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Introduction (from Part 1)

NOTE. This is a copy of the Introduction. The Accompanying Document 
to Deliverable D2.1, in fact, has been split into two Parts (for reasons  
that  are  explained  below),  and  the  document  you  are  currently  
reading is the second of those Parts. The Introduction, therefore, has 
been reproduced here from Part 1.

Deliverables D2.1 and D2.2 include  the datasets collected in - respectively - indoor 
and outdoor environments. Such explorations have been performed with the mobile 
robot designed and set up by WorkPackage 1 of RAWSEEDS. D2.2 also includes the 
datasets recorded in mixed, i.e. outdoor+indoor, locations. 

While the main content of Deliverables D2.1 and D2.2 are the datasets, additional 
data and information are needed to make these datasets fully usable. The additional 
data is attached to the datasets, while the additional information is available in the 
form of two  Accompanying Documents: the present one, associated to D2.1; and a 
similar one, associated to D2.2. 

Notwithstanding the numbering, D2.2 was due - and actually delivered - before D2.1. 
This was due to changes in the schedule of the project (subsequent to an Amendment 
to the Contract) and to the need to perform outdoor acquisitions during the summer 
to avoid weather-related problems.  The collection of the data for both Deliverables 
and the successive processing, formatting and verification of those data have been 
performed  in  accordance  with  the  indications  of  Deliverables  D1.1  (Roadmap  - 
indoor)  and  D1.2  (Roadmap  -  outdoor)  and  with  the  recommendations  of 
WorkPackage 3 (which is dedicated to data verification and validation). 

WorkPackage 3 performed a thorough analisys of the datasets and of their associated 
data and documentation, and generated a set of recommendations to improve and 
maximize their quality. The results of the work of WorkPackage 3 are collected into 
two  Deliverables:  D3.1  (Preliminary  data  validation)  and  D3.2  (Final  data 
certification).  D3.1  was the  result  of  a validation  work  performed on preliminary 
datasets, specifically generated to make such work possible: by the time when the 
final  datasets  were  collected,  all  the  issues  raised  by Deliverable  D3.1  had  been 
addressed and solved, as documented by D3.2. Deliverable D3.2 states, indeed, that 
RAWSEEDS' final datasets reach the required quality standards; it also introduces 
some suggestions  to  improve  the  usability  of  such datasets  and to  correct  minor 
imperfections.  These  suggestions  have  been  implemented  as  well,  both  in  the 
datasets and in Deliverables D2.1 and D2.2. Therefore, at the time of delivery of this 
document,  RAWSEEDS'  datasets  and  all  associated  information  (including  this 
document) are compliant with the recommendations of WorkPackage 3.

As  said  above,  the  datasets  form  the  core  and  the  bulk  of  D2.1,  but  additional 
material is required for their best use. This material comes in the form of associated 
data (such as calibration data for the cameras) and in the form of descriptions and 
explanations.  For  this  reason,  both  Deliverable  D2.1  and  Deliverable  D2.2  are 
actually constituted by three elements:
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1. the datasets;

2. the associated data;

3. the additional descriptions and explanations.

Parts 1 and 2 (according to the list above) of D2.1 have been published electronically 
on a server set up by RAWSEEDS. Publication within a single document was not an 
option, as massive amounts of data are involved (more than one TByte).  Part 3 is 
given by this document, which includes all the information needed to access and use 
parts 1 and 2. This is the reason why the title of the present document is not simply 
"Deliverable D2.1" but "Deliverable D2.1 - Accompanying Document".

For practical reasons, this Accompanying Document has been split into two separate 
documents: Part 1 (Datasets) and Part 2 (Ground Truth Collection and Validation). 
This has been done to facilitate consultation by the users of RAWSEEDS' datasets, as 
the kind of information included into the two parts are conceptually different.

Part 1 includes all the information needed to use the datasets, including a complete 
description of the procedures chosen to acquire the data and to calibrate the sensors.

Part 2 describes in detail how the ground truth associated to the datasets has been 
generated and validated. However,  this knowledge is not needed to simply use the 
ground truth. Therefore, the consultation of Part 2 is only needed by people wanting 
to scrutinize closely the characteristics of RAWSEEDS' ground truth, or to base on 
RAWSEEDS' approach to ground truth collection and validation to perform further 
work in that field.

Notwithstanding the separation between Part 1 and Part 2,  they are actually  two 
parts  of the same document.  For this reason,  section numbering have been made 
coherent between them, allowing to easily reunite them - if needed - to form a single 
document.
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4. Ground truth

Ground truth data are recordings of (segments of) the actual trajectory of the robot 
while traversing the explored environment, time-synchronized with the data coming 
from the  sensors  on board the  robot.  This  section describes the  systems used to 
generate and validate the ground truth associated to RAWSEEDS' indoor datasets. In 
addition to that, it describes how synchronization was achieved.

Two ground truth collection systems were used, both completely independent from 
the sensors on board of the robot (in addition to being independent one from the 
other). Specifically, a vision-based ground truth was generated by a multi-camera 
vision system, and a  laser-based ground truth was generated by a system using 
several laser range finders. In this way, two different ground truth data streams have 
been made available for each dataset. This was useful for different reasons, i.e.:

• because  the  above  streams  were  examples  of  the  kind  of  positioning 
information  that  can  be  provided  from  two  widely  different  systems,  thus 
helping performance comparisons between such systems;

• because the two ground truth sources could be used to validate each other;

• because a higher-precision ground truth data stream could be produced by 
fusing -  with a suitable algorithm -  the two available streams.  This “fused” 
stream  is  the  one  that  has  been  included  into  RAWSEEDS'  Benchmark 
Problems, and will be simply called ground truth in the following.

Please note that it is not necessary to know the contents of this Part of the document 
to use the ground truth provided along with RAWSEEDS' datasets. Such knowledge is 
only necessary for an assessment of the properties of the ground truth.

In the following, the term "ground truth" will be often substituted with its acronym 
"GT".

4.1 Ground truth collection

This Section describes how the ground truth data streams have been generated and 
how they have been fused to produce the GT stream for the Benchmark Problems. In 
addition to that, we will describe how we tackled the (not trivial) problem to ensure 
good synchronization between the mobile robot and the GT collection apparatus in 
presence of an unreliable network connection between the two systems (i.e., one that 
was  subject  to  heavy,  fluctuating  delays  and  to  abrupt  connections  and 
disconnections).

4.1.1 Vision-based GT

Vision-based ground truth (also called  GT-vision) has been collected by attaching 
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several  planar  visual  markers  to  the  robot,  then  observing  these  markers  from 
external calibrated cameras fixed to the environment.  Such markers are a variation 
of visual markers commonly used in Augmented Reality, in particular in the ARToolkit 
system (http://www.hitl.washington.edu/artoolkit/).

Each marker is printed on an A4 sheet of white paper, and placed on a rigid planar 
surface; the marker is a black square, containing internally a 6x6 matrix of black and 
white  cells,  where  the  marker  ID is encoded;  the  ID is  a  9-bit  number,  which is 
scrambled  with  a  XOR  mask  in  order  to  provide  robustness  and  ensure  that  a 
minimum amount of black or white cells is always available: for example, this allows 
one to encode number 0 without having an “all-white” marker.  We will exploit this 
property in the following in our enhanced marker detection code.  In particular, each 
cell is 1/12 of the total width of the marker; the inner 6x6 matrix is not centered in 
the  marker  square,  but  instead  displaced  half  a  cell  towards  the  right  and  top 
directions; this makes such markers incompatible with ARToolkit, but leads to better 
discrimination  of  the  markers'  rotations  in  our  algorithms,  as  we  detail  in  the 
following.
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Before generating ground-truth data, the relative positions of the different markers 
on the hull of the robot must be computed from a number of high-resolution images 
taken from a hand-held camera. When the relative positions of the markers on the 
robot frame are known, the robot can be localized from the images of the external 
cameras, by detecting and reconstructing the 3D position and rotation of the visual 
markers.  Identifying the ID of each marker allows us to compute the position of the 
robot's frame of reference, even when few (or one) markers are visible.

The following parts of this Section are dedicated, respectively, to the description of: 
(i) the calibration of the camera system; (ii) the detection technique for the markers; 
(iii) how the robot position is reconstructed, once one or more markers are localized 
in the image of an external camera; (iv) how the relative 3D position and rotation of 
different  markers  is  computed  from  the  images  of  the  handheld  and  external 
cameras.

Calibrating the vision system

The vision system is calibrated in two main stages, described below.

Camera  setup  and  internal  calibration.   First,  the  cameras  are  placed  and 
securely fixed in their position.  Then, their fields of view are marked on the ground, 
in order to ease the following steps. Each camera is then independently calibrated in 
order to recover its internal parameters, by means of the Matlab Camera Calibration 
Toolbox; we use a checkerboard large enough to fill a significant part of the field of 
view of the camera, whose focus had been previously set to an appropriate distance.

External calibration of cameras.  After all cameras are internally calibrated, we 

A high-resolution marker, with a 24x24 grid (blue points).  Green 
dots show sampling points for the centered 7x7 matrix.  Only a 6x6  
submatrix  represents  the  actual  marker  ID:  the  remaining  values 
help in increasing resiliency to rotational ambiguities, which become 
an issue in smaller marker images.
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compute  the  external  parameters  of  each  camera,  i.e.  the  rototranslation  which 
moves the world coordinates to the camera coordinates. This step is critical for a 
number of reasons.

• The fields of view of the cameras overlap only partially, in order to cover a 
larger  area;  this  is  a  difficulty  for  the  recovery  of  camera-to-camera 
rototranslations.

• Only one camera observes the “world” reference frame, and can be directly 
localized with respect to it.

First of all, a checkerboard is placed on the floor with a corner in the origin of the 
"world" reference frame, with sides parallel to the two horizontal axes of such frame; 
then, one of the cameras is calibrated in such a way that the "world" reference frame 
also becomes its own reference frame. Then, in order to connect the fields of view of 
adjacent  cameras,  we use  a  double  calibration  checkerboard  mounted  on a  solid 
mechanical frame (shown in the figure below), in such a way that the relative position 
of the two patterns is known and stable. Then, we can place each of the two patterns 
in the field of view of each of the two adjacent cameras, and acquire several images 
with different positions and orientations of the double chessboard: this allows us to 
compute an accurate estimate of the relative position between the two cameras. The 
extrinsic parameters of each camera with respect to the “world” reference frame 
(which is only seen by the first camera) are finally computed by chaining the camera-
to-camera rigid transformations. 

Detecting and localizing the images of markers

The marker detection step analyzes every frame of the input video, detects markers, 
and finally outputs the accurate image coordinates of the 4 corners of every detected 
marker -- in a consistent order -- along with the ID of each marker. 

Requirements

The requirements for this step are extremely strict, but the task is eased by the very 
constrained prior information about the scene.  In particular, two requirements are 
fundamental, as their violation would originate excessive errors in the reconstructed 
ground truth data. 

• Perfect sensibility: no marker must be detected where there is none; 



RAWSEEDS
GT

Deliverable D2.1 - Raw Data (indoor)
Accompanying Document

page 9 of 67  -  RAWSEEDS-D2.1-part2_final

• No marker misidentifications: a marker must always be correctly  identified, 
when it is detected. 

Such requirements may be relaxed only by implementing a robust 3D reconstruction 
step with the ability of excluding outliers in detected markers; we did not choose this 
possibility, therefore we must ensure that the two requirements introduced above are 
always met. 

Moreover, in order to provide a good output quality, we also expect the following: 

• Extreme localization  accuracy:  the  corners  of  a  marker  should be localized 
with a very low uncertainty. 

