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Executive Summary
This document is the description of the result of the activity performed in WP4, which aims at the 
definition of the Benchmark Problems.
A Benchmark Problem, in the RAWSEEDS parlance, is the union of the description of a problem, 
with the sensor streams collected during the activity of WP2, and the measures that we propose to 
use  for  the  performance  evaluation.  The  datasets  have  been  collected  within  WP2  using  the 
infrastructure defined in WP1, and have been validated during the activity of WP3.
Under the point of view of the data, in WP4 we had more a re-working than something fully new; 
quite differently from that, has been to deal with the issue of the rating methodologies. This part of 
the  work,  although more  theoretic,  proved difficult  because  of  the  different  interpretations  and 
objectives that the different partners gave to the performance measures. While this is typical also in 
other fields, when it comes to performance evaluation, we were expecting a smoother advancement 
of the work. We concluded our work with a rich set of performance measures, which will be subject 
to real life usage, in order to appreciate their acceptance in the community.
The measures  for  the performance evaluation that  we devised aim at  the  evaluation of  SLAM 
algorithms. While some of these measures aim at the evaluation of the intrinsic quality of the result, 
others aim at an evaluation that is based on the quality of the robot performance in some mobile 
robotic task, by using the result, and not by looking at the result per sé. We believe this last kind of 
performance measure to be a  necessary complement to former and to be the definitive way of 
benchmarking robotic activities.
In the end, in WP4 we define 7 Benchmark Problems; these are then turned into the much more 
numerous Benchmark Problem instances, by means of the union with the collected datasets.
In the rest of the document "Benchmark Problem" is shortened in BP, "Benchmark Solution" in BS, 
and "Ground Truth" in "GT".
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Introduction to the RAWSEEDS Benchmark Problems
As a short  remind about  the structure of the project  work,  we recall  that  providing the sensor 
datasets is the task of WP1, WP2 and WP3: in particular WP1 is about setting up the physical 
infrastructure devoted to  the experimental  activity,  WP2 is  about  the physical  collection of  the 
datasets,  while  WP3  is  about  their  validation.  Providing  methodologies  for  the  quantitative 
evaluation  of  the  performance  of  algorithms  is  part  of  the  task  of  WP4.  On  the  other  hand, 
providing proven algorithms, having already demonstrated successful performances, to be used for 
comparison with newer solutions from the community, is the task of WP5. The setup of the website, 
which acts as the repository of the collected datasets and documentations, is the task of WP6.

A Benchmark Problem, or BP, is defined as the union of:
1. the detailed and unambiguous description of a task;
2. an extensive, detailed and validated collection of multisensorial data, gathered 

through experimental activity, to be used as the input for the execution of the task;
3. a rating methodology for the evaluation of the results of the task execution.

The application of the given rating methodology to the output of an algorithm or piece  
of software designed to solve a Benchmark Problem produces a set of scores that can be  
used to assess the performance of the algorithm or compare it with other algorithms.
[From RAWSEEDS' Description Of Work (Annex I to the Contract)]

A result of the activity in WP4 is that we considered more appropriate to introduce a relatively 
small number of BPs, namely Laser SLAM, Monocular SLAM, Stereo SLAM, Trinocular SLAM, 
Omnidirectional vision SLAM, Sonar SLAM, Multi sensor SLAM. Each such BP can therefore be 
associated to a specific data collection session, so making a BP instance. While the BPs are not a 
large number, when applied to a number of dataset, they result in a large number of BP instances. In 
all the BPs, a few sensors streams, namely the IMU and the odometry, are currently considered 
always available. In the future other BPs, e.g.,  a pure Monocular SLAM BP, might be defined, 
where even wheel encoders could be saved.

BP \ dataset 1 ... dataseti ... n
...

Laser SLAM BP instance

Monocular SLAM
...

