faster
and can produce more consistent estimates when using local
coordinates. In this paper we present CI-Graph, a submapping
method for SLAM that uses a graph structure to efficiently
solve complex trajectories reducing the computational cost.
Unlike other submapping SLAM approaches, we are able to
transmit and share information through maps in the graph in a
consistent manner by using conditionally independent submaps.
In addition, the current submap always summarizes, without
further computations, all information available making CI-
Graph be an intrinsically ‘“up to date” algorithm. Moreover,
the technique is also efficient in memory requirements since it
does not need to recover the full covariance matrix. To evaluate
CI-Graph performance, the method has been tested using a
synthetic Manhattan world and Victoria Park data set.

I. INTRODUCTION

Essential tasks in mobile robotics strongly rely, not only
on a precise estimation of the robot location, but also, on
an accurate map estimate of the surrounding environment.
Simultaneous Localization and Mapping algorithms (SLAM)
confront both problems in a single estimation process. The
first consistent solution proposed was based on the Extended
Kalman Filter (EKF) [1], [2]. However, an standard imple-
mentation of the algorithm suffers from memory and time
complexities of O(n?) per step, where n is the total number
of features stored in the map. To reduce the computational
cost, new algorithms take profit of the fact that SLAM is a
sparse problem, i.e., from a given robot position only a lim-
ited number of features is visible. If all features were always
visible then no algorithm could overcome the computational
complexity of the EKF solution since the linearized system
to be solved would be completely full.

Submapping strategies have become interesting ap-
proaches since they work in small regions of the environment
reducing the computational cost of EKF and improving
consistency. Under the assumption of white noise and if no
information is shared between maps, submaps are statisti-
cally independent. This allows submaps to be consistently
joined using Map Joining algorithm [3] or equivalent Con-
strained Local Submap Filter (CLSF) [4] with joining cost
O(n?). More recently, Divide and Conquer SLAM [5] has
shown to provide a more efficient strategy to join local maps
with amortized linear cost in exploration, outperforming past
sequential methods. Despite its high scalability, the main
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limitations of these techniques are their inability to share
information between maps and a memory cost of O(n?).

There are submapping techniques that work on approxi-
mations trading off precision for complexity properties [6].
Some of these techniques combine submaps with a graph
structure that represents adjacency relations between maps.
In ATLAS [7] and CTS [8] for example, nodes of the graph
correspond to submaps and links between nodes represent
relative locations between adjacent submaps. However, in
order to achieve high efficiency, they do not impose loop
constraints to update the graph estimation. Hierarchical
SLAM [9] outperforms these approaches by introducing an
optimization step along the cycles of the graph. Nevertheless,
it still remains as an approximate algorithm since optimized
information is not transmitted to submaps.

In contrast to EKF-based approaches, there is a family
of algorithms that considers the full SLAM problem in a
Smoothing and Mapping (SAM) sense. Graph SLAM and
Square Root SLAM [10], [11], report that the intrinsic
structure of the problem can be modeled as a sparse graph
(obtained from the sparse information matrix) when the
state vector is augmented with the total trajectory. The main
problem of these techniques is that they continuously grow
with the number of robot poses.

Based on EKF, Graphical SLAM [12], builds a compressed
graph of all robot and features poses as nodes. However,
special cases as loop closings need particular manipulations.
Treemap [13], is based on creating a balanced binary tree
structure of the map. The technique uses a detailed graph
granularity to construct the tree, where leaf nodes represent
each map entity (current robot and feature locations) result-
ing in a very complete but complex graph algorithm.

In this work we are interested in methods that do not use
any approximations. We consider the SLAM problem as a
Gaussian Graph model that evolves over time. We propose
CI-Graph SLAM based on [14], a submapping method that
performs EKF updates efficiently reducing its quadratic cost.
Unlike other non-approximated submapping approaches [3],
[4], CI-Graph SLAM builds a spanning tree of conditionally
independent submaps, that allows us to transmit information
between submaps in a consistent manner. Compared to batch
algorithms [10], [11], CI-Graph does not require to augment
the state vector with the full trajectory. Instead, only robot
poses corresponding to map transitions are considered. In CI-
Graph, the nodes do not represent each element of the map
but the CI-submaps. This results in a graph with high level
abstraction of the map that allows a simpler implementation.

Section II is devoted to review conditionally independent
submaps and describes their advantages. CI-Graph approach



is presented in section III. We evaluate the method using a
synthetic Manhattan world and Victoria Park data set. Their
results are described in section IV. In section V we discuss
concerns related to the construction of the map spanning tree.
Finally, we summarize the main advantages of our method
in section VI and draw future lines of work.

II. CONDITIONALLY INDEPENDENT (CI)
SUBMAPS

In submapping algorithms, instead of dealing with a single
total map of an environment, the whole map is divided into
groups of state vector entities (features and/or vehicle poses)
that are processed separately. We call absolute submap,
to a map that is expressed in a global coordinate frame
while a local submap is a submap whose elements are
represented with respect to a local reference frame. Most
recent submapping techniques are based on building local
maps of limited size that are statistically independent [3],
[4], [15], [5]. This requirement imposes important constraints
to the submaps structure. Valuable information present in a
submap cannot be used to improve other submap estimates
since, otherwise, the independence property could not be
preserved. In addition, same environment features observed
in different maps have independent estimations in each map.

Instead of using independent submaps, our CI-Graph
SLAM approach is based on building conditionally indepen-
dent Cl-submaps. The previous technique was presented in
[14] and allows CI-submaps to share submap components
and information in a consistent manner. Using absolute
submaps, the final map obtained is the same as with the
classical EKF-SLAM algorithm. If local submaps are used
better consistency properties than the EKF can be achieved.
While techniques based on independent submaps preclude
the use of inertial sensors or sensors that give absolute
measurements such as GPS and compass, our method can
easily use these devices by propagating the information
through CI-submaps without approximations. At the same
time, Cl-submaps inherit the computational efficiency of
submapping techniques that, taking into account a subgroup
of the map elements, can work with covariance/information
submatrices of limited size.

The technique presented in [14] is restricted to sequences
of maps forming simple topologies such as single loops.
Even though it has been successfully tested in large envi-
ronments, the generalization to more complex topologies in
which the CI property between maps still hold is not trivial.
The purpose of this paper is to develop a new algorithm that
extents the properties of the CI-submaps to more complicated
trajectories. In order to facilitate the explanation, we will
work for the rest of the paper with absolute submaps, al-
though local submaps can be used as well with the technique.

A. Brief CI-submaps review

Figure 1 shows a Bayesian Network that represents the
stochastic dependencies between a pair of CI-submaps, x;
and xo, that have been built sequentially.

| Submap 1 I

Submap 2

Fig. 1. Bayesian Network that describes the probabilistic dependencies
between CI-submaps.

We define the state vectors of the submaps by:

we[z] w-lz]

where x4 represents state components that only belong to
the first map, xp is for elements exclusively included in
the second submap and x¢ represents features and vehicle
states that are shared in common between both. Notice that
common elements xc are replicated in x; and x,. This
division of the stochastic state variables can be done in
SLAM because it is a sparse problem (features are locally
observable).