• High sensitivity: a marker should be detected, if it is visible; 

Localization accuracy of the marker corners in the image is extremely important: due 
to the geometry involved in the 3D reconstruction technique, small errors in such 
data  causes  very  large  displacements  in  the  reconstructed  robot  position.   In 
particular, the angle between the viewing rays associated to the opposite corners of a 
marker is very often extremely narrow – less than 1 deg: therefore, small errors in 
the backprojection of those rays translate to macroscopic errors in reconstructing 
depth. 

Overview

The process is divided in three phases: 

1) Detection of candidate markers;

2) Basic filtering of candidate markers, and rough corner localization;

3) Corner localization refinement, marker identification of and final validation. 

On some datasets,  phases 1 and 2 can be substituted by ARToolkit,  whose results 
(marker corners and IDs) are then fed to phase 3 for refinement (which is necessary 
for 3D reconstruction, as noted previously) and final verification.  Some datasets are 
not immediately  compatible with ARToolkit detection,  and are always analyzed by 
means of the algorithm described below.  In either case, accuracy of results does not 
change  as  it  is  determined  by  phase  3,  which  is  always  performed;  instead,  the 
number of false negatives (i.e. visible markers which are not detected), depends on 
the first two phases and may change depending on the specific technique. 

Comparison between ad-hoc marker detection and ARToolkit

ARToolkit has problems with some of our datasets for a number of reasons: 

• marker  contrast  is  sometimes  poor,  and  some  markers  are  unevenly 
illuminated;

• markers often appear small and/or very tilted;
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• there  may  be  a  significant  amount  of  defocus  or  motion  blur,  which  is 
especially disruptive when markers appear as a few tens of pixels wide;

• marker edges are sometimes partially occluded.

ARToolkit  handles  some  of  these  difficulties,  but  must  accommodate  severe 
constraints of computational efforts, as it is designed to run online on a video stream. 
Our  system,  on  the  contrary,  performs  a  more  detailed  analysis  and  can  often 
outperform  ARToolkit  in  detecting  markers,  at  the  expense  of  much  increased 
computational requirements.  Moreover, our system always outperforms ARToolkit in 
localization accuracy of the marker corners, implemented in phase 3, which is always 
performed. 

Finally,  the  markers  used  in  the  final  datasets  are  not  directly  compatible  with 
ARToolkit,  as  they  use  an  off-center  ID  matrix,  which  we  exploit  for  improved 
robustness to rotation ambiguities. 

Phase 1: Detection of Candidate Markers 

This phase takes care of detecting a set CM of candidate markers in the given frame, 
providing a roughly-segmented binary mask M representing each marker.  Since, in 
the  following,  candidate  markers  are  going to  be  refined  and  discarded,  but  not 
added, this phase is designed to be very sensitive, in order to reduce the probability 
of  missing  valid  candidates.  A  significant  amount  of  invalid  candidates  (i.e. 
candidates  not  being actual  markers)  are likely  to  be detected in this  phase  and 
returned in set CM; they will be discarded and filtered in the following. 

The frame is analyzed in order to detect  brightness patterns  compatible  with the 
presence  of  a  marker:  in  particular,  high-contrast  areas  with  the  morphological 
characteristics  of  a  marker  are  isolated,  binarized,  then  segmented  by  means  of 
connected component labeling.  Every resulting connected component is considered 
a candidate marker with an associated binary mask M. 

The  marker  is  defined  as  the  dark  square,  surrounded  by  a  white  border,  and 
containing the ID matrix. 

The first step is a grayscale closure on the original image  I1 with a circular kernel, 
which is roughly as large as half of the expected width of the marker image.  Let I2 be 
the resulting image. 

We now explain the rationale of such operation by analyzing its effect on the marker 
image.  The grayscale closure operation is defined as a grayscale dilation followed by 
a grayscale erosion.

• After the dilation, the dark areas inside the marker are completely filled with 
the bright areas, which expanded from the border and from the white cells in 
the ID matrix; the white marker support also expands outwards. 

• The subsequent erosion does not significantly affect the internal part of the 
marker support, which stays mainly white; the external borders of the marker 
may contract back to the original position, depending on the surroundings of 
the marker itself.
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The final effect of the closure operation is that, in I2, the rectangular marker supports 
appear uniformly white. 

The original image I1 is now subtracted from the closed image I2, which leads to an 
image I3 where larger pixel values correspond to pixels which were both:

• dark in the original image I1, and

• bright in I2.

This strongly  improves the contrast of the markers,  which appear white  on black 
supports in I3.  A thresholding operation on I3 follows .

In  our  final  refined  implementation,  the  subtraction  operation  is  optionally 
substituted by the inverted result of an element-by-element division between I2 and 
I1:

I3 = 1-(I1./I2).

Such  an  operation  is  conceptually  similar  to  the  subtraction,  but  provides  an 
enhanced resiliency to  lighting disuniformities between different markers,  without 
significant side effects: in fact, using this technique the absolute brightness of the 
marker support does not significantly affect how bright the marker appears in  I3, 
which makes the subsequent binarization much easier; in other words,  I3 measures 
the  ratio of intensities between the dark marker parts  and the surrounding white 
support, which is mostly unaffected by lighting.

As  previously  mentioned,  the  last  operation  is  a  binarization,  which  is  trivially 
performed  using  a  0.5  threshold  on  I3.  After  binarization,  connected  component 
labeling is performed.  Each connected component (blob) is a binary mask M, and an 
element of the set of candidate markers CM.

Phase 2: Basic filtering of candidate markers and rough corner localization 

Not every candidate marker detected in the previous phase correspond to an actual 

Steps of the marker detection phase.  From left  to right: original image I1; I2; I3; binarized I3;  
connected components in I3 meeting constraints in Phase 2.
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marker in the image. In this phase, all elements of  CM are subject to a number of 
tests in order to discard obvious misidentifications.  Tests are performed in sequence, 
and as soon as a test is not met, the candidate is discarded.  The order in which such 
tests are applied is defined such that the first tests are computationally cheap and 
very discriminative. Computationally expensive tests are therefore only applied only 
to a dramatically reduced number of candidates. 

In particular, for each candidate marker we compute the following measures on its 
binary mask: 

• Size, which should be compatible to the expected area of a marker;  although 
we tolerate a wide variation in the measured marker area vs. the expected 
area (up to 6 times bigger or smaller), this test still usually discards most of 
the  candidates  in a crowded scene.   Such a large  variability  is  justified by 
distance differences we must account for, but especially by possible tilt in the 
markers, which can dramatically reduce the area of each mask.

• Euler number: the Euler number of a binary blob is related to the number of 
holes in the marker image,  which is expected to  be at least  one.  We may 
reasonably expect a larger number of holes, but we are not enforcing this in 
order  to  account  for  problems  in  the  marker  binarization,  which  are  very 
frequent  when  the  marker  image  is  small  or  blurry.   We  also  discard 
candidates with too many holes, which are sometimes generated by areas with 
high-frequency textures. 

• Solidity, i.e. the fraction of the marker's convex hull which overlaps with the 
marker itself; as the marker projects to a convex quadrangle, we expect this to 
be close to 1. 

• Fraction of the marker image covered by holes.  We require this is less 
than 3/8 but larger than 0.25/8, as holes in the marker blob are expected to 
cover an area of about 1/8 of the marker size (assuming perfect binarization, 
which is not the case). 

We implement a final test by looking for well-defined corners of the filled marker; 
when our routine returns four corners, the candidate is accepted, the corners are 
sorted in counter-clockwise order w.r.t. the marker barycenter, then passed to the 
subsequent  phase,  where  such  approximate  corner  localization  will  initialize  the 
refinement of the marker localization in the image.  If our routine detects a different 
number of corners, the marker is discarded before entering phase 3. 

Localizing well-defined corners from the binary marker image is not trivial, because 
most simple algorithms would be fooled by small errors due to imprecise binarization. 
We provide two alternative algorithms: 

Algorithm A

The barycenter of the filled marker is computed: we create a second float-valued 
image  Id where every pixel belonging to the marker image is associated to its 
distance from the barycenter, and pixels outside the marker are set to 0.

Corners are finally detected as maxima of Id local to a circular neighborhood few 
pixels wide. This is implemented in practice by dilating Id with a binary kernel 
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representing  such  circular  neighborhood,  then  checking  where  the  dilated 
version of Id matches Id itself.

In order to discard couples of nearby corners with the same distances, we add a 
very small random noise to Id before dilating it. 

Algorithm B

The perimeter pixels of the filled marker image are stored in a list, then sets of 4 
points  belonging  to  the  list  are  evaluated  with  the  goal  of  finding  the  set 
defining a quadrangle with the largest area.

The perimeter  pixels  are recovered by applying a single  dilation step to  the 
mask and performing the subtraction of the result with the mask itself.

We then apply a naive algorithm to sort all the pixels evaluating their euclidean 
distances, in order to build a chain of edge pixels.  This step has a computational 
complexity of O(n^2), where n is the number of pixels belonging to the contour: 
this  may  create  problems  with  badly-binarized  markers  which  have  a  large 
number  of  edge  pixels.   Therefore,  we  apply  the  algorithm  is  after  a  basic 
filtering  step,  which  assures  that  the  amount  of  perimeter  pixels  can  be 
efficiently handled, even in extreme conditions.

The optimization starts  from an initial  solution defined by taking four evenly 
distributed corners from the list.  Each iteration is composed of the following 
operations:

• we consider three of the corners as fixed and moves the fourth corner 
forward  in  the  list  in  order  to  optimize  the  area  of  the  defined 
quadrilateral;

• once  a  maximum  is  found  we  repeat  the  step  for  each  of  the  other 
corners;

• when all four corners have been evaluated we repeat the previous two 
steps by moving the corners backward and finally conclude the iteration 
with the best candidate set found.

Since the optimization function may present multiple local minima we apply a 
simulated annealing strategy which consists in perturbing the maximum of the 
current iteration with a gaussian noise. The noise changes the corners index in 
the ordered list by a small amount which is decreased at each iteration.

Algorithm A is more efficient for larger markers, but consistently provides a slightly 
lower success rate than algorithm B, especially with noisy masks.  Therefore, we used 
approach B but left the former as an option.

Phase 3: Localization Refinement, Validation and Identification of candidate 
markers

Once a candidate marker and its rough corner localization are known, the binary 
mask used for the previous processing is disregarded, and the original image data is 
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again taken into consideration in order to refine as much as possible the localization 
of the four corners. 

Regardless on the specific techniques involved, localizing the marker corners from 
the neighboring pixels alone will provide a severely suboptimal accuracy; in this case, 
in fact, the amount of data (i.e. pixel intensity values) used for localizing each corner 
is limited. Moreover, due to defocus and motion blur, corners often appear smoothed, 
and are misplaced even by one or few pixels towards the center of the marker.  This 
systematic error would reflect to a very noticeable systematic error in the marker 3D 
localization. 

The technique we implemented relies instead on the straight edges connecting the 
marker  corners.  In  assuming  such edges  straight,  we disregard the  effect  of  the 
camera radial  distortion:  we verified that  this  is  harmless,  as  such edges  have a 
limited extent in the image.

We first precisely localize those four lines by using data from all the pixels near their 
expected position (except those near the corners, which are deemed unreliable as 
previously introduced).  The expected position of the edges is computed from the 
rough localization of the corners provided by the previous phases. This provides a 
precise and robust localization.  Once the four lines belonging to the marker edges 
are defined, they are (algebraically) intersected in order to recover the refined corner 
points. 

Any error in this process leads to a  late reject of the candidate marker.  One such 
possibility is the failure to find a well-fitting line to the edge in the image area where 
the marker border is expected.  Late rejects are very limited in our final system, and 
amount to one every 10-20 frames.