The performance evaluation  of  a  given algorithm is  obtained  applying  the  rating methodology 
proposed  by  RAWSEEDS to  the  output  obtained  from the  execution  of  the  algorithm on  the 
relevant RAWSEEDS dataset. This approach, in the maximum generality, allows to evaluate the 
applicability and the performance of the algorithm to the widest set of conditions. Of course, not all 
algorithms will be able to deal with all the BP instances, i.e., not all the algorithms will be able to 
process all datasets. An example of such situation might be represented by the application of an 
algorithm, developed for indoor conditions, to outdoor scenarios, where the algorithm is likely to 
fail. In such cases the "score table" might simply not have the entry corresponding to the application 
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of this algorithm to the outdoor BP instances, if the author prefers not to give evidence to the cases 
of failure. Of course, the absence of the rating will play some role, in the overall evaluation of that 
algorithm that will be performed by the readers of the "score table".
Please notice that it is not the task of the RAWSEEDS project to compile such a table; on the other 
hand, the project objectives are to make it possible to have such a table compiled in an uniform way, 
so that different algorithms can be compared; e.g., the project will make available web forms for 
guiding the submission of BSs.
It might be convenient to summarize here the appearance that we expect the final score table to 
have, so to speak about the effect of the performance evaluation measures. We expect such table to 
have a row for each BS, i.e., the application of an algorithm to a BP instance. In the columns of the 
table there will be the values of the different performance measures that are relevant for that BP. 
The performance of the same algorithm, applied to the different datasets, relates to different BSs, 
and will be therefore shown in different rows.
In order to allow a realistic usage of the table, we expect to be able to allow the reader of the table 
to group the different BSs according to a few criteria; e.g, the datasets to which the algorithms have 
been applied, the specific sensor streams used by the BS, the BP, etc.
Generally speaking, our work has the objective of requiring each BS to submit enough information 
so to allow the replication of its results,  by other groups. This is in agreement with the recent 
attention in the community to good experimental methodologies, which resulted also in a SIG of the 
EURON2 NoE.
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Available Ground Truth

Ground Truth Systems for Pose (poseGT)
The obtainment of the Ground Truth for the robot pose has been the most difficult part of the whole 
project so far. As documented in the past project documents (D1.1, D1.2, D8.2, AD2.3), we were 
expecting to base on a commercial system, for indoor conditions, but we then discovered that this 
approach was not viable because of the many not explicitly mentioned hypotheses that were going 
to affect both the absolute accuracy and the cost of each single installation. We then designed, 
implemented and also validated a system based on a network of cameras, called shortly GTvision, 
see also AD2.3.  This system was validated with respect to hand measurements and also cross-
validated with respect to the accuracy attainable from the onboard sensors. This last option (to adopt 
as poseGT the best known algorithm based on the onboard sensors) was, since the original "DoW", 
our default solution, in case external systems would fail. Though we had such option, we were not 
fully happy with it because of the implication of being based on the onboard sensors, which would 
imply statistical dependence between the GT and the outcome produced by the BSs basing of those 
sensor  streams.  Moreover,  beside  the  poseGT system  based  on  the  camera  network,  we  also 
designed and implemented another poseGT system; this has been done after the delivery of AD2.3, 
and because we wanted to have an alternative in case of failures of the other system. This last 
poseGT system is based on a network of external and fixed laser scanner; the system provides what 
is shortly called GTlaser poseGT.
Lastly, after having obtained the two independent estimates of the poseGT, we also computed an 
integrated poseGT estimate, based on both the GTvision and the GTlaser. This integration has been 
performed by means of a Kalman Smoother, so to make full use of all the available data. As the 
accuracy  of  the  two  poseGT systems  is  not  the  same,  and  the  manual  validation  in  the  data 
collection area is less accurate than the pose GT systems (differently from what was reported in 
AD2.3, where the smaller dimensions of the environment allowed hand measurements to be very 
accurate), we used the onboard laser scanners to obtain an estimate of the accuracy of the two 
poseGT systems, to be used in the Kalman Smoother. A a side effect, we also obtained an accurate 
map of the area. Of course, algorithms not making use of laser scanners can obtain the poseGT from 
the laser scans onboard the robot, for a much larger area than the one covered by the poseGT 
systems deployed indoor. A very rough comparison of pros and cons of the different indoor poseGT 
systems can be found in the table below.

cost setup pose frequen-
cy

position 
accuracy

orientati
on 
accuracy

range gaps  in 
the 
working 
range

GTvision low-cost complex 6DoF 5Hz less average smaller a few

GTlaser expensive simple 3DoF 75Hz higher average larger absent

laser 
onboard, 
for  BS 
not 
basing 
on them

expensive very 
simple

3DoF 75Hz higher average very 
large

absent
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For  what  concerns  the  outdoor  conditions,  we  carefully  collected  datasets  in  conditions  with 
maximum exposure to GPS satellites, so to have a large area with the so-called RTK-GPS, in the 
maximum  accuracy  version  ("RTK  Fixed  Integers").  Of  course,  such  accuracy  could  not  be 
obtained everywhere, because of clouds, building, trees, etc. Nevertheless, the GPS system provides 
an accurate estimate of the accuracy of the provided position, in terms of standard deviation, so that 
the reliability of the poseGT could be appreciated when rating SLAM algorithms.
A complete description of the poseGT systems can be found in AD2.3, D2.1, D2.2.