In figure 1, we can also observe that the only connection
between the set of nodes (x4,2,) and (xp,2p) is through
node x¢ that, according to Bayesian Network theory [16],
means that both subgraphs are d-separated given xc. This
in turn implies that the components of the submaps are
Conditionally Independent (CI) when x¢ is known:

p(xalXB, X0\ 2Za, 2) = p(Xa|XC), Za)
p(XxB|X4,XC, Za, Zo) = P(XB|XC, Zb) 2

It is precisely by means of the common elements between
maps and the CI Property that we can easily transmit
information between map pairs at any time with no approx-
imations. Suppose now that during the sequential creation
of submaps x; and x5, the first submap x; was built
using observations z, whereas for xo, in addition to z,
measurements, new observations z; were taken into account.
Assuming Gaussian distributions for the map states we have:
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where the lowercase subindexes in the estimates xp,, and
xc,, reveal that both sets of observations z, and z, have
been used in the estimation process.

Notice that map x; is ’out of date’ with respect to map
X5 since the influence of new observations z; is not included
in the estimate. In order to update submap x; information
from x, has to be transmitted. The operation of transmitting



information is called back-propagation where ’back’ means
propagation from the updated to the out of date map. To
update submap x; we only need to recalculate the state
vector and covariance matrix of those elements related to
x 4. The back-propagation equations are given by:

K = P, P;!
= Pac,,Pcl (5)
Psc.,, = KPP, (6)
Pa,, = Pa, +K(Pca,, —Pca,) (7)
Xa,, = Xa,+K(xc, —*c,) ®)

Observe that to update the first submap we only need the
mean and covariance of the common elements Xc,, and
Pc,, from the second submap. We can also calculate the
correlation between non-common elements of both maps x4
and xp by:

Pap,, = KFPcB,, 9

ITITI. CI-GRAPH ALGORITHM DESCRIPTION

In order to work with complex topologies, the algorithm
proposed is based on building an undirected graph of the
CI-submaps. An undirected graph is defined as a pair G =
(N,Eg) where N are the nodes of G and &g are its
undirected edges [17]. In our graph, N is the set of CI-
submaps m; with ¢ = 1...N. An edge connecting two
nodes is created either because the robot makes a transition
between the corresponding submaps or because being the
robot in a submap, it observes a feature that belongs to the
other submap.

In addition, the algorithm builds a spanning tree 7 (N, £7)
of the graph G, where & C &g. A spanning tree 7 of
a connected undirected graph G is defined as a subgraph
of G which is a tree (it contains no cycles) and connects
all the nodes. Our algorithm ensures that, by construction,
any pair of submaps (m;, m;) that are adjacent in 7 have
a conditionally independent structure as shown in figure
1, sharing some vehicle and feature states. Each edge in
Er will be labeled with the corresponding shared states.
Given any pair of submaps, m; and m;, there is a unique
path in 7 connecting them. This path allows us to transmit
information from map to map without loosing the conditional
independence property between submaps. In all graph figures
of the paper, spanning tree edges £7 will be depicted using a
continuous line while the remaining edges of G, i.e. Eg\E7,
will be traced with a dashed line.

Two operational levels can be distinguished in the algo-
rithm. Local operations that are only applied to the current
submap m;, and graph operations that are performed through
the graph involving at least two submaps. Most of the time,
the operations carried out when the robot moves inside a CI-
submap are local operations corresponding to standard EKF-
SLAM equations. Graph operations are more sporadic and
can be considered as the interface between CI-submaps. In
the following subsections, the graph operations are explained
in detail as presented in Algorithm 1.

Algorithm 1 : CI-Graph SLAM
z9, Rg = getObservations
mg = initMap(zo, Ro)
[G,T] = initGraph(mo) {G(N = mo, &g = 0)}
i = 0 {i for current submap}
for k£ =1 to steps do
ug—1, Qr—1 = getOdometry
m; = ek f Prediction(m;, ug_1, Qr—_1)
zr, Ry = getObservations
DAy, = dataAssociation(m;, zj, Ry,)
if revisiting m; then
{Subsection III-C}
for (my, m;) in path(m;, m;) do
back Propagation(my, m;)
copyRobot(my,, my)
end for
addEdge((m;, m;), Eg\ET)
i =j {Map change}
else if newMap m; then
{Subsection I1I-A}
addNode(m;, N')
addEdge({(m;, m;),E7)
copyRobot(m;, m;)
copyActiveFeat(m;, m;)
i =7 {Map change}
end if
if reobserved f  m; & f € m; then
{Subsection III-B}
for (my, m;) in path(m;, m;) do
copyFeat(f, my, m;)
end for
addEdge((m;, m;),Eg\ET)
end if
m; = ek fUpdate(m;, zi, Ry, DAy)
m; = addNewFeatures(m;, zx, Ry, DA)
end for
{Subsection I1I-D}
update AllMaps(m;, T) {Updates T starting from m;}

A. Starting a new submap

Suppose that robot is in submap m; and we decide to start
a new submap m;. The steps followed in the algorithm are:

e Add m; to N

o Add edge (m;, m;) to &7

« Copy robot pose and last seen features from m; to m;

In fact, the robot pose is copied twice in submap m;.
The first copy will represent the current robot position which
changes as the robot moves through the new map. The second
copy will represent the initial position of the robot when it
entered the map. This initial pose remains fixed as a common
element with map m,;.

An example can be seen in figure 2. At time ks, submaps
m; and my have been already explored and a new submap
is being created mg. Nodes m; and m share in common a
robot position Ry, and a feature fs. Submap 3 is initialized
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Fig. 2.

Example using CI-Graph SLAM. The figure is divided in three rows that show information about the state of a simulated experiment at three

different instants of time (columns). In the first row, the map of the simulated environment with the current robot position is shown. In the second row, the
graph of relations between submaps will be created according to the state of the estimation. In the last row we will show the state vectors of the estimated

submaps at different moments of time.

with robot Ry, and feature fs from submap 2.

B. Re-observing a feature from a different map

This situation occurs when the robot is at submap m; and
observes for the first time a feature that is already included
in a previous submap m;. The process followed is:

« Copy the feature from m; to m; along all nodes of the
path in 7

e Add (m;, m;) to Eg\Er

If (my, m;) € 7 represents an edge in the path, to
copy the feature from my, to my, the feature is first updated
with the information contained in m; using back-propagation
equations (5-8) and the correlations with the elements of m;
are calculated with equation (9).

Figure 2 at time k3 — 1 shows an example of this case.
Feature f3 that belongs to submap m; is measured by the
robot when it is traversing submap ms. Since edge (m,

mg3) € 7, fs is transmitted along the path (m;, ms), (mo,
my) that connects both nodes. Observe that the feature is
replicated in all intermediate nodes. Finally, edge (mj, mj)
is included in Eg\E7.

C. Revisiting a previous submap

When the algorithm detects that the robot revisits an
already traversed area mj, the transition from the current
submap m; to m; is as follows:

« Update all nodes in the path from m; to m;

o Copy the current robot pose along all nodes of the path

o Add (mi, 1’Ilj> to Eg\Er

As in the previous subsection, to update submaps in
the path we use the back-propagation equations (5-8) and
to copy the current robot pose, correlations with submaps
elements are calculated with equation (9).