Once the refined corner points are known they are exploited in order to rectify the 

Details on marker localization refinement and ID decoding and validation.   From left  to right:  
marker with rough corners returned from Phase 2 (red dots): and localization areas for edges  
(blue); detected marker, with refined position (yellow) compared to rough localization from Phase 
2  (blue);  note  that   yellow  square  is  external  to  blue  one,  as  corner  positions  were  initially  
displaced towards the marker center, then refined to the true, outer position.; such localization  
error would result in a 3D reconstruction error of more than 10cm. Marker ID matrices recovered  
and normalized; overview of video frame with recovered markers: note that highly slanted markers 
are not detected; also note late-rejected marker candidate on the right, whose localization couldn't  
be validated.



RAWSEEDS
GT

Deliverable D2.1 - Raw Data (indoor)
Accompanying Document

page 15 of 67  -  RAWSEEDS-D2.1-part2_final

marker image and recover the binary matrix represented inside.

As  we  previously  introduced,  the  6x6  matrix  is  not  centered  in  the  marker,  but 
instead displaced towards the upper-right corner by half a matrix cell.  As the actual 
orientation of the marker is not yet known at this stage, directly recovering the 6x6 
matrix is not an option.  Instead, we look for a centered 7x7 matrix, and handle the 
marker  rotation  in  the  subsequent  stages.  The  actual  6x6  ID  matrix  will  be  a 
submatrix of such 7x7 matrix.

The four corner points in the image are used in order to estimate an homography 
(projectivity) H.  H  transforms the refined corner coordinates to coordinates (0,0),
(24,0),(24,24),(0,24) in the marker reference frame.  H is then inverted in order to 
recover  the  image coordinates  of  the  centerpoints  of  each  cell  of  the  7x7  matrix 
centered w.r.t. the marker.  Such points are finally sampled from the image. 

Sampling from the image at fractional  pixel  coordinates  is  performed either by a 
linear  combination  of  four  neighboring  pixels,  or  by  just  sampling  the  nearest 
neighbor.  We did not notice any measurable difference in accuracy between these 
two methods: this can be explained as the noise levels in our datasets were way lower 
than the contrast between white and black marker cells, and a single marker cell 
often had a projection few pixels wide.  In very noisy conditions with larger imaged 
markers,  a  more  sophisticated  technique  can  be  implemented  by  appropriately 
weighing  all  the  pixels  (possibly  fractionally)  belonging  to  the  cell  projection;  in 
practice,  this  may  be easily  implemented  by appropriately  using the  imtransform 
function, transforming the whole marker to a 24x24 image with a custom resampler, 
then downsampling its central part to a 7x7 matrix. 

The resulting 7x7 matrix is rescaled and normalized between 0 and 1.  It is then 
compared to the ones associated with the expected marker IDs, including their three 
rotated versions, and matched to the one with the minimal distance; such distance is 
also required to be lower than a preset threshold.

Failure to find such match is another cause of late rejection of the candidate marker, 
as it is detected but not verified; in our experiments, this occurs in one every 30-40 
frames.  Instead, if the match is found, the marker is definitively accepted, its ID 
associated,  and  the  four  refined  corners  reordered  consistently  with  the  marker 
expected orientation. 

Localizing the robot in 3D

For every input frame, the set of the detected markers is used in order to recover the 
3D position of the robot.

First we compute the position of each corner of each detected marker in the frame of 
reference of the robot,  by exploiting the known rototranslation between the robot 
frame of reference and the marker itself; in the previous steps, we have also precisely 
localized the the projection of each of these 3D points.

In short, if  R markers are detected in a frame, we have  4*R image points (from a 
calibrated camera), paired with 4*R 3D points in the frame of reference of the robot. 
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Since the camera is calibrated, each of the image points can be backprojected to a 
viewing ray in world coordinates; our goal is to recover the rototranslation leading 
from the world frame of reference to the robot frame of reference, such that the 3D 
points project to the known image points (or, equivalently, such that every 3D point 
lies on the respective viewing ray).  Such problem is just a different formulation of 
the well-known PNP problem (Perspective N-Point – in our case N=4*R), which is 
usually considered for the estimation of the extrinsic camera parameters from the 
images of N known 3D points.

The problem does not have a trivial solution, but it has been widely studied in the 
past due to its practical importance, especially for Augmented Realty applications: in 
fact, estimating the position and rotation of the camera with respect to the imaged 
scene  is  probably  the  most  important  geometrically-challenging  problem  in 
Augmented Reality systems.

Recent works in this field include [AP1,AP2,AP3]. Those approaches differ in their 
main approach to the problem,  and each has its own peculiarities.   For example, 
[AP2] is extremely efficient, as it challenges the problem with an innovative approach 
which does not require repeated iterations; [AP1] approaches the problem from an 
operational research perspective, and makes use of a specialized, highly-optimized 
library for optimization in convex cones.  Both [AP1 and AP2] are O(N) algorithms, 
which however is not a fundamental requirement in our scenario as:

• we do not have strict efficiency requirements;

• we deal with relatively small problems, as no more than 4 markers (16 points) 
are usually visible at a time.

Our system allows one to use any of these in order to solve the position of the robot: 
the code is structured in a modular fashion, such that a single interface is provided 
for robot position reconstruction, and any of the algorithms can be used by simply 
switching an option.  Moreover, our system separately executes the two main steps 
we are  describing  –  marker  localization  and  3D reconstruction  –  as  intermediate 
results  are  permanently  stored.   This  allowed  us  to  easily  compare  the  different 
approaches  without  re-computing  the  position  of  the  marker  edges  in  the  video 
frames.

A well-known issue regarding the PNP problem concerns planar point sets: in that 
case, in fact, most algebraic techniques incur in degeneracies.  In practice, finding 
the position of a 3D target is usually still possible, but with much less precision, and 
expecially  with  much  less  robustness.   In  particular,  the  localization  of  planar 
markers has been dealt with in [AP4], where the following problem is formalized: the 
reprojection error of the given point set has several minima (sometimes very small) at 
very  different  poses  of  the  target;  in  practice,  most  algorithms  often  return 
rototranslations whose rotational components are significantly wrong, sometimes up 
to  45-50  degrees,  as  those  poses also have very low reprojection errors.   In our 
setting, this problem occurs anytime we have to reconstruct the robot position from a 
single  marker.   Note  that,  even  if  only  the  rotational  component  of  the  marker 
position is wrong, the robot position may be reconstructed with a large error as the 
marker itself is not centered on the robot's frame of reference.

We have found the algorithm in [AP1] to be the most robust to this sort of error, up to 
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the point of being affected by it only in few cases, and only when the marker is very 
small  (and  therefore  its  corner  points  detected  with  a  limited  relative  accuracy). 
Therefore, [AP1] is used by default in our system.  Other techniques, especially [AP3], 
are  instead  very  prone  to  this  problem,  and  practically  unuseable  when a  single 
marker  is  visible  –  which  would  also  be  an  important  problem  for  the  mutual 
localization of the marker 3D positions on the robot frame, as shown in the following 
section.

Mutual localization of the marker 3D positions 

Before the chosen approach can be applied, the relative positions and rotations of the 
markers on the robot frame must be known; or, in other words, the rototranslations 
leading from the robot's frame of reference to each marker's frame of reference must 
be known.

We implemented a technique for recovering these rototranslations, based on the fact 
that, as introduced in the preceding part of this Section, even a single marker can be 
usually  localized  in  3D,  given  that  the  suitable  algorithm is  used,  and  that  high 
accuracy  characterizes  the  detected  image  points  and  camera  calibration  data. 
Therefore, we created a number of images with an medium-resolution camera, whose 
intrinsic parameters are precisely known,  but whose extrinsic parameters are not 
known as the camera is handheld and freely moved by the operator.  A number of 
images has been taken of the robot with its markers, from a low distance and from 
several different angles.

For each frame, our system analyzes this data in order to localize the markers, as 
already shown.  Frames where a single marker is visible are discarded.  Else, the 3D 
position of each single detected marker is recovered.

In particular,  we consider a frame of  reference for each marker,  centered at the 
center of the marker; the x and y axes aligned with the horizontal and vertical edges; 
and the z axis going towards the viewer.

Then, by using the algorithm in [AP1] we estimate the rototranslations leading from 
the camera frame of reference to the frame of reference of each marker.  For each 
couple of markers M1, M2, we get two rototranslations T1 and T2, represented by 4x4 
matrices.   The  relative  position  of  M2 w.r.t.  M1 is  therefore  found  as  a  matrix 
T12=inv(T2)*T1.  Similarily,  the  inverse  transformation  is  also  computed  as 
T21=inv(T1)*T2.

We perform this operation on all the available frames, also considering the (lower-
quality)  data  acquired  with  the  external  cameras.  For  each  of  the  15  couples  of 
different markers on the robot, we finally gather all the respective transformations.

The results do not allow us to directly correlate a marker with all the other markers: 
in fact, for some couples no transformation is directly known; this happens when the 
two markers are neven seen at the same time in the same images – for example, 
when they lie at different sides of the robot.  In these cases, the composition of two or 
more rototranslations must be computed, by considering a “bridge” marker.
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In particular,  in our setting we consider one single marker as the robot frame of 
reference.   Therefore,  we need to compute the transformations  leading to  all  the 
other markers, which is performed directly in 3 cases, and indirectly in two.

As many different rototranslations are detected in multiple frames for a single couple 
of markers, those need to be merged in order to recover the final one.  A possibility of 
algebraically merging them exists, consisting in an averaging or median operation 
following  by  a  conditioning  of  the  matrix  to  make  it  an  actual  rototranslation. 
However,  we  also  implemented  a  system  for  manually  choosing  the  correct 
transformation  given  a  3D  graphical  display  of  the  different  possibilities.   In 
particular, the user is presented with a 3D representation of the source marker and 
all  the  possible  positions  for  the  destination  marker.   In  most  cases,  a  “correct” 
position around which the cloud of options is aggregated is immediately visible, along 
with several outliers, possibly due to the robustness issues of the PNP problem with a 
planar target, as we highlighted in the preceding part of this Section.  The user is 
allowed to choose one of the transformations found from the high-resolution dataset – 
which are usually in the center of the cloud – as the correct one, and that is saved as 
the  actual  transformation.  This  practically  represents  an  user-assisted  median 
operation.

Experimental results

An assessment of both the systems used by RAWSEEDS for GT collection systems will 
be  done  in  Section  4.2.7,  and  will  include  a  comparison  between  their  results. 
However, as a preliminary illustration of the performance of the GT-vision system, we 
provide here  experimental  results  for  the  GT Vision reconstruction  (colored dots) 
with respect to GT laser trajectory (green curve). The large colored circles in the 
maps define the camera positions. These results have been obtained by applying the 
GT-vision algorithms to the actual ground truth data collected during the acquisition 
of  the  Bicocca_2009-02-25a  and  Bicocca_2009-02-25b  datasets.  Multiple  passages 
through the area covered by the GT-vision system occurred, hence the fact that more 
than one trajectory are present.

For  additional  details  on  the  datasets,  please  see  Part  1  of  this  Deliverable. 
Measurements are in millimeters.
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4.1.2 Laser-based GT

In  this  section  we  describe  the  procedures  followed  to  generate  the  laser-based 
ground truth data (or GT-laser).

We can subdivide the whole process in three steps: 

1. establish the relative positions between laser scanners;

2. collect the data;

3. estimate the position of the robot in the environment.

In the following figure we present an image extracted from the executive drawing of 
the explored environment where we collected the ground truth data. For doing so, we 
placed four laser scanners in the four red points shown in the map. 

We chose the positions of these sensors in order to cover the same area covered by 
the GT-vision system described in the preceding Section. 