Ground Truth for Mapping (mappingGT)
In the project it was decided, after some verifications, to base on the executive drawings of the 
space explored by the robot, for the reference values of the maps. Such taken-for-perfect values are 
usually  mentioned as  Ground  Truth  in  other  domains  and also  in  robotics  benchmarking.  The 
accuracy required by such kind of information is of course "the highest possible". Nevertheless, we 
consider that a realistic accuracy value can be set at about 0.1m.
We checked whether  the  executive  drawings were  accurate  enough.  This  simplified  validation, 
where the term "simplified" is used w.r.t. to the extremely large burden required for the validation of 
the poseGT, has been performed during the indoor data-acquisitions.  The actual  procedure was 
based on the verification of some distances in the executive drawings w.r.t. their actual values. The 
actual values have been determined by manual measurement, which means that the measure was 
obtained using the range measuring device mentioned in AD2.3, i.e., a laser-based ranging device 
typical of civil engineering. A total of 30 measurements have been performed in the area where the 
indoor poseGT is available, see Figure 1, and the quality of the mappingGT has been confirmed. 
Statistics of the errors are (in mm): mean  = 0.55 σ = 90.34, confidence interval 95% = [-31.78, 
32.88]; for further details, see D2.1.  We can  conclude that the executive drawings, at least in the 
area covered by the indoor poseGT systems, are accurate enough for being used as mappingGT.
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Figure 1: The area in the rectangle in red is approximatively the poseGT area.
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Definition of features
The performance evaluation for SLAM and mapping BPs is based also on the verification of the 
accuracy of the reconstruction performed by the algorithm under evaluation. The other part deals 
with the accuracy of the trajectory, and we will deal with it later on.
The reconstruction accuracy can be evaluated for some salient features of the environment, and, of 
course, not for all points of the world. Therefore we need to deal with salient features in our work. 
On one hand, we have relevant elements in the mappingGT, i.e., the ones on which we base the 
performance evaluation. On the other hand, we have the features reconstructed by the mapping and 
SLAM systems.
For what concerns the mappingGT, it has been decided that the relevant elements are the corners, 
i.e., the intersections between two non-parallel segments in the birds-eye view of the environment; 
this  is  also  independent  of  the  specific  format  used  for  representing  such  segments  in  the  2D 
drawings.  Each  mappingGT  corner  xGT is therefore  represented  by  an  "id",  and  by  the  2D 
coordinates of the corner (xGT

i = [ i xi yi ] ).
For what concerns the features reconstructed by the algorithm, it has to be noticed that, in general, 
each BS give out a specific set of features. In other words, in the reconstructed map, a BS will 
provide the type of features that are more appropriate for its inner functioning; notice also that 
typically these features will not be the corners between the walls of the environment that we have in 
the mappingGT. Typical examples are salient points on the walls, grid maps, etc. We need to cover 
this gap between GT and reconstructed maps.
For what concerns the GT features, our proposal is as follows: RAWSEEDS will publish the lists of 
corners, extracted from the executive drawings with some algorithm (the executive drawings are 
sketched in Figure 2, and 3). As the extraction of the GT features is also error prone, we propose 
such lists as the recommended set of features, to be used for the evaluation of BSs, but we consider 
that it might be amended, in case some mistake is found by the community of the users. Of course, 
to change the list of GT features will require an adequate explanation of the error that has been 
found. As it will be mentioned later on, a change in the list of GT features will not prevent or make 
extremely  cumbersome  the  re-computation  of  the  performance  evaluation  measures,  for  the 
previously submitted BSs. If this would be cumbersome, then keeping the set of results up-to-date 
w.r.t. troubles in the list of GT features could become unfeasible (it would require to contact the BS 
author(s) and ask for a re-submission of the BS, a potentially unfeasible event). We are actually 
asking more to the BS authors, at the time of the submission, in order to gain such robustness.
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Figure  2:  Executive  drawings  of  the  Bicocca  location,  from this  drawing the  
corners will be extracted and will constitute the list of mappingGT features.