Figure 2 at time k4 shows an example of this operation.
When the robot makes a transition between submaps m,4 and
m;, current robot position Ry, is replicated along all nodes
that are in the path, i.e., along ms, ms and m;. Finally, edge
(my, my) is added to £g\E7 and submap m; becomes the
current map.

D. Updating all maps from the current submap

Using the Graph operations just described, we can assure
that the current submap is always updated with all available
information. In addition, the CI property between submaps
is preserved. An interesting property of the back-propagation
equations is that they can be applied at any moment. They
work correctly even if we back-propagate twice the same
information: the terms inside the parentheses in equations
(7,8) will be zero and the maps will remain unchanged.
This allows us to schedule the back-propagation in moments
with low CPU loads, or when graph operations are required.
If the whole map has to be updated, the back-propagation
equations are recursively applied starting from the current
node and following the spanning tree 7.

IV. EXPERIMENTS AND RESULTS

CI-Graph SLAM has been tested using a simulated envi-
ronment that emules a Manhattan World, as the one proposed
in [11], with 2420 point features lying on the walls of a
11 x 11 matrix of building blocks. For this 2D example,
the total space is divided in submaps using a grid cell.
When the robot crosses the border between two cells for
the first time a new submap is initialized. If the arriving
cell has already been traversed we consider that a previous
submap is revisited. The actual size of each submap, is
not limited to the number of features content in a cell
but to the number of features that are observed from it.
For more general situations, 3D environments with complex
topologies and different kind of sensors such as cameras,
the decision to start a new submap can be based on the
maximum number of features allowed in a a map, to limit
computational complexity, or on a maximum value for the
uncertainty of the robot position, to improve the consistency
of the result.

In the Manhattan environment, the vehicle performs a
randomly chosen trajectory of 1600 steps of 1m. Fig. 3 top,
shows a smaller 5 x 5 example to give the reader an idea of
the experiment. Each time the vehicle reaches a block corner
(circles), a control input is applied randomly. This kind of
motions allows the robot to perform any trajectory: the robot
can move from one map to its neighbor and performs any
large loops. The motion model noises are assumed to be
gaussian with respectively o4, = 0.05m and oy = 0.3deg
standard deviations in position and orientation. As the robot
moves, the graph of Cl-submaps is created on the fly. Fig.
3 bottom, shows an example of the resulting spanning tree
with nodes numerated in the order they were created.

In this simulated experiment, Monte Carlo runs are par-
ticularly suitable to evaluate the CI-Graph SLAM efficiency.
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Fig. 3. CI-Graph SLAM execution on a Simulated environment of a 5 X 5
matrix of building blocks of a Manhattan World (top). The environment is
divided up into 36 submaps (nodes) using a cell grid. The darker-red line
represents the estimated trajectory. Ellipses also shows the estimated feature
uncertainties. The final CI-Graph contains direct links (continuos lines) that
forms the spanning tree between nodes (bottom). Indirect links are shown
in dashed lines such that their represents mutual information seen between
adjacent nodes. Thus, there exist a path formed by direct links through
which the information can be transmitted.

We ran 300 samples of our algorithm implemented in MAT-
LAB on a Pentium IV at 2.8GHz. Note that each sample
represents a different random trajectory and so, a different
spanning tree. For the same reason, the number of total
mapped features varies although the environment remains
unmodified. Fig. 4 shows the mean running time per step.
We can see that, for this kind of environment, the algorithm
presents a close to linear running time.

We have also tested CI-Graph SLAM on Victoria Park
data set as it is considered a benchmark for most of
the relevant approaches previously mentioned in section I.
Additionally, Victoria Park data set suits well due to its
complex trajectory topology. As in the Manhattan World
we use a grid cell to divide the space in submaps. Fig. 5
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Fig. 5. CI-Graph SLAM execution on Victoria Park data set. The robot traverses local regions across the environment (left). During exploration, only the
last submap is updated with all information available (top). At the same time, the spanning tree is being created with darker node as the current visited
submap (right). The final result is obtained after building 36 nodes (submaps) using 30m of resolution in  — y dimensions for our cell-grid (bottom).
The accompanying video video_CIGraph xvid.mpg (high quality version available http://webdiis.unizar.es/~ppinies/video_CIGraph_xvid.avi) shows

a slow execution of CI-Graph SLAM.

top, shows a partial result when the vehicle explores the en-
vironment with known data association. The accompanying
video video_CIGraph_xvid.avi shows an execution in
slow motion to visualize the CI-submaps building process.
At the same time, it is posible to see that information is
transmitted through direct links of the spanning tree when a
node is discovered or when any two nodes share information.
In addition, we ran EKF SLAM for comparison purposes.
Figure 7 top, shows the running time per step, pointing out
a constant behavior for the CI-Graph approach. Small peaks
in the plot (up to 0.16sec) represents the steps in which
CI-Graph performs propagation. At final step, CI-Graph
computes all optimum submaps propagating the information
in 0.12sec, one third of the time required for EKF SLAM

(0.37sec). The map obtained is exactly the same as EKF
SLAM with an absolute error difference of order 10719
between vector estimates and of order 101! between esti-
mated diagonal covariances. The differences are mainly due
to numerical errors rather than estimation errors. The total
cost plot in fig. 7 bottom, shows evidence about the efficient
performance of CI-Graph SLAM as it is 6.5 times faster
than standard EKF SLAM. From fig. 7 top, we could point
out a constant behavior of the time per step. However it is
difficult to establish this as an insight since the environment
presents a disperse feature distribution. The accompanying
video video_CIGraph EKF.xvid.avi shows both algo-
rithm executions with same data association both running
at their corresponding execution times. A convex hull is



0.4

T T
—— Cl-Graph SLAM

03 1

0.251- . B 1

Time (sec)

I I I
0 200 400 600 800 1000 1200 1400 1600

steps

Fig. 4. Average running time per step for 300 random runs in 11 x 11
Manhattan World experiment. The environment is mapped with total size
in a interval of n = 947 to n = 2199 point features. Also, for each run,
the submap size does not exceeds 200 features in average.

drawn around the current submap considering its vehicle and
features estimates while submaps already built are drawn in
soft color to see the covered total map. The final updated
result coincides with the final EKF map. Google Earh tool
is used to show map precision on a real image of the
environment (see fig. 6).

V. DISCUSSION

The price paid to maintain the conditional independence
between submaps is some overhead in the size of the maps.
We call overhead to all those elements of a submap that can-
not be observed from it, i.e., robot positions corresponding to
the transitions between submaps and features included in the
current submap because its node is in a path in 7 between
two nodes that share the features. For example, in figure
2 at t = k4, robot position Ry, is an overhead element for
submaps 2 and 3. However features f3 and f, are considered
as intrinsic features of submaps 1, 2 and 3 since they can
be observed from them. To reduce the overhead due to the
robot positions, relocation methods could be applied once the
submaps are well estimated. Regarding replicated features,
the overhead is clearly dependent on the spanning tree used
to transmit information through the graph.