As a preliminary step, we estimated the position of each laser scanner with respect to 
the others by correlating their output. In fact, successive computations need to have 
all the data in the same reference system, therefore the relative positions between 
the sensors have to be known. To aid correlation, we performed this initial alignment 
after having inserted several objects in the field of views of the laser range scanners. 

The following figure shows a panoramic image of the area covered by the ground 
truth collection systems, including the objects used to aid correlation. The four laser 
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range  scanners  (Sick  LMS200,  blue)  and  three  of  the  four  poles  supporting  the 
cameras of the GT-vision system are visible (one of the Sick devices appears to be 
very distant on the background due to image perspective).

To correlate the scans from the different sensors, scans from each of them have been 
acquired. The results are shown by the following figure. Knowing the shape of the 
objects inserted in the environment, we can align these different scans to recover the 
correct position of one with respect to the other. This can then be used to to obtain 
the roto-translation between the sensors with respect to a single reference system. 

Once we know the position of each laser, we can obtain each scan with respect to the 
same  reference  system.  The  following  two  figures  show  two  examples  of 
superimposed scans from all the sensors, first with the initial alignment setup and 
then in a typical situation.

Aligned laser scans (each laser scan is represented by a different color.). Please note the shape of 
the objects used to align them with respect to a single reference system. 
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Now we will proceed to illustrate the actual process leading to the GT-laser data. It is 
therefore useful to remind the way the data has been collected. Each laser range 
scanner  performs  a  set  of  180  measurements  at  75Hz,  1-degree  spaced.  Each 
measurement represents the distance between the laser and the first obstacle in that 
direction.

Alignment of the laser scans with respect to a single reference system (in red). Each laser scan is  
represented by a different color. The square on the right is a magnification of that on the left.

Schematic representation of a laser scanner at work.
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The ICP algorithm

Whenever a set of four scans (one for each laser range scanner) is collected, the ICP 
(Iterative Closest Point) algorithm is executed on these data in order to perform their 
alignment.  In  particular,  our  implementation  of  the  ICP  algorithm  performs  an 
estimate  of  the  robot  position  in  the  environment,  assuming  that  laser  data  are 
already aligned, to recover the position of the robot inside the environment. In this 
section we describe this algorithm in its general form; we will present a pseudo-code 
of the real implementation later, while describing the overall GT-laser algorithm. 

The ICP algorithm is an iterative algorithm developed to align clouds of points. The 
output of the algorithm is the roto-translation between these two clouds. In our case 
the clouds of points are defined as

• the entire scan obtained by fusing the laser scanner data;

• the shape model of the robot (formed of a set of points along the contour of the 
robot).

The algorithm iteratively estimates the transformation between these two raw scans. 
It works in three steps: 

1. perform data-association (i.e.,  establish correspondences between the points 
belonging to two scans);

2. estimate the rigid transformation that best align the first scan onto the second;

3. apply this transformation to the two point clouds;

4. repeat these three steps until convergence is reached.

This algorithm works well when a good initial rigid transformation is given. In our 
case, we have four sets of points obtained by the four laser scanners and the shape 
model of the robot.  The initial position is given by the previous robot position (the 
robot velocity is quite small with respect to the acquisition time).

Generation of the GT-laser data

We will now proceed to describe the algorithm used for the generation of the GT-
laser data. For ease of description it will be decomposed into four steps: (i) scans 
composition; (ii) filtering; (iii) application of the ICP algorithm; (iv) transformation 
refinement. These steps will be described in the following part of this section.

Scans composition 

This step allows to obtain a single scan by joining the four laser scans. The scans 
coming from the four sensors are aligned by using the roto-translations computed by 
the previous steps. Output of this function is a single scan containing all the laser 
scans data in the same reference system. 
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Filtering 

The overall new scan is then filtered in order to remove points we are not interested 
in:  noisy  points  and  static  environmental  points.  In  fact,  only  robot  points  are 
necessary to establish the position of it in the environment. Starting from a scan of 
the whole environment without any other object, the algorithm removes point in the 
vicinity  of  these  environmental  points.  The  procedure  is  very  similar  to  the 
background subtraction method in imaging. We remove the static points that belong 
to the “background” comparing a given scan with the reference one. Doing so, we 
maintain only noisy points and robot points. An example of this two different classes 
of measurements is shown by the following figure.

Given that we possess the estimate of the previous robot position in the environment, 
we can then check around it to find further noisy points. This step is performed by 
defining an area around the robot where that the robot cannot move out of in a single 
step: points outside of it will be considered noisy points and they will be removed.

The following figure shows an example of the application of such technique.
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Application of the ICP algorithm 

At this point, the ICP algorithm is applied to the filtered data. We used a classical 
implementation  of  the  algorithm,  adapted  to  our  particular  problem.  The  input 
parameters of this procedure are: the robot shape model, the previous robot position, 
the filtered scan and two thresholds (the meaning of these two thresholds will be 
explained in the following). 

The robot shape, shown in the following figure, represents the object to track in the 
scan.  It  has  to  be  roto-translated  with  respect  to  the  previous  estimate  of  robot 
position to help the algorithm to converge at the right solution.

Resulting scan after the filtering processes (some noisy points remain  
due to rough thresholds in the example).
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The  filtered  scan  is  obtained  by  the  previous  step  and  represents  the  current 
measurements of the laser scanner (see figure 3). This is the pseudo-code of the ICP 
procedure used by the GT-laser ground truth collection system of RAWSEEDS:

Input: 

   MODEL robot shape model 

   DATA current laser scan 

   THRESHOLD_1 maximum distance between a MODEL point and a DATA point 

   THRESHOLD_2 error variation threshold for stop iterations 

Output:

   TR rotation matrix representing the estimate of the rotation between the previous robot position and the current 
robot position 

   TT translation vector representing the estimate of the translation between the previous robot position and the 
current robot position 

do

    oldolderror=olderror; 

    olderror = ERROR; 

    %find the closest point 

    ERROR = icp_closest ( MODEL, DATA, THRESHOLD_1 ); 

    %compute the roto-translation (TR,TT) 

    icp_transformation ( ); 

    %apply the rototranslation to the points 

    DATA = TR * DATA;                    

    DATA = DATA + TT; 

    %check if the ERROR is above a threshold or not 

while (abs ( olderror – ERROR ) > THRESHOLDS_2 )
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Input: 

   MODEL robot shape model 

   DATA current laser scan 

   THRESHOLD_1 maximum distance between a MODEL point and a DATA point 

Output:

   ICLOSEST vector of indexes. Each record represents a MODEL point. Each entry maintains the index of the DATA 
point associated with that MODEL point. 

icp_closest ( MODEL, DATA, THRESHOLD_1) 

    md = sizeof ( MODEL ); 

    mm = sizeof ( DATA ); 

    ERROR=0; 

    for id = 1 : md 

        dist = Inf; 

        for im = 1 : mm 

            dista = norm ( MODEL (im) - DATA (id) ); 

            if dista < dist &  dista<THRESHOLD_1

                  iclosest( id ) = im; 

                  dist = dista; 

            end 

        end 

        if (dist <> Inf) 

            ERROR=ERROR + err (dist, id ); 

        end; 

    end 

This procedure performs the data-association between the MODEL points and the 
DATA points. For each MODEL point we associate the closest DATA point, if it exists. 
A threshold decides if this point exists or not with respect to its distance from the 
MODEL point. If the point is too far from the MODEL point it will be not associated. 
This distance is based on the Euclidean distance. 

Also the ERROR is computed. This variable represents the sum of the all distances 
between the MODEL points and the associated DATA points. 

Input:

   MODEL robot shape model 
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   DATA current laser scan 

   ICLOSEST vector of indexes representing the associations between MODEL and DATA points 

Output:

   TR rotation matrix representing the estimate of the rotation between the previous robot position and the current 
robot position 

   TT translation vector representing the estimate of the translation between the previous robot position and the 
current robot position 

icp_transformation ( MODEL, DATA, ICLOSEST) 

    %take only the associated DATA and MODEL points

    for i = 1 : sizeof (ICLOSEST) 

        if  ( ICLOSEST ( i ) <> 0) 

            DATA_red ( c ) = DATA ( i ); 

            MODEL_red ( c ) = MODEL( ICLOSEST ( i ) ); 

            c=c+1; 

        end; 

    end; 

    %sort with respect the distances 

    V = sum ( ( DATA_red – MODEL_red ) .^ 2 ); 

    in = sort ( V ); 

    %take the 95% of the closest points 

    num = round ( 0.95 * sizeof ( DATA_red ) ); 

    ind = in ( 1 : num ); 

    %estimate the rototranslation 

    med = mean ( DATA_red ( ind ) ); 

    mem = mean ( MODEL_red ( ind ) ); 

    A = DATA_red ( ind ) - med; 

    B = MODEL_red ( ind ) - mem; 

    %compute the rotation 

    [ U, S, V ] = svd ( B * A' ); 

    U = U * det( U * V' ); 

    R = U * V'; 
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    % Compute the translation 

    T=( mem – R * med ); 

    TR = R * TR;  

    TT = R * TT + T; 

This procedure estimates the roto-translation between the previous robot pose and 
the current robot pose basing on the associations performed in the previous step. 
First  of  all,  we  sort  all  association  indexes  with  respect  their  distance  from the 
associated MODEL points. Then, we take only the first 95% of closest points. This is 
an heuristic threshold that allows to remove the farthest points and so reducing the 
possibility to include noisy points in the estimate process. Finally, these points will be 
used to compute the roto-translation between two sets of points (MODEL and DATA).

The following figure shows an alignment process performed by the ICP algorithm. 

Sequence of alignments performed by the ICP algorithm: in black the laser scan data, in magenta  
the robot shape model

Transformation refinement 

The resulting roto-translation (current robot pose with respect the previous one) is 
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then  composed  with  the  previous  estimate  to  compute  the  pose  the  robot  with 
respect to the reference system of the map. 

An assessment of the performance of the GT-laser system, and a comparison with 
those of the GT-vision system, will be done in Section 4.2.

Robot  shape  superimposed  with  filtered  scan  data.  The 
robot position is obtained by using the ICP algorithm.

Filtered laser scans data. Estimated robot positions (in magenta) by using 
the filtered scan data.
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4.1.3 Synchronization between robot data and ground truth

Introduction

The  synchronization  between  the  Robot  and  the  GT system used  the  IEEE  1588 
Precision  Time  Protocol  (http://ieee1588.nist.gov/),  as  implemented  by  the  ptpd 
software (version 1.0rc1, available through http://ptpd.sourceforge.net/).

The setup consisted in: a Master Clock (MC) onboard the robot, i.e., the PCBrick01 
machine; a Slave Clock (SC), i.e., the PC dedicated to acquisition of all GT data (both 
laser- and vision-based); and a wireless IEEE 802.11g link between them, obtained by 
radio connection between a wireless USB network adapter connected to the SC and 
the wireless router/switch on board of the robot. As the PC dedicated to ground truth 
collection  was  also  the  SC,  synchronizing  the  MC  with  the  SC  also  meant 
synchronizing all the systems of the robot with the GT system.

Wireless links are scarcely reliable, and have variable latency; in Rawseeds' case, the 
variance of the latency of the wireless link/USB adapter was much greater than the 
latency associated to a system composed of cable link and ethernet adapter. For this 
reason, during the acquisition some problems emerged: such problems were solved 
by performing a post-synchronization phase on the data acquired. The following part 
of this section describes the problems and the adopted solution.

In the PTP system, a clock servo1 tries to minimize the offset between the MC and the 
SC by adjusting the SC tick rate. Even if the clock servo filters this offset to remove 
jitter, a loss of link between the MC and the SC results in a constant drift of the SC 
with respect to the MC. This is probably due to the fact that the noise in the offset 
(see Listing 1) introduced by the wireless link is too strong for the filter to handle, so 
when the link goes down the clock continues to drift (as there's no feedback from the 
MC to correct such drift). Differently from previous experiences with off-robot device 
synchronization,  carried  on  in  a  single  confined  room  without  loss  of  wireless 
connectivity (please see Additional Deliverable AD2.3 for details), these loss of link 
are common when the Robot moves within a large building, where the signal path is 
often obstructed by massive structures. 