Figure  3:  Executive  drawings  of  the  Bovisa  location,  from  this  drawing  the  
corners will be extracted and will constitute the list of mappingGT features.
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We need  also  to  cover  the  issue  of  the  reconstructed  features,  i.e.,  the  ones  generated  by  the 
algorithms in their internal representation. On one hand, we will have a mappingGT, which will 
essentially be a point-based 2D map of the world. On the other hand, we will have the reconstructed 
maps that, depending on the specific BS, might be built basing on 2D or 3D features, segments or 
points, etc. We have therefore to compare the two representations, one built with the corners of the 
mappingGT, the other built from the map reconstructed by the BS. Our idea is that we can map 
reconstructed features on the mappingGT corners, provided we solve the mismatch of geometric 
primitives.  The  2D-3D  issue  can  be  solved  with  a  suitable  "projection",  while  the  geometric 
primitive mismatch could be solved with ad-hoc interpolations.
We considered two options for the  projection: one is to project all reconstructed features on the 
mappingGT floor (in RAWSEEDS' datasets, floors are mostly horizontal); the other option is to 
select only the reconstructed features that belong to a certain vertical interval about the mappingGT 
floor. We decided for the first one, for its greater simplicity.
For the other aspect, i.e., the matching of different geometric primitives, our proposal is that each 
BS author has to derive "reconstructed corners" from the geometric primitives produced by her 
algorithm, in the cases of the algorithm output not being a directly corner-based map. A short list of 
steps  for  handling  mismatching  geometric  primitive  features  follows;  notice  that  very  simple 
software helpers will largely speed up this work.

● 3D segments maps, like those produced by 3D segment based SLAM approaches:
1. project the 3D extrema of the segments on the floor,
2. reconstruct the corners by intersection of adjacent segments;

● 3D points maps, like those produced by monocular SLAM approaches:
1. project the 3D points on the floor,
2. cluster (human intervention) the 2D points into 2D segments,
3. verify  (human  intervention)  that  the  2D segments  (i.e.,  the  reconstructed  walls)  are 

reliable,
4. compute the support line of the segments,
5. reconstruct the corners by intersection of adjacent segments;

● grid-based 2D maps like those produced by most approaches based on sonars and/or laser 
scanners:
1. cluster (human intervention) the grid elements into segments,
2. verify  (human  intervention)  that  the  2D segments  (i.e.,  the  reconstructed  walls)  are 

reliable,
3. compute the support line of the segments, taking into account the PDF on the grid,
4. reconstruct the corners by intersection of adjacent segments;
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Performance evaluation measures
In this part of the document we propose the performance evaluation measures. This set of measures 
is independent of the BPs.  While some of these measures aim at the evaluation of the absolute 
quality of the outcome of BSs, others aim at an evaluation that is based on the quality of the robot 
performance, in some mobile robotic task, but performed by using the result of the algorithm under 
evaluation. We call these measures "usage-based".
Moreover, the proposed performance evaluation measures can be of one out of two types: one is 
recommended, i.e., a performance evaluation measure that RAWSEEDS will be recommending the 
BS contributors to provide; the other is mandatory, i.e., BS failing to provide this measure will not 
be admissible for publication as a RAWSEEDS BS.
Also another distinction can be observed in our proposed performance measures: some of them are 
based on mapping performance, while other base on the trajectory accuracy. Basing on trajectories, 
we can gain two important properties. First, we can naturally compare the result of algorithms that 
generate different types of metric maps, such as feature-maps or occupancy grid maps. Second, the 
method is invariant to the sensor setup of the robot. For example, the result of a graph-based SLAM 
approach working on laser range data can be compared with the result of vision-based FastSLAM. 
The only property that is required is that the SLAM algorithm has to estimate the trajectory of the 
robot in terms of a set of poses. The performance evaluation will be performed on this set.
Of course, as typical in the performance evaluation in many fields, also in our case it is unlikely that 
anybody could define a definitive performance measure, i.e., one on which all involved actors will 
agree. This is regarded as work in progress, and this is also in agreement with the fact that the aim 
of RAWSEEDS is to facilitate the performance evaluation, and also to stimulate the spreading of a 
performance  evaluation  culture.  Whether  our  proposed  performance  evaluation  measures  will 
perfectly fit their expected usage or not, can only be a matter of ex-post analysis.