Figure 8 on the left shows a graph with six submaps and its
corresponding spanning tree represented with a continuous
line linking nodes 5 —4 — 1 — 2 — 3 — 6. Suppose now
that we are in submap 5 and we observe a feature in
submap 6 closing the loop. In order to maintain the CI
property between submaps, instead of directly closing the
loop introducing a continuous link between nodes 5 and
6 we indirectly close the loop by replicating the observed
feature along the submaps in the path between both nodes, as
was explained in subsection III-B. This has the drawback of
increasing the size of all the intermediate submaps increasing
the computational cost. A better alternative would be to
change the spanning tree to one with shorter loops as the

Fig. 6. Final Map obtained after running CI-Graph SLAM on Victoria
Park data set. The map is projected using google Earth tool together with
GPS data (white points).

example shown in Fig. 8 right. The new spanning tree has
better properties because common elements between nodes
linked with a dashed edge are only locally replicated. For
example, common information between nodes 3 and 6 is just
replicated in nodes 4 and 5. Therefore, in order to reduce
the overhead, it is more convenient to generate a spanning
tree with small loops between nodes connected with dashed
edges. It is important to point out that the estimated solution
obtained with any of the possible spanning trees is exactly
the same and, in case of using absolute submaps, identical
to the solution obtained with the EKF. The only difference
is that the overhead introduced by the replicated features can
be reduced and therefore we can improve the computational
behavior of the algorithm. A method to find a good spanning
tree for a given SLAM graph or how to online change a given
spanning tree to a better one is left as future work.

VI. CONCLUSIONS

In this paper we have presented CI-Graph, an extension
of the CI-submaps that allows us to efficiently solve com-
plex mapl/trajectory topologies reducing the computational
cost without approximations. CI-Graph models the SLAM
process as a Gaussian Graph that evolves over time. Nodes of
the graph correspond to CI-submaps and links between nodes
reveal submap relations due to either robot transitions or co-
visible features. This results in a high level abstraction graph
that allows a simple implementation. By building a spanning
tree of the graph we have shown that information can be
shared and transmitted from map to map without loosing the
conditional independence property between submaps.
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Fig. 7. CI-Graph SLAM vs. EKF SLAM running times.
Time per step (top). Last time value corresponds to the time
due to updating all submaps. Total execution time of EKF
SLAM vs. CI-Graph SLAM(bottom). The accompanying video
video_CIGraph EKF_xvid.mpg (high quality version available in
http://webdiis.unizar.es/~ppinies/video_CIGraph_EKF_xvid.avi) shows
that CI-Graph SLAM outperforms 6.5 times EKF SLAM. Additionally,
CI-Graph only requires one third of the time required for EKF SLAM to
compute the optimum map.

Fig. 8. A bad (left) and a good (right) spanning trees for the same graph.

One of the advantages of using CI-Graph with respect to
other approaches, is its ability to reduce memory require-
ments when exploring an environment as it does not need to
maintain all covariance matrix entries (correlation terms in
EKF SLAM). We have also shown empirically the efficiency
of CI-Graph SLAM to perform updates. In the presented
experiments, we have obtained a cost per step close to linear
time in the worst case. However, mathematical proofs about
computational cost bounds will be analyzed in future work. A
strategy to choose a good spanning tree to efficiently transmit
information will also be addressed in future research.

Cl-submaps have already shown to be very suitable for
applications that involve the use of cameras in large envi-
ronments. Sharing well localized features and camera states
between Cl-submaps gives much better results than starting
each new submap from scratch. In future work we expect to
proof that CI-Graph is a very powerful technique to solve
Visual SLAM in large and complex environments.
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Visual SLAM with 3D Segments from Stereo

[Regular Paper]

|I. INTRODUCTION

We present a visual SLAM system that builds a geometric mapsafene. The scene is observed, i.e., measured, in terms of
3D segments generated by stereo systems. This systemstrectsithe scene with the stable geometric primitive 3Dreay.
We can say shortly that 3D segments from stereo constitwataetic and representative measure of a human-built sddre
work extends the known hierarchical SLAM algorithm to dedhwsD segments from stereo, in a full 6DoF observer pose,
which we believe to be appropriate for properly handlingpalse small imperfections present in indoor conditions,idees
being necessary for outdoor applications. We start withief lolescription of the sensor system and then we will present
3D Segment Visual SLAM approach.

II. TRINOCULAR SENSORSYSTEM

The perception system we used is a system that reconsthectcene in terms of 3D segments. In order to give out such
data the system has to deal with segments since the veryifirag€) processing step, this is the intended meaning of the
term segment-based 3D reconstruction system here usetheBtgjare represented by the 3D coordinates of their extrema
This choice is in agreement with realizing the intrinsic 3&ure of indoor environment. Our system has been implerddote
provide 3D extrema approximated using mean and covariapckatobian-based uncertainty propagation of Gaussiare,nois
both in the pixel detection and in the projection parameténsases on the trinocular approach [1], [2], [3], [4], [§8]. The
three cameras are calibrated with respect to a common nefergystem, located on the robot. We use a DLT technique to
determine the three projection matrices. Figure 1 preseistshematic representation of a trinocular system, wHares the
3D scene segmenE;; andd; are respectively the projection center and the projectfob dor image:.

Cameras are calibrated altogether with their covarianceixnso that 3D extrema can be estimated altogether with an
associated covariance matrix, to represent the measutemeartainty as a first order, i.e., normal, probabilitytaisition.

The projection matrices are necessary for the followingsté\ features extraction process generates a set of eler{@bt
segments in this case) from the images. These segmentssmgbeée by the coordinates of their extrema ([x1 , y1 , x2 , y2
]). Then the trinocular approach is applied; it bases orotiitar constraint ([5]), to speed up the search for the spording
segments. The last stage is the computation of the 3D segmeardameters. The 3D support line is first calculated fropieti

of corresponding segments. Then the 3D extrema are compstad the interpretation lines from each 2D segment; the 3D
segment given in out is the intersection of all such 3D reguigd segments. In Figure 2 we show three images captured
from our trinocular sensor; in particular, (c) represerstsperimposed to the image from the right camera) the refteit a
the image processing and stereo-matching step (the greese@ments are correctly associated while, for the red ohesg t
corresponding 2D segments, in all images, have not beerdjo&igure 2(d) reports the 3D scene reconstruction frorsehe
three images by using the trinocular approach.

In the following we will refer to aview as to the result of one activation of the perception systenviedv is composed
by a set of observed features and by the movement of the rabibiei space w.r.t. the previous position. In our system, it

1Such systems are quite widespread in the computer visiorrabatics communities. Our implementation differs from triginal only in the use of the
Fast Line Finder algorithm [7]

Fig. 1. 3D segment-based reconstruction for a trinocularesscopic system.



Fig. 2. Images captured from: (a): Camera left. (b): Camepa (c): Camera right (with stereo matched segments). [@)s€yments extraced by the sensor.

is constituted by the set of 3D segments provided by trirercsystem. This segments are identified using: three paeasnet
for each extremum of the segment (thg,z coordinates of the extremum in the space) and(thé) covariance matrix, to
represent the uncertainty of the segment.

Each segment extremum is represented by a point in the 3Cespat. a cartesian reference frame that is fixed w.r.t. the
robot.