The offsets between MC and SC, as measured by ptpd, were recorded for reference 
purposes in the post-synchronization phase and are showed in Listing 1. It must be 
noted  that  these  offsets  cannot  be  used  for  a  post-synchronization,  as  they  are 
contaminated with the cited strong noise. The following subsection will describe the 
actual post-synchronization procedure adopted.

1 The clock servo is a PI controller. Please see the documentation of ptpd for further details.
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Listing 1
offset from master:               0s      591500ns 
observed drift:    -255389 
offset from master:               0s     -894500ns 
observed drift:    -256283 
offset from master:               0s     -821000ns 
observed drift:    -257104 
offset from master:               0s     -779500ns 
observed drift:    -257883 
offset from master:               0s     -955000ns 
observed drift:    -258838 
offset from master:               0s     -928000ns 
observed drift:    -259766 
offset from master:               0s     -831000ns 
observed drift:    -260597 
offset from master:               0s     -743500ns 
observed drift:    -261340 
offset from master:               0s      842500ns 
observed drift:    -260498 
offset from master:               0s      725000ns 
observed drift:    -259773 
offset from master:               0s    -1046000ns 
observed drift:    -260819 
offset from master:               0s    -1170500ns 
observed drift:    -261989 
offset from master:               0s    -1130000ns 
observed drift:    -263119 
offset from master:               0s     -982000ns 
observed drift:    -264101 
offset from master:               0s     -855500ns 
observed drift:    -264956 
offset from master:               0s     -775000ns 
observed drift:    -265731 
offset from master:               0s     -682500ns 
observed drift:    -266413 
offset from master:               0s     -605500ns 
observed drift:    -267018 
offset from master:               0s     -607500ns 
observed drift:    -267625 
offset from master:               0s       49000ns 
observed drift:    -267576 
offset from master:               0s    10556500ns 
observed drift:    -257020 
offset from master:               0s     9468500ns 
observed drift:    -247552 
offset from master:               0s    -2440500ns 
observed drift:    -249992 
offset from master:               0s    -3052500ns 
observed drift:    -253044 
offset from master:               0s    -2977000ns 
observed drift:    -256021 
offset from master:               0s    -3076000ns 
observed drift:    -259097 
offset from master:               0s    -2551500ns 
observed drift:    -261648 
offset from master:               0s    -2201000ns 
observed drift:    -263849 
offset from master:               0s    -1949500ns

Excerpt from a ptpd log
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Synchronization procedure

To synchronize the GT system with the robot, the correlation that exists between two 
different streams (GT and odometry, in this case) has been exploited. In particular, 
the rotational part of the pose of the robot was used, as it is independent from the 
translation between the odometric and the GT reference frames (World), and a single 
degree of freedom divides and relates the 2 signals.

The angle estimated by the odometric system of the robot (θR) was compared with the 
angle measured by the laser GT system (θL), as shown in the following figure.

Then, for each segment of ground truth data (these were acquired only when the 
robot was in the area covered by the GT system), the two streams were aligned to 
recover the time offset and clock drift. For this, we chose to use the GT-laser data 
instead of those provided by the GT-vision system because of the higher sampling 
rate of the sensors (75 Hz vs. 5 Hz) and the larger area covered, two characteristics 
that  positively  influence  the  quality  of  the  synchronization results.  The  alignment 
consisted in a minimization of the Sum of Squared Errors (SSE) between the GT and 
the  odometric  data,  i.e.,  a  least  squares  approach  was  taken.  The  minimization 
parameters were:  Δt (time offset),  d (drift)  and  Δθ (angle  offset,  i.e.,  the rotation 
between the Odometric and World frames).

θR and θL for three different portions of GT data (GT1, GT2, GT3).
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The GT data was taken as a reference, while the odometric data was translated (Δt) 
and stretched (d) in time, and shifted (Δθ) in angle. This proved to be the best choice, 
as  the  GT  data  was  noisy,  and  its  sampling  rate  was  less  than  the  one  of  the 
odometric data: the interpolation needed to compute the SSE would have resulted in 
a poor approximation of the original signal (please see the following figure for a close 
up). 

This interpolation was necessary because calculation of the error between the two 
streams required that the signals were sampled at the same instants. In other words, 
it  is  the  sum  of  squared  errors  between  isochronous  samples  that  had  to  be 
minimized.

We made an assumption, here, that requires an explanation: we assumed that a drift 
exists, and that this drift is linear. This is just a hypothesis, probably simplistic: when 
the wireless link is active, ptpd constantly tries to minimize the offset, as explained. 
The variations in the speed of the clock, used to achieve its goal, make the clock drift 
linearly  only  between  2  successive  ptpd  updates,  that  occur  every  2  seconds. 
However, on a global scale (i.e., over a period that can be considered long w.r.t. the 
ptpd intervention interval)  this  piecewise linear drift  can be approximated with a 
single linear drift: in fact, the error is usually far below 1ms, so it's negligible for 
RAWSEEDS'  purposes.  The  following  figure  shows  and  compares  the  drift  as 
measured by ptpd and its linear approximation.

The interpolation problem



RAWSEEDS
GT

Deliverable D2.1 - Raw Data (indoor)
Accompanying Document

page 36 of 67  -  RAWSEEDS-D2.1-part2_final

Example of linear approximation of drift as measured by ptpd on a 56 seconds time 
period (top) and the associated error (bottom).
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For  the  minimization  we  used  MATLAB's  Genetic  Algorithm  and  Direct  Search 
Toolbox patternsearch function,  which  from  our  tests  gave  better  results  than 
MATLAB's fminsearch or MATLAB's Optimization Toolbox lsqnonlin, to cite a few. In 
particular  it  provides  a  stable  minimum,  independent  from  the  starting  point. 
Conversely,  the  other  minimization algorithms we tested misbehaved badly  if  the 
starting  point  was  not  accurately  set,  having  a  very  high  sensitivity  to  the 
parameters, and particularly to Δθ. Even a small difference in the starting point made 
the minimization reach a final point that was far away from the optimum. This was a 
clear suggestion for the use of a derivative-free minimization algorithm. We tried to 
take a two-step approach, in which an initial guess, provided by an exhaustive search 
on  a  fine  pitched  mesh  in  the  parameter  space,  was  followed  by  a  standard 
minimization  algorithm,  like  the  two  previously  cited;  however,  the  results  were 
unsatisfactory. A change in the mesh pitch resulted in a different starting point, and 
then in a different final point, for the motivations just explained. Even an iterative 
approach, in which  Δθ is optimized independently from Δt and  d, gave results that 
were not enough close to the final point.

The solution was constrained in a small volume in the parameter space. This was 
necessary to avoid unrealistic solutions (e.g.: the whole odometric signal collapsed in 
a single point by a very large d, that would gave a SSE of 0), and to exclude many 
local minima. The boundaries were chosen so that the search volume included all 
plausible values, and are listed in the following table.

Parameter Lower Bound Upper Bound unit

Δθ -3.14 3.14 rad

Δt -1 1 s

D 0.99 1.01 %

The results of the minimization algorithm were analyzed visually, in order to exclude 
evidently wrong solutions and, in such cases, to correct the problems that led to such 
solutions. We focused on the parts of the signal where the angle rapidly changes, like 
the one depicted in Figure 4, being those parts the ones that convey most of the time 
information (i.e., where the PSD of the signal has a strong component at the higher 
frequencies).
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Figure  4:  An  example  of  synchronization  results.  A  whole  GT segment  (i.e.,  the  
complete segment of ground truth data  corresponding to a passage of the robot in  
the area covered by the GT collection systems) (top), and a close up (bottom).
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A comparison between the recorded reference time offsets and the results obtained 
in the post synchronization showed that the post-synchronization method described 
above yielded satisfactory results. The offset as measured by ptpd were close to our 
estimated  offset.  As  previously  said,  the  recorded  offsets  can  only  be  used  as  a 
reference, and in no way they can be considered exact.
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4.1.4 Ground truth fusion

The  purpose  of  this  section is  to  describe  the  process  used to  generate  a  single 
stream of ground truth data from the information provided by the GT-laser, the GT-
vision  and  the  odometry  sensor  data.  This  is  made  possible  by  fusing  all  these 
streams into one, in order to obtain a more reliable and more usable information 
about the real position of the robot in the environment. 

Supposing that the uncertainty associated with the measures given by the GT-laser, 
the GT-vision and the odometry sensor are near to be Gaussian, then we can use a 
classical  statistical  approach,  as  the  Kalman  Filter  approach,  to  improve  the 
correctness of the GT results.  Consequently, it is necessary to know the covariance 
of the error associated with each measurement. This information is gathered from the 
validation process (please see Section 4.2 for details). Analyzing the measurements, 
obtained by the GT sensors, on the set of 23 robot positions used in validation, we 
can estimate the covariance of the error associated with each device.  The Extended 
Kalman Smoother will make use of this information to obtain a reliable estimate of 
the GT stream.

In fact, fusing two or more streams of information, we can reduce the uncertainties 
on the measures, obtaining more reliable estimates. Moreover, we are able to provide 
a single GT stream to which the output of RAWSEEDS' Benchmarking Solutions can 
be comparated with. Such result is reached by using an Extended Kalman Smoother. 
Unlike the Extended Kalman Filter, it allows to improve the estimate of the state by 

Ground truth with the associated Gaussian uncertainty (+/- 3 sigma): GT-laser in red, GT-vision in  
magenta and true position in black.  Green lines represents the path of the robot.
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using  the  whole  information  available  (both  past  and  future).  This  algorithm  is 
composed by two phases: the first executes a forward filtering (it is equivalent to a 
classical Extended Kalman Filter), the second is a backward recursion which allows 
to smooth the past estimates integrating the future ones.

We now describe the equations used in both these phases.

Filtering

Suppose we have a nonlinear systems in the following form:

x(t+1) = f(t)(x(t) + u(t+1)) + w(t)

y(t+1) = h(t+1)(x(t+1)) + v(t+1)

where f is the state transition function, u is the control function, w is the process 
noise,  h is  the  measurement  equation and v is  the  measurement  noise.  Now,  we 
suppose that v and w are random white noises with covariance Q and R respectively.

In our case, x(t)  represents the robot position in the environment w.r.t.  the world 
reference  frame,  f  computes  the  transformation  composition  between  the  robot 
position at time t and the movement of the robot at time t+1 (we use the odometry 
measure as the control u), obtaining the new robot position at time t+1.

The function h is the identity matrix since we have directly the measures of the robot 
position in the environment from the GT streams.

The  Extended  Kalman  Filter  approach  approximates  the  nonlinear  system  with  a 
linear system using first-order Taylor expansion, where Ft represents f derived with 
respect to x(t|t) and H is h derived with respect to x(t|t-1).

The goal  is to  determine  P(x(t)|y(t),y(t-1),...,y(1)) with t=1...T.  This is  done in two 
steps: prediction and update.

After the prediction phase the state will be:

x(t|t-1)=f(t-1)(x(t-1))

P(t|t-1)=F(t-1) P(t-1|t-1) F(t-1)^T+ Q(t-1)

Then, we execute the update process, obtaining:

x(t|t)=x(t|t-1)+K(t)(y(t)-h(x(t|t-1))

P(t|t)=(1-K(t)H(t))P(t|t-1)

K(t)=P(t|t-1)*H(t)(R(t)+H(t)*P(t|t-1)*H(t)^T)^(-1)

The following figure shows the result of the filtering step.
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We will describe the second phase: the smoothing step.