ME (Mapping Error)
The Mapping Error is a measure that is intended to capture the accuracy of the reconstructed map. 
As a large number of geometric primitives are usually present in realistic maps, we need to provide 
an accuracy measure that is based on the distribution of the error,  so to have it  averaged on a 
statistically  significant  number  of  samples.  Such  error  distribution  usually  won't  be  following 
accurately a normal distribution, but we believe that the relevant aspects that we want to capture for 
performance evaluation can be well represented by the usual two parameters of a normal (mean and 
standard deviation). Confidence interval will also be considered, to take into account the cardinality 
of the sample.
The computation of the value of the Mapping Error (ME), for a given BS applied to a given BP 
instance, requires to follow these steps:

 1 given the set  of features in the mappingGT {  xGT
i }, the user submitting the BS has to 

determine, in the output of the BS, i.e., in the set of reconstructed features { xl }, the features 
corresponding to the ones in the mappingGT; this task concludes with the list of associations 
between mappingGT and reconstructed map { < xGT

i , xl > }, which has to be provided; the 
set  of  reconstructed features,  {  xl },  is  also to  be  provided,  in  order  to  allow for  a  re-
computation of the performance in case of any change in the mappingGT;

 2 BSs that detect features that are not easy to associate with features in the mappingGT, need 
to follow a different path, for what concerns the determination of the set { xl }. Examples of 
such BS are those working with grid-based representations, those based on sparse image 
patches,  etc.  Examples  of  the  ahe  approaches  to  be  followed  for  such  conversions  are 
mentioned in the previous section. The requirement imposed to such BSs is to provide a 
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complete  description  of  the  procedure  followed  to  determine,  from  the  originally 
reconstructed features, the ones used in the performance evaluation;

 3 the author of the BS has then to compute the geometric distance between all  k pairs of 
mappingGT features {DGT

k = || xGT
i - xGT

j || }, and the distance between the corresponding k 
pairs of reconstructed features {Dk = || xl - xm || }, where xl is the correspondent of xGT

i, and 
xm the correspondent of xGT

j;
 4 for BSs that cannot determine the absolute scale of the environment, e.g., algorithms based 

solely on monocular vision,  the mappingGT data can be used to define the scale of the 
reconstructed map;

 5 for each of the distances above, the author has to compute the normalized difference Nr = 
( Dr - DGT

r ) / DGT
r , where Dr is the r-th distance measured on the map produced by the BS, 

and DGT
r is the corresponding distance measured in the mappingGT;

 6 ME = 
 6.1 mean of the set of normalized differences { Nr };
 6.2 standard deviation of the set of normalized differences { Nr };
 6.3 confidence interval (3σ) of the set of normalized differences { Nr };

 7 ME = [ N r , σNr , conf.interval.endpoint13σ, conf.interval.endpoint23σ ] T ;
Notice that the ME measure does not require the author to determine the pose of the map produced 
by  her  BS  w.r.t.  the  mappingGT,  i.e.,  to  align  the  reconstructed  map  to  the  mappingGT;  this 
property is a consequence of the measure being based only on relative distances.
ME is a recommended measure.

ATE (Absolute Trajectory Error)
The absolute trajectory error is a useful performance measure that captures at the same time both 
the accuracy in mapping and in localization. It is a compact, although indirect, representation of the 
accumulation  of  errors  due  to  data  associations,  biases  in  the  resulting  map  and  robot  pose 
estimates. It can be reduced by loop closures, which are informative events that happen during the 
execution of SLAM algorithms.
An instantaneous measure is provided at the poseGT frequency (50Hz), i.e., a robot pose estimate is 
provided for each poseGT value available, and these  instantaneous measures  are then integrated. 
The  instantaneous measures  are  provided  as  part  of  the  BS,  so  that  anybody could  eventually 
compute other statistics on these values,  and/or recompute the performance measure in case of 
changes to the poseGT.
The robot pose estimate has to be referred to the same reference frame as the poseGT, in order to be 
operated  on.  In  order  to  reach  this  situation  please  refer  to  "Alignment  of  mappingGT  and 
reconstructed maps" hereafter.
The computation of the value of the ATE requires to follow these steps:

 1 for each instant, provide the robot pose estimate;
 2 put all reconstructed robot pose in a file, to be provided as part of the BS; the file is a list of 

lines, one for each pose; for each pose the format is < timestamp, [xj, yj θj] >;
 3 for each instant where the poseGT is available, compute the distance, in terms of translation, 

between the poseGT and the reconstructed robot pose; d j=∥trans x j−trans x j
GT∥ , the 

orientation has been considered implicitly taken into account by the high sampling rate of 
the position;
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 4 put all error distances in a file, to be provided as part of the BS; the file is a list of lines, one 
for each pose; for each pose the format is <timestamp, dj >;

 5 ATE = 
 5.1 mean of the translation error { dj };
 5.2 standard deviation of the translation error { dj };
 5.3 confidence interval of the translation error { dj };

 6 ATE = [ d j d j conf.int.d13σ conf.int.d23σ]T ;
The ATE measure is mandatory.

REC (Rough Estimate of Complexity)
This measure aims at allowing the appreciation, though in a rough way, of the complexity of the 
algorithm under evaluation. It is based on the running time of the algorithm. In order to avoid any 
bias induced by the specific machine on which the algorithm is executed, only the overall shape is 
considered, and only in a qualitative way. The BS author is required to provide the running time as 
obtained by her system during the execution, with a frequency of 1 second to process all  data 
streams involved up to that instant. The file to be provided is a list of lines, one for each second; the 
format is < timestamp, running time >. The time origin is the start of the dataset.
The REC measure is mandatory.

SLE (Self-Localization Error)
The Self-Localization Error is an interesting measure, in our view, as it is intended to evaluate the 
effectiveness of a given reconstructed map, in accordance with the RAWSEEDS idea of rating the 
real-life usefulness of the outcome of the BSs.
Once the algorithm have built a map with SLAM on a given BP instance (slamdataset), the idea is 
to use different datasets (localizationdatasets), from the same location, and a localization algorithm 
that optimally suites the map representation of the algorithm, to localize the robot in the map. 10 
different time-stamps are defined to start from, as if the robot were kidnapped. The robot pose in the 
GT area  has  to  be   reconstructed,  basing  on  the  map  built  before.  This  measure  requires  BS 
providers to determine (i.e.,  to develop and/or to evaluate already available ones) a localization 
algorithm that fits nicely with the built map.
The operative definition of the value of the Self-Localization Error (SLE) for a given BS requires to 
follow these steps:

 1 select the self-localization algorithm of your best choice, for optimal matching performance 
between the SLAM outcome and the self-localization algorithms, and document the choice;

 2 the datasets on which the SLAM output is going to be used are, by default, all the datasets 
from the same location; these are called the localizationdatasets; 

 3 run the algorithm under evaluation on the slamdataset, and get the produced data (map);
 4 for each starting timestamp, feed the localization algorithm with the sensor stream(s) from a 

localizationdataset,  beginning  from that  time-stamp,  and  reconstruct  the  robot  poses  by 
running  the  localization  algorithm.  This  reconstruction  has  to  be  performed  for  all  the 
timestamps belonging to the time intervals subsequent to the starting time-stamp, where the 
poseGT  is  available.  Repeat  for  all  the  starting  time-stamps,  and  for  all  the 
localizationdatasets;

 5 if the BS and/or the localization algorithm, cannot provide the reconstructed robot pose at 
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each required  timestamp, then the BS author has to provide an interpolation as well as a 
detailed explanation of how the interpolation has been computed; the level of detail of the 
description must allow replication of the results;

 6 for each such timestamp, compute the distance of the reconstructed pose from the poseGT; 
this pose has to be referred to the same reference frame of the poseGT, to reach this situation 
please refer to "Alignment of mappingGT and reconstructed maps" hereafter;

 7 SLE  =  mean,  standard  deviation  and  confidence  interval  of  the  translation errors  
d j=∥trans x j−trans x j

GT∥ ;
 8 SLE = [ d j d j conf.int.d13σ conf.int.d23σ errtraslerrtraslerrorienerrorien]T ;

This measure is a recommended measure.