Ill. 3D-6DOF HIERARCHICAL SLAM

In our system, we use 3D data from the perception system orexttiabove and the pose is modelled as a full rigid-body
transformation, so it is a 6DoF pose, turning the whole systeéo a 3D-6DoF Slam system, like the one using 3D points from
a 3D LRF [8] or the original MonoSLAM system by Davison [9]. this work we present a method based on hierarchical
decomposition of the map [10]. In hierarchical SLAM, the malea is to subdivide the whole map in two levels: a local lleve
and a global level. The local level is composed by on a set bimsys, represented through Extended Kalman Filters (EKF
hereafter), that have a limited size and they are treated) fx probabilistic point of view, as if they were independdittis
approach allows the generation of blocks (i.e., the subjmapsvhich to build the global level. The global level is repeated
by a graph where each node describes one submap and the epgesent the existing relations between them (i.e., ttaivel
position and its uncertainty). These two levels are the th&traction level through which it is possible to observetroeld.
This subdivision, aims at limiting the influence of the esrduue to the linearizzation in the EKF process; moreovemitsaat
reducing the computational cost. The intent of the follagvsections is to present this technique in the 3D6DoF casenwh
dealing with trinocular segment data.

A. Submap Local Structure

Each submap is generated by the integration of views thremgBKF, whose state is composed by the robot pose and the
location of the observed features w.r.t. the submap referérame. Each submap has its own local reference framesdcall
submap base reference; all measurements refer to it (ésatrd robot pose). Moreover, each submap is assumed to be a
stochastically independent representation of a regioh@space; therefore, the submap is unique and independalhbttiers,
and, at the local level, no relation exists, to links one saprto the other. This property, as we will see in the following
has an important effect on the reconstruction processpadh we might replicate the same feature in more than a map, th
allows us not to calculate any correlation value betweetufea belonging to the current local submap and the featifres
every other submap.

When weinitialize a new submap, we first set its base reference on the last rolet ffhis means that the current robot
position becomes the origin of the new coordinate systenilgvitis direction is used for the orientation of thyeaxes. The only
relationship we maintain between the new submap and thégu®wne is represented by the estimate of the last movement
of the robot in the previous submap. This information is rded inside the global map structure as a constraint bettveen
two submaps (the edge between the two nodes that identifgubmaps). After the displacement, the perception system is
activated again and a new view is generated. These datalaseciently integrated into the submap without any needdta d
association, since the submap does not contain previolrslgreed feature. The initial position of the robot, whentstg



the whole algorithm, is initialized to the origin0( 0, 0,0,0,0]%) with a null covariance matrix, since it can be assumed to be
perfectly known.

When therobot moves odometry provides an estimate of the rototraslathﬁy1 between the previous and the actual
position:

Ry, g .
Tp, ' = It @

Elvg] =0, Elvpv] ] = 61 Q. (2)

being v the additive white zero mean odometric process error,aﬂ']fp‘1 the displacement estimate. We use this estimate to
compute the rototraslation between the base referenceadtual submag and the new robot pose (i.e., the prediction step
in the Kalman Filter)
tho =R @ag ®)

with & representing the composition of transformations, mﬁgfl being the estimate of the robot pose at the previous step,
w.r.t. the base reference of submap B. The new view is thed twseompute the integration of the observed features with th
elements in the current submap, as described in the nexbisect

When the integration phase is ended, we return to the exfarphase, with the consequent movement of the robot. This
procedure continues until some submap closure consteairiti satisfied: then the current submap is closed and a nawagub
is initialized at the current robot pose. The constrainesdu® decide whether a submap should be closed and a new submap
created, are chosen w.r.t. various factors such as attainofea maximum number of features pertaining to the submap,
overtaking of an a priori limit on the uncertainly of robotgeowith respect to the base reference of the submap, nosrmroeést
of reliable matches between last view features and currdmnap features, etc. In our implementation we choose te @os
submap using a maximum number of features that could pewdainsubmap. In this way we can keep the size of the filter
state as well as the computational complexity limited, beiine computational complexity of the EK®(n?) (wheren is
the state dimension). It should be noticed that the paraséiescribing submaps and their relationships have an tairgr
matrix associated. This uncertainty arise from the obgienvarrors during the acquisition process, this is in tune do both
the measurement noise in the image processing and the dhiftgon in the odometry measure.

B. Global Graph Structure

The global graph represents the highest abstraction [€hed.graph allows to maintain the topological relationsnzsn the
various submaps that constitute the environment model.gidigal map is an oriented graph where each node represents an
independent submap, at the local level, while the edgesarspatial relationships (rototraslations) between ttse baference
of one submap with respect to the base reference of the eliffexnd stocastically independent previous (or next) spbma
The graph data are modeled using vectors to represent tpl gdges, matrices to represent the covariance assooiathd t
edges
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being ﬁgj” the estimate of the rototraslation between the base refesdsy_; and B;, and ng” its covariance matrix.

IV. DATA ASSOCIATION WITH3D SEGMENTS

Before getting into the details of the local map integratiwacess, it is worth to explain the algorithm used to perfdata
association. Suppose we have measured a set of feature$v;} from a certain robot position. Each feature is represented
by its coordinates and its uncertainty. We have also the fsigaturesM = {m;} observed and integrated in the map up to
that moment. The purpose of a data-association algorithtmfied a proper hypothesis of correspondences between tliwm (
of couplesv;, andm;) Hy = {< vi,mj, >, < va,m;j, >,...,< vy,m;, >}. To generate this hypothesis we must explore
an interpretation tree where each node represents a cotipterresponding features v;, m; >. Usually the point-to-point
distance is considered an appropriate criterium for sisglgment matching and most of the effort is devoted in findiggad
association strategy for dealing with the exponential dewity of finding the best matches for the whole set of segsént
the view, i.e., the best strategy for association tree tealeln [11] we have shown that defining a better criterium 3®
segment matching will result in a better data associatiod, this is almost independent from the algorithm for intetation
tree traversal (i.e., data association). The approach wgoge is based on a multi-criteria evaluation for assegategments
in the View with segments belonging to the Submap; the redsothis change from the point-to-point criterium is mainly
due to the problem of the moving-field-of-view in the sensdygtem, which turns in a moving window on the world feature,
see Figure 3. More precisely the segments extrema are uteadby the reduced field of view of the cameras and are not



Fig. 3. The “moving window” problem.

always related to real extrema in the world; having a sensysgem that moves introduce new extrema, and thus new pmssib

segments, at each step and this can easily become a proble¢hefolassical point-to-point distance.
Initially, we transform the measures of all features belnggo the view taken from the actual robot positign, using
the rototraslation between the base reference of the submamd it.

Now we can perform data association using Mahalanobisrdistabeing all the measurements referred to the common
submap base reference and having covariance matrixes tbru@wv and submap elements. In particular there are three

criterium to validate a hypothesis of match between the \degmentF; and the submap segmehy.
The first criterium considers the support line of segment

T =l + (2] — 2t
y=y;+ ] -yt (6)
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where|[z), y}, 2j]" are the coordinates of an extremum of segménand [z, y/, z/]" are the coordinates of the other. The

distance of a poinP = [z;, y;, z:]7, e.g., an extremum of &; segment, from the line is obtained from:
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deal with the two extrema of segment, tﬁe considered distance is:
D(F;, F;)
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where: F, is the first extremum of the segmef}, F, is the second extremum of the segmé®t It is now possible to
compute the Mahalanobis distance between the two segmeditsampare it with a threshold by Chi-square test:
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The second criterium checks the angle between the suppest dif the two segments: this constraint complements theous
to avoid wrong associations of a short segment to anothepergendicular to it. We can write the two support lines as:

4 ar = (‘T - l’)
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and
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the angle between them is:

_ ajaz + biba + c1ca
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and for it we can use again the Chi-square test
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The third matching criterion is not a probabilistic one;teel it is related to the projections of the segment extrem¢he
other segment; one of the following two conditions has tadhol get an association:

1) at least one of the extrema of the view segment has to projgo the map segment;
2) both the extrema of the view segment project outside thp segment, but the extrema of the map segment project
inside the view segment.