Smoothing

The goal  of  the smoothing process is to  obtain the probability distribution  P(x(t)|
y(T),y(T-1),...,y(1)) with t=1...T. 

The equations are:

x(t-1|T)=x(t-1|t-1)+A(t-1)(x(t|T)-x(t|t-1))

A(t-1)=P(t-1|t-1)F(t-1)P(t|t-1)^(-1)

P(t-1|T)=P(t-1|t-1)+A(t-1)(P(t|T)-P(t|t-1))A(t-1)^T

Note that F(t-1), P(t|t-1) and x(t|t-1) are already calculated in the EKF prediction step 
and P(t-1|t-1) and x(t-1|t-1) are calculated in EKF update step.

The following figure shows the output of the smoothing step.

Estimation result after the filtering step. The green ellipses represents the estimates obtained by 
using the EKF approach.
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In order to use the Extended Kalman Smoother we need to resample the GT streams 
in input since the smoothing process requires to make the time discrete. Each data in 
the GT streams has a timestamp that identifies when it has been collected. Different 
streams have different sampling frequencies. Because of this, a resampling process is 
needed. This is performed by using a linear interpolation between two contiguous 
data in the stream. When the EKS estimator requires a new data at time t, the data in 
the stream at time (t1<t) and its contiguous at time (t2>t) are interpolated.

An assessment of the performance of the fusion system, when applied to the GT-laser 
and GT-vision data streams, will be done in Section 4.2.8.

References

Derivation of  Extended Kalman Filtering and Smoothing Equations,  Byron M. Yu, 
Krishna V. Shenoy, Maneesh Sahani

Estimation result after the smoothing step. The blue ellipses represents the estimates obtained by 
using the EKS approach
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4.2 Ground truth validation

RAWSEEDS aims at providing the users of its Benchmarking Toolkit with best-quality 
data. This requirement, when applied to the ground truth data collected along with 
sensor data, means that such data must be gathered with state-of-the-art methods; 
but also, in addition to that, that GT data must be validated, i.e., that the errors and 
imprecisions  affecting such data  must  be evaluated and characterized.  Moreover, 
knowledge of the errors associated to the GT-laser and GT-vision data streams is 
necessary to optimally configure the smoothing algorithm used to obtain the overall 
GT, built by fusing such streams. 

The validation of  RAWSEEDS'  ground truth data  for indoor datasets  required the 
definition and execution of  a procedure aimed at verifying the correctness  of  the 
trajectory data generated by the GT-vision and GT-laser systems, and at evaluating 
the  errors  on  such  trajectory  estimation.  In  this  section  we  will  describe  the 
procedure used to  validate RAWSEEDS'  indoor ground truth data and the results 
obtained from the validation.

Please  note  that  RAWSEEDS already  performed  a  ground  truth  validation  effort, 
amply documented by Additional Deliverable AD2.3 (Validation and Testing). Most of 
the techniques described in the following of this section correspond closely to those 
illustrated by AD2.3. For this reason, and because this document is not specifically 
dedicated  to  ground  truth  validation,  the  description  of  such  techniques  in  the 
present  document  will  not  be  as  thorough  and  painstaking  as  it  is  in  AD2.3.  In 
particular, we will occasionally make references to specific procedures described by 
AD2.3 instead of repeating their descriptions, when such procedures were adopted 
without  any  modification.  Deliverable  AD2.3,  of  course,  remains  available  as  a 
reference about such matters.

4.2.1 Overview

To validate the GT collection systems, we used the following procedure:

1. put the robot in a suitable set of known (or "reference") robot poses within the 
GT area;

2. for each "reference" pose, acquire the data required by both GT-vision and GT-
laser systems to compute (or "reconstruct") the postion of the robot; 

3. reconstruct each of the poses of the robot with both the GT-vision and GT-laser 
systems;

4. evaluate the precision of the reconstructed poses by comparing them to the 
"reference" poses.

Actually, the "reference" poses themselves were not known a priori, but measured: 
they were, therefore, affected by unavoidable errors. This required a validation of the 
"reference"  poses  before  they  could  be  used  in  turn  to  validate  the  poses 
reconstructed by the GT-vision and GT-laser systems. The method used to measure 
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the "reference" poses is described by Section 4.2.4, while the validation of such poses 
and its results are described by Section 4.2.5. This validation was based on the use of 
a  high-precision  map  of  the  region  where  ground  truth  data  were  collected, 
generated  manually  (by  performing  suitable  measurements)  on  the  base  of  the 
executive drawings of the building. This was done because we did not want to rely 
blindly on the executive drawings, as our experience shows that they are frequently 
inaccurate with respect to the actual interior of a building. Section 4.2.2 compares 
the manually reconstructed map to the executive drawing; Section 4.2.3 explains how 
the alignments between the frames of reference associated to the map and those 
associated to the GT-laser and GT-vision systems were performed.

As it happens, the precision of the first set of "reference" poses proved to be lower 
than expected. This outcome, given the proven success of the same procedure during 
the preparation of Deliverable AD2.3, was unexpected. Subsequent investigations - 
briefly  described by Section  4.2.5  -  ascertained that  the  professional  laser  range 
finder  used to  define  the  reference  poses  both  for  AD2.3  and  for  this  document 
markedly changed its precision when large distances and angled surfaces were both 
involved (something that could not happen in the test environment used to generate 
the results described by AD2.3). 

A new set of "reference" poses were then generated without the use of the manual 
laser range finder, and then validated with the same procedure used for the first set. 
The  technique used to  produce the  new set  of  "reference"  poses  is  described by 
Section 4.2.6. Since the validation of this new set of poses yielded good results, they 
qualified to  be subsequently  used to  validate  the  poses reconstructed by the GT-
vision and GT-laser systems. 

Finally,  Section 4.2.7 describes the validation of the GT collection systems (laser-
based and vision-based) using the second - and accurate - set of reference poses. In 
addition to that, the same algorithm for fusion and smoothing used to generate the 
GT associated to each of RAWSEEDS' datasets (which uses the GT-vision and GT-
laser data as its inputs) was applied to the data used for ground truth validation. Its 
output was then subjected to the same validation procedure applied separately to the 
GT-vison  and  GT-laser  data.  In  this  way,  also  the  complete  procedure  used  to 
generate the best-quality ground truth distributed along with RAWSEEDS' datasets 
was validated.

4.2.2 Map of the GT area

Two maps of the GT area were available: the executive drawings of the building (in 
the dxf format typical of CAD) and a new map, of the GT area only, carefully taken by 
hand using a manual laser range finder (Bosch DLE 50 Professional manual laser 
range finder, the same device used to generate the data for Additional Deliverable 
AD2.3 - Validation and Testing). 

Although the  executive  drawing  proved to  be surprisingly  adherent  to  the  actual 
dimensions of the building (many factors - e.g., the finishing of surfaces - influence 
this correspondence, so that the drawings are often very unreliable), the manually 
generated map proved superior. Therefore the latter was used as a reference for all 
subsequent GT validation operations. From now on, unless specified otherwise, the 
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term  "map"  will  refer  to  the  one  generated  manually.  In  the  following  of  this 
subsection, a brief comparison of the two maps is given.

In order to verify the correspondence between the executive drawing of the zone 
used for the ground-truth and the effective position of walls, door and other things, 
we did some measurements and comparisons. The figure below shows the executive 
drawing  of  the  portion  of  building  where  the  GT area  was  located.  A  set  of  30 
dimensions was chosen to compare the drawing to the manually generated map: such 
dimensions are showed in the figure.
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The  results  of  the  comparison  of  the  values  of  the  chosen  dimensions  between 
executive drawing and manually generated map are shown in the following table.
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The mean error is very close to zero: this means that the actual realization of the 
building - or, more precisely, its refurbishment: the building is, in fact, a revamped 
industrial site - closely followed the projects (as we said previously, this is not always 
the  case).  Nonetheless,  local  errors  cause  a  standard  deviation  of  about  100 
millimetres.

The next figure shows the executive drawing (in dark green) superimposed with the 
manually generated map (light green). Please note that that not all features of the 
first  map  have  been  included  into  the  second,  as  only  the  elements  considered 
significant for our purpose were measured (e.g.: some doors on the lower edge of the 
map were not considered). 

Dimension
D1 21650 21671 21
D2 6420 6445 25
D3 6110 6083 -27
D4 7380 7220 -160
D5 7370 7351 -19
D6 14140 14177 37
D7 9110 9183 73
D8 6410 6461 51
D9 6200 6208 8

D10 29200 29245 45
D11 6200 6281 81
D12 14400 14521 121
D13 7420 7504 84
D14 236 0 -236
D15 3583 3559 -24
D16 399 609 210
D17 4813 4709 -104
D18 6183 6117 -66
D19 12157 12246 89
D20 13605 13676 71
D21 15415 15442 27
D22 16863 16878 15
D23 1820 1780 -40
D24 5290 5325 35
D25 5240 5288 48
D26 2220 2204 -16
D27 630 520 -110
D28 1530 1430 -100
D29 2210 2200 -10
D30 3110 3000 -110

Mean 0,55
Standard Deviation 90,34

Maimum overestimation error 210
Maimum undestimation error -236

Measure on 
map [mm]

Real Measure
[mm]

Errore
[mm]
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The two maps are remarkably similar. The largest errors are localized in the zones 
identified with red ellipses. In particular, in the zone named “A” this is due to the 
presence of elevators; their doors are not in the expected positions and, in fact, the 
maximum  deviations  between  the  two  maps  (both  underestimation  and 
overestimation)  are  located  in  this  zone  (dimensions  D14  and  D16).  To  better 
illustrate the local error in zone “A”, next figure shows a zoom of the area.

A

B
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Another significant discrepance is located in the zone named “B”, where an entire 
wall is moved of about 160mm (dimension D4); however this error is not significant 
for ground truth validation, as such wall was not perceivable by the sensors on board 
of the robot while it was in the GT area.

After the decision to use the manually generated map as a reference for GT validation 
activities, we set up an arbitrary frame of reference in the environment by marking a 
Cartesian  couple  of  orthogonal  axes  on  the  floor  in  a  convenient  position.  The 
position of such frame is roughly shown by the following figure (please note that this 
image is rotated by 90° with reference to the preceding map).

Then we proceeded to localize the frame with reference to the boundaries of the area 
covered by the map by carefully measuring its position relative to suitable features of 
the map. And finally, we defined the position of all points of the map in the newly 
established frame of reference. In the following, such reference frame will often be 
called the world reference frame.

4.2.3 Alignment of the reference frames of the GT collection systems

To correctly evaluate the performance of the GT collection systems (or even to use 
the data produced by them) it was necessary to align their own frames of references 
with the world reference system. In this way, the trajectories generated by the GT-
laser and GT-vision systems could be correctly placed in the reference frame of the 
map.  This  alignment  was  performed  separately  for  the  GT-laser  and  GT-vision 
systems: in the following of this subsection we will describe how. 