RPE (Relative Pose Error)
In this section, we propose the Relative Pose Error metric for measuring the performance of a 
SLAM algorithm; this measure considers the poses of the robot during data acquisition, as the ATE 
and the SLE measures. Let x1:T be the poses of the robot estimated by a SLAM algorithm from time 
step  1 to  T. Let  xGT

1:T be the real poses of the robot, i.e., the poseGT locations. A straightforward 
error metric could be defined as:

x1 :T = t=1
T x t⊖x t

GT2 (Eq. 1)

where  is the standard motion composition operator and  its inverse. Let  ⊕ ⊖ xi,j =  xj  ⊖ xi be the 
relative transformation that moves the node xi onto xj and xGT

i,j accordingly. Eq. 1 can be rewritten 
as

x1 :T = t=1
T−1x1⊕x1,2⊕...⊕xt−1,t⊖x1

GT⊕x1,2
GT⊕...⊕ xt−1, t

GT 2  (Eq. 2)

We claim that this metric is suboptimal for comparing the result of a SLAM algorithm. To illustrate 
this, consider the following 1D example in which a robot travels along a straight line. Let the robot 
make a translational error of e during the first motion, x1,2 = xGT

1,2 + e, and perfect estimates at all 
other points in time xt, t+1 = xGT

t, t+1 for t > 1. Thus, the error according to Eq. 2, will be T · e, since 
x1,2 is contained in every pose estimate for t > 1. If we, however, estimate the trajectory backwards 
starting from xT to x1 or alternatively by shifting the whole map by e, we obtain an error of e only. 
This  indicates  that  such an error  estimate  is  suboptimal  for  comparing the results  of  a  SLAM 
algorithm. See also Figure 4 for an illustration.
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In the past, the so-called NEES measure proposed in [1] as

x1 :T =t=1
T x t−x t

GTTt xt−xt
GT (Eq. 3)

has often been used to evaluate the results of a SLAM approach. Here Ωt represents the information 
matrix of the pose xt . The NEES measure, however, suffers from a similar problem than Eq. 1 since 
it  uses  absolute  poses  to  compute  ε.  In  addition to  that,  not  all  SLAM algorithms provide  an 
estimate of the information matrix and thus cannot be compared based on Eq. 3. Furthermore, an 
algorithm can improve its score by simply underestimating Ω.
Based on this experience, we propose to use a measure based on the relative displacement between 
poses to perform comparisons. Instead of comparing x to xGT (in the global reference frame), we do 
the operation based on xi,j and  xGT

i,j as

.= ij x ij⊖xij
GT2  (Eq. 4)

In this case, the error in the above-mentioned example will be consistently estimated as e, no matter 
where the map is located in the space or in which order the data is processed.
This measure can be interpreted as the deformation energy that is needed to change the estimated 
trajectory into the ground truth. This can be done – similarly to the ideas of the graph mapping 
introduced by Lu and Milios [2] – by considering the nodes as masses and connections between 
them as springs. Eq. 4 can be rewritten as:

.= 1
N
 i , j trans x ij⊖x ij

GT2rot x ij⊖ xij
GT2  (Eq. 5)

where  N is  the  number  of  relative  relations  and  trans(·)  and  rot(·)  are  used  to  separate  the 
translational  and  rotation  components.  We  suggest  to  provide  both  quantities  individually.  In 
addition to Eq. 5, one can define the metric according to the absolute error rather than the energy. 
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Figure 4: This figure illustrates a simple example where the metric in Eq. 1 fails. The blue  
circles show the GT positions of the robot {x*

i} (x*
i is here used instead of xGT

i) while the red 
circles  show  the  actual  positions  of  the  robot  {xi}.  The  correspondence  between  the 
measured locations and the GT is shown with dashed lines, and the direction of motion of  
the robot is highlighted with arrows. In the situation shown in the upper part, the robot  
makes a small mistake at the end of the path. This results in a small error. Conversely, in  
the situation illustrated on the bottom part of the figure the robot makes a small error, of the 
same entity, but at the beginning of the travel, thus resulting in a much bigger global error.
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Then the metric can be specified accordingly as:

.= 1
N

i , j trans∥x ij⊖xij
GT∥rot∥xij⊖ x ij

GT∥  (Eq. 6)