Once defined this set of probabilistic criteria, we can usgdmt compatibility branch and boundssociation algorithm to
consider, in each data-association iteration, all featisemciation choices computed until that time and the ctiogl between
them (see [12] for details). Indeed, the measurements araysalcorrelated by the uncertainly on the robot positions(th
information is lost when we use a classical nearest neighpproach). In this way it is possible to reconsider the nevi
couples of features to limit the possibility of acceptingséamatching. This is obtained by traversing the interpiatatree
using a branch and bound method in conjunction with a joimhgatibility test. The quality of a node is represented by the
number of non-null association executed to reach that node.

Given a scoring functiotfi, , the joint compatibility of a hypothesi#}, is determined by:

DY, = £, Ch i, < Xia (18)
Cp, = Hy, PH}, + Gp,SG], (19)
whereP is the covariance of the state (robot and features p&se,the covariance of the observations and:
ofy, ofy,
Hy = —% Gg, = a5 20
YV R )V (20)

We integrate the three criteria in the joint compatibilityabch and bound technigue in the following manner. To eistalhe
correctness of this hypothesis we use the joint compaiilfilinction 5, :

D(Ué ) My, )
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being D the distance between the support line of the submap segmdntha extrema of the view segment. To reduce the
amount of computational time required to explore one brameh initially, check the third criterion on the couptev;, m;, >
because it is very selective and fast; subsequently weyvtrd angle criterium on the same pair, to decrease the plitgsib
to compute in vain the next step; finally, we use the distamiter@ in the joint compatibility test.

V. DATA FUSION AND KALMAN FILTERING

The fusion process is the basic component of the integragfmse. Robustness and efficiency are the characteristits th
allow to generate valid and consistent submaps. The puigfdbés process is to integrate, in the world model, the olegérns
obtained by the sensors (stored in the view structure).

To fuse observed data into a local submap, we use and Extéfalathn Filter. The well-known approximation problems,
caused by the linearization of the non-linear equationdeffusion computation, are minimized by the use of a world @hod
constituted by stochastically independent and limited ire submaps. This allows to reduce the errors as the errers ar
propagated only inside each single submap; when we startvasnkemap the uncertainty on the robot pose is re-initialized
The state of the filter is the union of the vectors represgrtie features, and the 6DoF robot pose represented, by 6,

i.e., the robot orientation (Euler angle Ill), and y, z, i.e., the robot cartesian coordinates, w.r.t. the subnzee beference.



During the prediction, the estimate of the robot p@ﬁ%fl at timek — 1 is updated with the new motion valut%z*. This
operation is obtained by the composition of the old robotepestimate with the odometric data.

T
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We need the state prediction as well as its uncertainty,oipefor the map features in the state; this is obtained lBans
of the classical uncertainty propagation [13].
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wherePf s the state covariance before predicti@l, is the odometric covariance,
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Associations, available from the previous phase, are tlsex to update the predicted state. We move the view data back
to the submap base reference and exploit, as innovatiom diyethe new data, the distance of the endpoints of the view
segment from the support line of the associated segmentisibmap. The robot pose, being part of the state, is updated
according to the new view data; in long motion sequenceshtiligs limiting to some extent the cumulative odometric exro
see Section VII.

For each pair of corresponding features (observed feduand submap featur®;,), the distance between the observation
and the feature estimate in the state filter, is a non-linesasurement functioh,;, taking as arguments the robot pose and
the featurexc?. First of all, we need to rototraslate the measurementsfes edl data to the same submap base reference:

x}% = nguﬁl & xﬁi. (24)

Now we can compute the distance between 3D segments (sderS&t obtaining:
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This is going to be used as measurement function in the EgteKélman Filter.

Observed features that have no associated map featuregcasided to the filter state, without any fusion. They are moved
into the submap, by using the estimate of the robot pose, leerdliecame part of the state for the next view integratioe. Th
new integration process is subdivided into two steps. Infits¢ phase, we rototraslate the new observations basindn@n t
estimate of the robot pose (which is in state fili% .), then we extend the filter state and its covariance maticotatingly.

Beside the specificity of state representation and measurieeguations, the described process is nothing more thandesd
EKF algorithm; however a note should be raised about the 3femma of integrated segments. The extrema computation is
executed independently on every feature; this is nece$satyie reliability of the integration process because theentainty
on the segment extrema is greater than the uncertainty osetii@ent direction.

When we update the estimate of the segment parameters, \@eameecalculate the estimate of its 3D extrema. First of all,
we compute the orthogonal projection of the view segmeneex on the support line, the one built on the submap segment
(its estimate is updated before the use); the view segmertdtagraslated with respect to the current robot pose, then w
calculate the orthogonal projection of the view segmentegé on the 3D submap segment:

To — a(a(wo—wp)ﬂ;l;(y(;)z—yizﬂ—c(m—zp))

o — ) +b(yo—yp)+e(zo—

Rproy = | o — b(EZmel bt ez y | (26)
20 — c(a(lo—%)4;172(1%2—122-%0(20—%))

wherea = (z1 —20), b= (y1—w0), c=(z1—20), X, = [ Tp ¥ 2p }T is the view segmenti(;} ) extremum rototraslated
w.rt %8 andfc?j_ =[x wo 2 x wy =z | isthe submap segment.

Next, for each submap segment extremum, we compute twondisa the distance between the center of mass of the
segment and its extrema, and between the center of mass ségineent and the previously computed orthogonal projection
The estimate of the extrema position is updated only if ttetadice between the center of mass and the orthogonal pooject
is greater than the distance between the center of mass anekttemum. By doing so we obtain that the segment length,
after the computation, will be always equal or longer thefoleethe integration process.

The reason for this is that we do not want to loose newly antigiigrseen segments.

Moreover, we select the orthogonal projection to updatecexd, because the sensor observations are, usually, ot
on the measurement of the segment direction w.r.t. the seigemelpoints. The orthogonal projection allows to give t® finst



Fig. 4. Submap overlapping

piece of information a major weight with respect to the secone, in order to define the extrema. In addition we compute
the new extrema covariance by means of uncertainty projpegdirst we propagate the rototranslation uncertainty,

P,=FPF" + GPEG" (27)

whereF is the Jacobian of the rototraslati&; ® X% w.r.t. X7 andG is the Jacobian of the rototraslatiér} ® X7 w.r..
i?i; then we propagate the uncertainty in the orthogonal ptiojec

P, = KPy K" + HP,H" (28)

proj

whereK is the Jacobian of the orthogonal projection Wi?\] andH is the Jacobian of the same orthogonal projection w.r.t.

S/
Xp'

VI. LARGE LOOPCLOSURE

The detection of a large loop closure allows to largely inwerthe global level representation of the world. By merging t
compatible submaps into a single one, i.e., by imposing acwevstraint to the model, we are able to improve the estimfte o
all the submap base references involved in the loop.