For  the  GT-laser  system,  after  positioning  in the  GT area  the  four  Sick  LMS200 
sensors  that  such  system is  based upon,  the  poses  of  such sensors  in  the  world 
reference system had to be determined. This operation was centered on the use of a 
Matlab script based on the same ICP alignment algorithm described in Section 4.1.2, 
and was structured as follows:

1. the position of each of the four Sick sensors (in the following they will be called 
Sick1, Sick2, Sick3 and Sick4) of the GT-laser ground truth collection system in 
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the world reference frame was measured manually (with the Bosch DLE 50 
laser range finder);

2. an  object  of  simple  geometry  and  known  dimensions  (a  big  rectangular 
cardboard box with rigid, straight sides) was positioned in the environment 
with a corner in the origin of the world reference frame and its sides parallel to 
the frame's axes;

3. a scan was acquired from each of the Sick sensors;

4. the above scans were referred to the world reference frame, using the poses of 
the sensors measured at point 1;

5. application of the ICP algorithm to align the scans of point 4, using the poses 
determined at point 1 as initial poses: this yielded a modified pose of Sick2 
with reference to Sick1;

6. while the pose of Sick1 in the world reference frame remained unchanged, the 
pose of Sick2 was updated considering the result of point 5;

7. a new scan was generated by merging the scans of Sick1 and Sick2 (please 
note that the two sensors were correctly aligned one with respect to the other 
due to the action of point 6, so the scans overlapped with good precision): this 
merged scan will be called Scan12;

8. the ICP algorithm was applied again to align the scan of Sick3 (starting by the 
position of point 1) with Scan12,  leading to a modified position of Sick3 (a 
position that gives good alignment with Sick1 and Sick2);

9. the scans from Sick1, Sick2 and Sick3 were merged: the resulting scan will be 
called Scan123;

10.the ICP algorithm was applied again to align the scan of Sick4  (starting by the 
position of point 1) with Scan123, leading to a modified position of Sick4;

11.as the position of Sick2 on the map (i.e., in the world reference frame) was not 
considered fully satisfactory, a new run of the ICP algorithm was done with 
such initial position and the merged scans of Sick1, Sick3 and Sick4 (with the 
last 4 set in the poses determined at points 8 and 10 respectively);

12.the  ICP algorithm was  applied  to  the  overall  scan  (Scan1234)  obtained  by 
merging the scans from all the sensors (set in their last computed poses), to 
align it to the map (the more precise, manually generated one);

13.point 12 led to  a collective update  of  the  positions  of  all  the Sick sensors, 
mantaining their relative poses but modifying their poses with reference to the 
world reference frame;

14.finally, the ICP algorithm was applied again - separately - to each of the scans 
from the four sensors, considering the last computed poses of the sensors as 
initial poses and with the aim of better aligning each sensor to the map. 

The following figure shows the portion of the GT area where the cardboard box was 
placed,  superimposed with  the  map lines  and  the  scans  from the  four  fixed Sick 
LMS200 laser range scanners (plotted in different colours). On the left it is shown the 
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situation  before  the  alignment,  on  the  right  the  situation  after  the  alignment. 
Measurement units are metres; please note that the references are not the same for 
the two pictures.

For the GT-vision system, alignment of the reference frame of the cameras to the 
world reference frame was performed with the procedure described in Section 4.1.1, 
while considering camera calibration.

4.2.4 Measurement of the "reference" poses of the robot

As  we  previously  said,  the  GT validation  procedure  required  that  the  robot  was 
positioned in a suitable set of physical positions. The poses of the robot when set in 
each of such positions had then to be determined and localized in the world reference 
frame (i.e., the reference frame of the manually generated map).

We chose a set of 23 suitable robot positions within the GT area (this number of 
positions  was  sufficient  to  cover,  with  sufficient  spatial  sampling  resolution,  a 
suitable path within the GT area). Then we defined 3 points on the outer frame of the 
robot (which was made to be box-like, with vertical outer surfaces, to increase the 
precision of GT-laser localization) by intersecting such frame with an horizontal plane 
and selecting 3 of the 4 edges of the rectangle thus obtained. Finally, for each of the 
23 positions the pose of the robot robot (in the reference frame of the world) was 
collected by measuring the distances of each of the 3 selected points on the frame of 
the robot from 20 fixed fiducial points set on the walls of the physical environment. 
The following figure shows the fiducial points (and the world reference frame) on the 
map of the GT area; measurement units are millimeters.



RAWSEEDS
GT

Deliverable D2.1 - Raw Data (indoor)
Accompanying Document

page 53 of 67  -  RAWSEEDS-D2.1-part2_final

The positions of the fiducial points are not uniformly distributed over the GT area. 
This was a deliberate decision: in face the fiducial points have been chosen so that 
their visibility from the "reference" poses was maximized, while taking into account 
obstructions  of  all  kinds  (such  as  building  elements  or  RAWSEEDS'  gear  and 
material).  Finally,  fiducial  point  number  8  appears  to  be  in  a  "strange"  location 
because it was positioned on the side balaustrade of a staircase leading down.

The positions of the fiducial points in the world reference frame were computed in 
the following way:

1. Given the (arbitrary) world frame of reference, defined in section 4.2.2 and 
specified by markers on the ground, a set of 5 additional points were defined 
on the ground around the origin (at a distance of 4m maximum from it). This 
was done by carefully positioning an L-shaped metal frame on the ground in 
correspondence with the horizontal axes of the world reference frame, and by 
marking  on  the  ground  the  end  points  of  the  "L":  the  positions  of  such 
additional points were, therefore,  associated to the dimensions of the metal 
frame, which in turn had been measured with great care by hand.

2. The locations  of  the  20 fiducial  points  in the  world  reference  system were 
defined by measuring the distance of each of them from the 5 points defined at 
step 2 and from the origin, and then using the Kalman-filter-based algorithm 
defined in AD2.3, already cited and also used to define the position of the robot 
with reference to the fiducial points.

The pose of the robot was computed from the measurements of the distances of the 3 
robot  points  from  the  20  fiducial  points  with  the  estimation  procedure  already 
described  in  Additional  Deliverable  AD2.3,  i.e.,  a  Least  Squares  estimate  of  the 
intersection of circles, implemented by means of an extended Kalman filter (EKF). 
The  results  of  such  procedure  is  shown  by  the  following  figure.  Each  pose  is 
identified by a progressive number and a portion of the robot frame (two edges) is 
plotted. Robot orientation is identified by an arrow, corresponding to the X axis of the 
robot's own frame of reference (defined in Section 3.1.2).
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Distance measurements were taken with the already cited Bosch DLE 50 Professional 
manual laser range finder, the same used to generate the data for AD2.3. For some of 
the 23 poses, one or more of the three points on the robot were not visible from some 
of the fiducial points, due to the presence of obstacles; however, the position of the 
fiducial  points  was  chosen  in  such  a  way  that  only  a  small  fraction  of  them 
experienced this problem for any pose of the robot within the set of 23 "reference" 
poses.

4.2.5 Evaluation of the "reference" poses of the robot

As no "perfect" values for the "reference" poses of the robot used to perform the GT 
validation were available, a method to evaluate the quality of a set of "reference" 
poses against an objective benchmark had to be devised. We decided to perform this 
evaluation by comparing the data acquired - in each of the "reference" poses - by the 
Sick laser range finders on board of the robot (one LMS200 and one LMS291) with 
the map of the nearby environment, i.e. with the manually measured map described 
by Section 4.2.2. Errors in the poses (and especially in the angle component of them) 
were clearly  shown by this  method,  which has also the advantage of immediately 
translating such errors into maps, which are easily inspected and interpreted by a 
human observer.

In practice, the validation procedure for the set of 23 "reference" poses was executed 
as follows:

1. for each pose of the set, plot the scans of the onboard laser range finders on 
the map while considering the robot as set in the pose under consideration;
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2. evaluate visually the differences between the map and the overall plot (i.e., the 
superimposition of the plots associated to the single poses).

At the end of such a procedure, in the absence of errors of any kind, the data from 
the laser range finders will align perfectly with the map. If the poses - or some of 
them - are affected by errors, such errors will manifest themselves as a "smearing" of 
the boundaries of the environment, as the scans taken from different locations of the 
robot will not superimpose perfectly with the map. As a reference to better evaluate 
the  following  figures,  below  is  a  copy  of  the  map  alone,  without  plotted  scans. 
Measurement units are metres.

We will now show the result of the pose validation procedure described above, when 
it was applied to the "reference" set of poses (i.e., the one measured by hand). From 
previous experience in GT validation (documented by Deliverable AD2.3) we expected 
a good result, i.e., one where the plotted scans were well aligned between themselves 
and with the lines of the map; on the contrary, the result of this test contradicted our 
expectations, as shown by the following figure.
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The "cluttered" areas on the left and on the top right of the plot were expected, as 
they correspond - respectively - to a set of floor-fixed, open-frame tables and chairs 
and to the area where RAWSEEDS' main working area was installed. What we didn't 
expect, however, was the overall extent of the errors between plot and map.

Three error causes could have influenced this result, i.e.:

• errors in the map describing the physical environment;

• errors in the output of the Sick sensors;

• errors in the "reference" poses (i.e.,  the errors that this test procedure was 
aimed at identifying).

In practice, the first two causes of error could be ruled out (or at least considered 
negligible in this context): the first, because the map was checked with the utmost 
care  and  proved  reliable;  the  second,  because  Sick  laser  range  finders  are  well 
known in the field of autonomous robotics and have satisfactory performance for this 
application (of course we checked that our specific items were correctly functioning). 
Therefore, the imprecisions in the correspondence between plots and map could be 
associated  with  certainty  to  imprecisions  in  the  "reference"  poses,  although  this 
outcome also contradicted similar experiences in GT validation described by AD2.3. 

We hypotesized that these unexpectedly large errors in the poses were due to a lower 
precision of the measurements taken with the manual laser range finder and used to 
estimate the position of the robot. We also supposed that this effect was associated to 
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much  larger  measured  distances  than  the  ones  occurring  in  the  experiments 
documented by AD2.3, and/or to the fact that many of the measurements were done 
between a point on the robot and a surface that was not orthogonal to the measuring 
laser ray. In such conditions, in fact, we observed a visible smearing of the laser dot 
projected on the surface, which in turn could easily have led to errors in the length of 
the laser trajectory.

Subsequent  tests  allowed  us  to  ascertain  that  the  measuremen  accuracy  of  the 
manual  laser range finder was heavily dependent on the angle  between the laser 
beam and the reflecting surface,  even when the latter  was optimal  (light-colored, 
smooth, non-reflecting). This effect strongly increased with the measured distance, 
being  negligible  within  a  few  meters  but  becoming  very  noticeable  when  large 
distances - such as the ones involved by the GT validation operations described by 
this document - were to be measured. Conversely, for the setup described by AD2.3 
distances were limited to a few meters maximum, as in that case the experiments 
took place in a much smaller room. This is the likely reason why those experiments, 
while  using  the  same  laser  range  finder,  were  not  significantly  disturbed  by 
measurement errors. 

To test the manual laser range finder we performed the following test. We set up a 
mechanical device fitted with a vertical surface (covered with a matte material with 
good  laser  reflection)  which  was  able  to  precisely  rotate  around  a  vertical  axis 
passing for the surface plane. Then, we measured  with the manual laser range finder 
the  distance  between  a  point  of  the  surface  belonging  to  the  rotation  axis  and 
another - suitably distant - point. Such measurement was repeated over a range of 
rotation angles (and then for the initial  angle  again,  to  be sure that  nothing had 
moved  during  the  test).  The  distance  between  the  two  points  (around  17m)  was 
comparable with the typical distances to be measured when during the collection of 
robot poses. The following table shows the results of the test; the angle value is the 
one between the normal to the reflecting surface and the line of propagation of the 
laser.

angle [deg] 0 30 45 60 80

measure [mm] 17627 17627 17629 17636 17646

For each angle, multiple measurements were taken (small oscillations of 2-3mm were 
experienced during the test and are typical; it is important to note that the amplitude 
of such oscillations did not change with the angle): the values in the tables are mean 
values. As the table shows, when the angle exceeds 45° measurement errors rapidly 
increase;  maximum  measure  error  amounts  to  19mm,  for  an  angle  (80°)  not 
dissimilar  from some of  those associated to  the measurements  of  the "reference" 
poses. Wide angles (i.e. angles exceeding 45°) were very frequent while measuring 
the pose of the robot, and errors of the magnitude of those listed in the above table 
could well have led to significant errors on the pose, especially on orientation.