Loop closure is a complex activity that involves many stefise first step is obviouslyoop Detection i.e., detecting a
submap close to the one just closed, that could be involvea ioop closure. This is obtained by looking for a submap
overlapping to some extent with the one just closed, amoagtibmaps in the neighborhood of the last pose.

The size of the neighborhood considered is a function of sybbdimension (i.e., the bounding box of its features) and of
pose uncertainty after propagating the uncertainties to-tr@slations between submaps, from the first base raferen



x%j =Xp X O @)‘(g"’l
P22 =FP°FT + GP}! el
Pl — HPDHT | KPE KT (29)

P = WP WT+DPy ' DY

whereF is the Jacobian of the rototraslatiar}’ & x5! w.r.t. 5°, G is the Jacobian of the rototraslatisr’ & %J;! W.r.t.
igl, is the Jacobian of the rototraslatiar}® & & “32 WLt 5{2", K is the Jacobian of the rototraslati&f® & “32 wrt X2,

AB] 1 ABJ 1

W is the Jacobian of the rototraslatl&lﬁ X w.rt. X2° , D is the Jacobian of the rototraslatlé‘nﬁ ®x

respect tox Bi=t The bounding box of the features is computed analyzing eadrema.

Whenever a possible loop has been detected, it is necessgrgrform againData Associationto verify that the two
submaps match in a significant way and, at the same time,cextra common features. This is obtained by using, again, a
data association procedure that seeks an new hypotHe#fiat connects each feature in the first submap to the comesupmp
feature in the second submap. This hypothesis will be usetimate both robot pose and feature position in the submaps

There are different approaches to fifd in this work we use an interpretation tree, see e.g. [14][a0f with hypothesis

By Fj
By, Fj,

H=1| . (30)
Em FjWL

whereF is the first submapk’ is the second submay, is the index of the featuré};, associated to the featufg;, andj; = 0
when the feature®; hasn't featureF’ associated.

Nodes, in this tree, represent an association betweenrésatane pertaining to the first subméjp and one pertaining to
the second submapj,) and each level describes all possible matching betweemtarteand the other ones. This structure
has some important properties: the number of levels is eguthle number of features df(m); the number of branches that
are coming out from each node is equal to the number of femnfré'(n)+1, called star-branch, which is used to define the
non-existence of one match; the number of possible solsiti®exponential in the number of featuresfof N = (n + 1)™

Finding a propei turns into finding a path connecting a root of the tree to onthefleaves; to do this, we use an adapted
RANSAC algorithm [15] to perform data association with tigerpretation tree between submaps having respectivelyd
m < n features. We generate a valid hypothesis that respecty andrbinary constraints, as described below, ugiryt of
m features randomly selected, and validate it on the remginin- p using a joint compatibility test adapted to the 3D-6DoF
problem from [12], also described in the following.

Being P, the probability of a feature, randomly selected fréhsubmap, to have a corresponding feature in the other submap
F and beingPy.;; the probability of not finding a propdid when it exist (i.e., how much we accept to fail in data asdmia
to avoid exhaustived ((n — 1)™) search in the tree) the number of trials is bounded g ((ff‘};l))] and independent on the
number of features. The number of required iterations isloetated when a new hypothesis is generated. In this way, th
algorithm behavior is adapted to the best current hypathesi

We use two geometrical constraints to reduce the compuatdtamst during the tree exploration, pruning and trimmioms
paths. The advantage in the using of strong constraintsatsih can prune a larger number of branches, i.e., we canadecre
the computational complexity of the creation of one hypsifieThe first geometrical constraint is namauary constraint
Suppose we have a pair of segmepts= (E;, F;), pertaining to the interpretation tree,

we can impose a geometrical constraint on the length of tekegments:

= L= (] — )2+ (v — u)? + (2 — 202 (D)
& = Ly = /(&) a2+ ) — )7 + (2 — 2))? (32)
P P = (GVP+ (G5 P! (39
P, =P, = (‘32)2 ; (%)QP;' (34)

by using a Mahalanobis distance to compare the two values:

(Li = Lj)" (Pr, + Pr,) " (Li = Lj) < X o (35)



The second geometrical constraint is nanigdary constraint Suppose we have two pair of segmepis = (E;, F})
and pi; = (Ey, Fi) with the firsts pertaining to thé& submap (E;, Ex)) and the seconds to thE submap (£}, F})). A
binary constraint is a geometric relation between the nreasestimate of the featuré®;, E;) that it is satisfied also by the
corresponding featurgd;, F;); in this case we consider the angle between them

ai1az + b1ba + cico
Va2 + b3+ c2\/a3 + b3 + 3

beingls = e, a1 = (o} —a1f). by = 0 ~uif). 1 = (7 —2ff): 2 = (& =i, b = (P =)0 = P =210

Aji = cos™!(

(36)

Pa, = F;PpIF] + GPEr Gl + F;PE, F] + GPLh, G (37)

with F; = ;—Ai and G, = %%. Here the Mahalanobis constraint becomes:
X X

Bp
Fj Fy

(Air — Aj1)T(Pay, + Pay) (A — Aji) < X3 o (38)

Unary and binary tests, executing only independent corapasi between pairs of segments, do not guarantee the global
consistency of the generated hypothesis by themselves sapplg the joint compatibility test as well. Suppose we hame a
hypothesisH; with m couples of corresponding segmentsgj(if= 0 then the corresponding segment does not exist)

E F
E, F;

H=| _ |, (39)
E, F;

we use as compatibility test the distance between the eatifnone segment (e.g., pertaining to subnigpand the straight
line built using the extrema of the other segment (e.g.an@rtg to submag).
Out of this distance, we build a functiad composed byi functions, such as for each couple if:

Dy, (XBE XBF)
D .XBE,XBF _ i—1 BE ,BF 40
D(/E®, x2)
D(x”gf,xgjfj)
- : =0 (41)
D(xEe xEr)

B
D(XI/E:: ) X?f;)

Whereng is the coordinate vector faf;, x?j is the coordinate vector faf};,, and D is the point-line distance function as
from Equation 7. The joint-compatibility test on hypotteesl; is thus:
D%—h = Dgic_lDHi < X%i,a (42)
Cy, =Hpy,PJ"HY + Gy, PR GE, (43)
whereHy, = 5)’(3—5; andGy, = X
Once data-association has been found it is possible to pefobot Relocatiorand Local Map Joining i.e., to estimate
the spatial relationship between the robot pose and itdipndn the associated submap and thus join the two submaps (i
this exampleF and F') w.r.t. a common reference frame. This is obtained by udiegselected hypothesi$; to estimate the

transformation between the two reference frame and itsr@weematrix.
In doing this, we use an Extended Kalman Filter. For each @laobservations in the hypothesis, we have

abr —xBr = [ xBr xBr . gBr T (44)
RP" =PPr = diag(Ppr, Ppr,... . PEF) (45)
and
T
B =%pF = XpF xpP ... %p° ] (46)

R}® = PP =diag(PR? PLP, ..., PLF). (47)
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describing in the filter state the rototraslation to estamat

xpE = [6,%,0,4,9, 2" (48)

we can use the geometrical relationships between the stdi¢ha observations described by equations:

Dz'BE,xBE®zBF
hi(zp? 25", XpE) = (" e @2) | _ [0 (49)
TR Tr D(zp”,xp; ®zp ) 0

Since the observations are uncertain, the equation wilpnotide null value, however the filter state will convergetheir
least square solution.