The same test, when repeated at a measuring distance of 2m, showed no errors. This 
result confirmed that the absence of errors in the data from the manual laser range 
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finder associated to the experimental setup described by Deliverable AD2.3 is most 
likely due to the significantly smaller scale of the test environment compared to the 
GT area considered in this document.

Measurement errors such as those shown in the above table are compatible with the 
kind of misalignment of the scans that was experienced during the validation of the 
"reference" poses, especially considering the fact that such type of errors influenced 
the  measured  poses  of  the  robot  two  times:  first,  because  they  occurred  while 
measuring  the  distances  between  robot  points  and  fiducial  points;  and  second, 
because the stated positions of the fiducial points themselves in the world reference 
system were obtained with the same kind of measurements.

The conclusion of the above analysis was unequivocal: the set of "reference" poses 
generated by using manual measurements with the manual laser range finders had 
too low a quality to qualify - as we hoped - as ground truth in the evaluation of the 
same poses as reconstructed by the GT-vision and GT-laser systems. A new set of 
"reference" points  was needed.  Of  course,  we needed to define a new method to 
generate  such  poses  that  did  not  rely  (or  did  not  rely  solely)  on  the  use 
measurements output by the manual laser range finder.

It is important to note, at this point, that the kind of measurement errors described 
above could not have altered the map of the GT area, notwithstanding the fact that 
such map was based on measurements  taken with the  same Bosch DLE 50 laser 
range finder used to measure the "reference" poses. This is due to the fact that, while 
performing the measurements  used to  generate  the map,  we always took care of 
using the laser range finder in its optimal functioning conditions, i.e., with the laser 
beam incident on the measured surface with an angle of 90°. In conclusion, although 
we found out that the manual laser range finder was unsuitable for some kind of 
measurements  (at  least  without  compromising  its  remarkable  precision),  but  that 
such kind of measurements was not required by the building of the map of the GT 
area. We could then continue to be confident in the quality of such map.

4.2.6 Generation of a more precise set of  "reference" poses

As we showed in Section 4.2.5, the first set of 23 "reference" poses of the robot, to be 
used for GT validation, proved to be affected by excessive errors to be usable for that 
task. We then proceeded to devise a procedure to refine such set and produce from it 
a new set of substantially more precise poses. The approach we chose to solve this 
problem was, again, based on the application of the ICP algorithm for the alignment 
of  clouds of  points,  already  described in Section 4.1.2;  the additional  information 
used to refine the poses were given by the comparison between the scans of the 
onboard Sick laser range finders and the map of the GT area. 

The procedure to generate the new set of "reference" poses was the following:

1. first, we found a better estimate of the relative pose of the two Sick sensors on 
board of the robot: this was done by applying the ICP algorithm to align the 
scans from the two sensors with the hand-measured map of the GT area, using 
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the hand-measured relative pose of the two devices as the start value (this step 
brought a minor refinement of such relative pose);

2. then,  for each of  the 23 "reference" hand-measured poses of the robot,  we 
applied the ICP algorithm to align the scans from the Sick laser range finders 
(acquired with the robot in the considered pose) with the hand-measured map 
of  the  GT area:  in this  case we used as start  value for the robot pose the 
"reference"  pose  generated  from  manual  measurements  and  described  in 
Section 4.2.4.

The above steps brought to a new set of "reference" poses of the robot, obtained by 
using the ICP alignment algorithm to refine the previous - and unsatisfactory - set. 
The following figure shows the two sets of 23 "reference" poses, represented by small 
arrows corresponding to the X axis of the robot's own reference frame. The starting 
point of such arrows corresponds to the origin of such frame. The poses coming from 
manual measurements are depicted in red, while the new set of poses obtained by 
applying  the  ICP  algorithm   to  the  outputs  of  the  Sick  laser  range  finders  are 
depicted in black. Measurement units are millimeters.

At a first glance, the two sets of "reference" poses can appear very similar to each 
other. The next figure shows more clearly the differences between them, by analyzing 
the distances  (in terms of  position of  the origin and of orientation of  the X axis) 
between  the  two  sets.  Measurement  units  are  millimeters  for  linear  distances, 
degrees for angular distances.
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Linear distances are always smaller than 200mm, with a mean value of  83mm and a 
standard deviation of 47mm; angular distances are comprised in a range of about ±3 
degrees, except for pose number 11 that suffers from a much larger error, and sport 
a mean value of 0.28 degrees and a standard deviation of 2.19 degrees.

From the above data, however, it is not immediately apparent if, and to what degree, 
the set of "reference" poses generated with the ICP algorithm is more accurate than 
the  first  one obtained by manual  measurements.  To investigate on this  issue,  we 
repeated on the new set the validation test applied to the first one, i.e.:

1. for  each  pose of  the  set,  we plotted  the  scans  of  the  onboard  laser  range 
finders  on  the  map,  while  considering  the  robot  as  set  in  the  pose  under 
consideration;

2. we evaluated visually the differences between the map and the overall  plot 
(i.e., the superimposition of the plots associated to the single poses).

The result of the test is shown by the following figure.
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It is immediately apparent how the plots associated to the new set of "reference" 
poses are much better aligned to the map, in comparison to the plots associated to 
the first set. This can be considered as valid evidence that the new set is significantly 
better than the old one. 

Following  this  analysis,  we decided  to  adopt  the  new set  of  poses  as  the  set  of 
"reference" poses to be used to evaluate the precision of the GT data generated by 
the GT-vision and GT-laser systems. In the following of this section, therefore, the 
"reference" poses will be those obtained with the algorithm outlined above.

4.2.7 Assessment of the GT- collection systems

It is now possible to describe the results of the validation procedure applied to the 
GT-vision and  GT-laser  systems.  For  each  one  of  the  two  ground truth  collection 
systems  the  validation  procedure,  already  described  before,  is  based  on  the 
comparisons  between  the  23  "reference"  poses  generated  with  the  algorithm 
described in Section 4.2.6 and the corresponding 23 reconstructed poses output by 
the system.

First of all, it is interesting to give an immediate perception of the performances of 
the two GT collection systems with plots analogous to the one used in Section 4.2.6. 
More specifically, for each of the "reference" poses we will plot (on a single graph 
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including the map of the GT area) the output of the Sick sensors on board of the 
robot, executing the plot by considering the robot as set in the pose reconstructed by 
the  GT collection  system under  consideration  (instead  than  in  the  corresponding 
"reference" pose). The results are shown in the following figures: first for the GT-
laser system, and then   for the GT-vision system. 
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These plots show - as expected - a degradation with respect to the corresponding plot 
generated using the "reference" poses: in particular, they highlight the fact that some 
of the reconstructed poses are affected by angle errors, easily detectable with this 
kind of representation. However, the above figures also show a good correspondence 
between the  plots  and  the  map.  In  the  following  of  this  Section  we will  analyze 
quantitatively such correspondence.

The next figure show the 23 robot positions used for ground truth validation. For 
each one of them, three different poses are shown, i.e.: (i) the "reference" pose, in 
black;  (ii)  the pose reconstructed by the GT-laser system,  in green;  (iii)  the  pose 
reconstructed  by  the  GT-vision  system,  in  blue.  Please  note  that  for  poses 
9,5,15,17,18 the GT-vision system was unable to  localize  the  robot.  Measurement 
units are millimeters.

Reconstructed poses coming from the GT-laser ground truth collection system are 
visibly more precise than those coming from the GT-vision ground truth collection 
system, particularly when we consider poses that are far from the world frame of 
reference. This is coherent with the inner working of the GT-vision system, as in such 
cases the robot is observed by cameras having a reference frame that is linked to the 
world reference frame by a chain of multiple rototranslations.
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The next figure shows more clearly the differences between the output of the GT-
laser and GT-vision systems. In particular, linear and angular distances between the 
"reference" poses and the reconstructed poses are shown. The results associated to 
the GT-laser system are depicted in green, those associated to the GT-vision system 
are in blue; measurement units are millimeters and degrees.

Again, it is easy to notice that the GT-laser system is more precise than vision. In 
particular  distance  errors  for  GT-laser  are  always  smaller  than  50mm,  while 
orientation (except for pose number 11 that suffers from a big error) are included 
within  a  range  of  ±2,5  degrees.  For  the  GT-vision  system,  distance  errors  are 
characterized by the presence of high peaks along with much better results, for some 
poses better than those associated to GT-laser.

For the GT-laser system, the mean linear distance error amounts to 20mm, with a 
standard  deviation  of  11mm;  the  mean  angular  distance  error  amounts  to  0.15 
degrees with a standard deviation of 1.56 degrees.

For the GT-vision system, the mean linear distance error amounts to 112mm, with a 
standard  deviation  of  90mm;  the  mean  angular  distance  error  amounts  to  -0.80 
degrees with a standard deviation of 2.16 degrees.
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4.2.8 Assessment of the GT data

For each of RAWSEEDS'  datasets,  the ground truth provided along with it  is  the 
result of the application of the smoothing algorithm described by Section 4.1.4 to the 
data streams output by the GT-laser and GT-vision ground truth collection systems 
during the acquisition of  the dataset  under consideration.  Therefore,  after  having 
assessed (in Section 4.2.7) the performance of the two GT collection systems, it is 
now appropriate to describe the performance of the overall GT generation system. In 
other words, we will now analyze the output of the smoothing algorithm when applied 
to the output of the GT-laser and GT-vision systems. 

The evaluation of the smoothing algorithm cannot be done by using the same set of 
23  poses  already  used  to  assess  the  GT  collection  systems.  This  is  due  to  the 
particular characteristics of the validation dataset.  In fact, single and independent 
poses constitute  this stream. Each pose is stochastically  independent  of the other 
ones. There are no links between consecutive poses, and - in general - there is no 
temporal linking among all  these poses. For this reason a filtering and smoothing 
process  is  not  applicable.  Moreover,  being  the  smoothing  process  a  statistical 
method, it needs to have an estimate of the  errors on the input data. These errors is 
unknown in our case and this validation phase is just the procedure which allows to 
obtain  these  estimates.  It  will  be  done,  instead,  by  using  a  segment  of  GT  data 
associated to one of the datasets described in Section 3, included into Part 1 of this 
document.

In particular, we will analyze a segment of GT data extracted from the dataset called 
20090227A. In the following figures we show each stream of GT obtained by each GT 
sensor  without  any  smoothing.  The  estimated  poses  are  described  by  mean  and 
covariance  (obtained  during  the  validation  phase)  and  they  are  represented  with 
ellipses (+/- 3 sigma) in the drawings. Measures are in metres.

GT laser GT vision
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The last figure represents all the data streams used in the smoothing process. Notice 
that all the +/- 3 sigma ellipses overlap, making these streams consistent.

After the filtering phase of the ground truth fusion process (please see Section 4.1.2 
for its description) we obtain the following result (green ellipses represents the +/- 3 
sigma error in the estimated robot position); measurement are in metres.

Finally, the smoothing phase produces the final result (blue ellipses represents the 
+/- 3 sigma error in the estimated robot position) shown in the following figures: first 
in the same scale used in the preceding figure, and then zoomed to make possible a 
close inspection of the uncertainty ellipses).

GT  laser  superimposed  with  GT  vision.  In  black  the  
odometry data stream.
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As can be seen, the result after the smoothing phase is better than the result after 
filtering alone (the blue +/- 3 sigma ellipses are smaller than the green ones). Thus, 
the integration of the information given by the two different and independent GT 
streams allows to obtain a single and more precise GT stream of robot poses.

Estimated robot positions after the smoothing phase superimposed with the result obtained by the  
filtering step.

Detail of the highlighted area
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