Using the so estimated transformation, it is possible tongkahe base reference of one of the map into the other, bg usin
two pairs of features, therefore creating a single submapnaoving the robot pose to the new reference frame.

The change base reference process begins with the selefttarm couples of segments from the set of all corresponding
features in the two submaps (hypotheAis.

Then we calculate the rototraslation between the baseeraferof one submap (e.d:, submap) and the features selected
previously. Once we obtain the rototraslation parametgescan proceed to apply this transformation to all submafufea.
he first step is to compose the rototraslation with the rolosep

x5 =%5 o %8 (50)
PE = FPLFT + GPEGT (51)
wherexy; = —%Z, F is the Jacobian ofj; ® %5 w.rt. % andG is the Jacobian ok & %% w.rt. 5. The same process
is applied to all submap features.
~ ~F. ~ ~F ~ ~F N T
X = [ xg@xg xg@xﬁ XI;;}EBX% } (52)
PE = FPLFT + GPEGT (53)

whereF is the Jacobian ok} @ %2 w.r.t. i and G is the Jacobian ok @ %2 w.rt. %2.

As a result, all submap features will have their coordinatescribed w.r.t. to the base reference placed on the chosen
feature pair; thus we can add all the featw@ to the submagF. In this way we create a single submap with the features
pertaining to both submaps. The computation of the rotiaitias is similar to the previous algorithm (the one used btam
the rototraslation between features and base reference).

We can now proceed to the fusion phase. This operation isseanebecause we have features that are different estimiates
the same world segment. The submap fusion is analogous taewesegment integration process shown in before; however,
in this process we use a different state equation of the HetiKalman Filter. In fact, in this case we do not have a set of
views to integrate, but we have only 3D segments with the damse reference (we have not odometric data).

When the process ends, the corresponding features will thlyteorrelated with the same mean and covariance. Thereby
one of the two estimates can be removed from the state. Atrtlene execute a final integration process to recalculate the
3D extrema of the updated segments.

In the very last phase of loop closure we can reduce the wogrton the spatial relationships among features, by figrci
the consistency of the links between the base referencet/ét/in the loop (topological and metrical closure). Cdesithe
case of loop closure in Figure VI where we highlight the twbrsapsB, and B,,.1. Suppose we have to close this single
loop constituted by the following transformations ® x3 @ - - - ® x~* @ x?, ; wherex{ has enough overlapping witk" ;.

We fuse at the local levet? ; with x{ as shown so far. Thus we obtain a loop sets up by the transfiomsax? & x3 &

@ xt ! @ xf. Now we can impose that:

h(x)=x{@x; @ ox" Tax) =0 (54)

since submap} is in spatial relation with the submag}. When we have large loops and composed by various rotdiasa
the errors, due to the linearization processes, becomeopnmed. The techniques introduced during the fusion phateea
local level don't allow to compute, with enough accuracyg thinsformations:j-. For this reason, we formulate the problem
as the estimate of the maximum posterior probability on #latie positions at the global level given théx) = 0 loop

closure constraint
1
min f(x) = min §(X %P (x - %) (55)

To solve this type of problems we use the SQP (Sequential @tiadProgramming) technique [16] derived from the Kuhn-
Tucker equations. The SQP estimate of the transformatoasd their covarianc® can be obtained by the iteration of the
following two equations:
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Fig. 5. Loop Closure

P, = P, — PoH! (H,PH] ) 'H,P, (56)
Ri1 =% — PPy (% — %) — PoHY (H;PoHY) 1, (57)

where:%, is the best estimate so far; = h(%;), H; is the Jacobian of(x) evaluated ink;. The same process can be used
to close multiple loops at the same time, increasing the murobconstraints in the minimization problem.

VIlI. EXPERIMENTAL ACTIVITY

For the experimental activity we used a Robuter mobile rdbwh Robosoft which computes odometry as a 3DoF pose;
this datum reaches a PC via serial line. On the PC we have an ffime grabber capable to grab three 704x558x8 pixels
images at the same time. Each channel of the frame grabbenisected to a Sony XC75CE camera. Cameras have been
calibrated with a standard DLT approach like in [17]. Theabbas been moved inside the 4th floor of building U7, Univ.
Milano - Bicocca, Milano, Italy. Distances between consieurobot poses, i.e. views, was about 0.05m. The oversfadce
travelled has been about 200m.

In Figure 6a the odometric travel is shown, altogether wité énvironment planimetry. The odometric error is modelled
as zero mean Gaussian, and the propagation of this erroovgnsim Figure 6b with the usual 99% ellipses; notice that the
actual, i.e. first, poses are in good agreement with the taiogr propagated up to the last ones; this confirms the ctress
of the probabilistic model of the odometric error. Submagpnieation is currently set on the cardinality of the featuie
the submap; the value used in the reported experiment isn5Bigure 6¢ the odometric travel is superimposed to the base
references of the submaps, i.e. what could be consideredeasverall result of the integration of views processingisTh
figure shows that the integration of views gives a large iaseein accuracy, even though this is not enough for obtaiaing
geometrically consistent map. When a submap is closed d@tgection is activated; in Figure 6d the bounding boxes ef th
first and last submaps, i.e. the ones for which a loop is dedectre shown. On these two submaps Robot Relocation and
Local Map Joining are applied. At the end the two submapssed together in a single submap. The geometric consistency
is still not attained at this stage. For this reason we applgp_Closure, in order to distribute the errors along the wisat
of submaps, i.e. relative poses of submaps. The result ¢f isei@tive non-linear optimization (graph relaxationsfown, in
terms of base references, in Figure 6e.

In order to show the effect of an appropriate modelling of tbality, in particular about the number of pose DoF, we used
the same data-set to run the system with a 3DoF pose. Figupeegants a bird-eye view of the reconstruction, before Loop
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(a): Odometric travel superimposed to the enviramnptanimetry. (b): Odometric error ellipses-80), with view_id. (c): Odometric travel (full)

superimposed to the base references of the submaps (ciateected by lines). (d): Bounding boxes of last (darked furst (lighter) submaps. (e): The
base references of the submaps after graph relaxation, azemyth the base references in (c) or (d).
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Fig. 7. Reconstructions before graph relaxation; (a): 3poke. (b): 6DoF-pose.

Closure, obtained with such setting. On the other hand, éhenstruction, before Loop Closure, obtained with a 6Dogepo
is shown in Figure 7b. Another effect, beside the higher emy which is not perceivable in the pictures, is relatedhi
view-to-submap data associations. In the 6DoF-pose rétmtion there are about 15% less missed matches than indbE 3
reconstruction. Notice that, even though the overall ggameonsistency is obtained in both cases, the final worldiehds
affected by these errors, i.e. it presents these isolatdres. Therefore the higher accuracy of the 6DoF-posepteslso
this relevant effect at the global level, after Loop Closukelarger accuracy could improve performance in SLAM system
other than the Hierarchical one.

The 6DoF-pose final reconstruction, projected on the fleshbwn in Figure 8, superimposed to the environment plamnyme
for checking the absolute accuracy; a 3D view of it is preserim Figure 9.
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