The  squared  error  measures  the  average  energy  per  constraint,  required  to  deform the  current 
estimate  in  the  ground  truth.  The  absolute  error  can  be  interpreted  as  the  average  metric 
displacement between the estimated and the true relative transformations.
The mathematical definition of this metric, however, leaves open which relative displacements  xji 
are included in the summation in Eq. 1. We propose that the relative displacements have to be 
provided in the benchmarking problem, which according to the Annex I, provides the log file and 
the GT information. Anyway, the RPE metric can be tailored about which relative displacements xji 
to include in the summation in Eq. 4. Evaluating two approaches based on a different set of relative 
pose displacements will obviously result in two different scores. As we will show in the remainder 
of this section, the set  x(.,.),  and thus  xGT

(.,.),  can be defined to highlight certain properties of an 
algorithm.  Nevertheless,  in  the  context  of  RAWSEEDS,  we  will  base  on  the  available  set  of 
poseGT, i.e., we will use all the relative pairs of consecutive poses from the poseGT.

Selecting Relative Displacements for Evaluation
Benchmarks are designed to compare different algorithms. In the case of SLAM systems, however, 
the task the robot finally has to solve should define the required accuracy and this  information 
should be considered in the measure. 
For example, a robot generating drawings of buildings should build a map that reflects the geometry 
of a building as accurately as possible. In contrast to that, a robot performing navigation tasks only 
requires a map that can be used to robustly localize itself and to compute valid trajectories to a goal 
locations. To carry out this task, it is in most cases sufficient that the map is topologically consistent 
and that its observations can be locally matched to the map. A map having these properties is often 
referred to as locally consistent. Figure 5 illustrates the concept of locally consistent maps which are 
suited for a robot to carry out navigation tasks.
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Figure  5: Example of the RPE performance measure on maps generated using different sensor 
setups.  The  relation  between  close-by  positions  are  determined  by  a  human  assisted  scan-  
alignment  procedure  performed on scans  acquired at  close-by  locations.  The  long dashed line 
represents a relation added by manually measuring the relative distance at two locations of the  
robot: (a) the mappingGT, as obtained from the relative measurements, (b) the mappingGT with 
superimposed the network of relative measurements, (c) a map obtained by scan matching using a 4  
meters range sensor, with the superimposed relation (this map is still usable for navigating a robot),  
(d) a map obtained by cropping the range of the sensor to 3 meters. Whereas the quality of the  
rightmost map is visibly decreased, also this map is adequate for robot navigation since it preserves  
a correct topology of the environment (all doorways are still visible) and it correctly reflects the  
local metric structure of the corridor.

By selecting the relative displacements xji used in Eq. 4 for a given dataset, the user can highlight 
certain properties and thus design a measure for evaluating an approach given the application in 
mind.
For  example,  by  adding  only  known  relative  displacements  between  nearby  poses  based  on 
visibility,  a  local  consistency  is  highlighted.  In  contrast  to  that,  by  adding  known  relative 
displacements of far away poses, for example, provided by an accurate external measurement or by 
background knowledge, the accuracy of the overall geometry of the mapped environment enforced. 
In this way, one can incorporate the knowledge into the benchmark that, for example, a corridor has 
a certain length and is straight. This is a nice property of the metric and in the remainder of this 
section, we discuss how to obtain the displacements.

Obtaining Reference Relations in Indoor Environments
In practice, the key question regarding Eq. 4 is how to determine the true relative displacements 
between poses. Obviously, the true values are not available. However, we can determine close-to-
true values by using the information recorded by the mobile robot and the background knowledge 
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of  the  human  recording  the  datasets.  This,  of  course,  involves  manual  work,  but  is  from our 
perspective the best  method for obtaining such relations.  Please,  note that the metric presented 
above is independent of the actual sensor used. In the remainder of this deliverable, however, we 
will concentrate on laser range finders, which are popular sensors in robotics at  the moment, and 
that are the most accurate sensor on the RAWSEEDS robot. To evaluate an approach operating on a 
different sensor modality, one has two possibilities. Either one temporarily mounts a laser range 
finder on the robot (if this is possible) or has to provide a method for accurately determining the 
relative displacement between two poses from which an observation has been taken that observes 
the same part of the space. Here, we propose the following strategy. First, one seeks for an initial 
guess about the relative displacement between poses.  Based on the knowledge of the human, a 
wrong  initial  guess  can  be  easily  discarded  since  the  human  "knows"  the  structure  of  the 
environment. In a second step, a refinement is proposed based on manual interaction.
In most cases,  researchers in robotics will  have SLAM algorithms at hand that can be used to 
compute an initial guess about the poses of the robot. In the recent years, several accurate methods 
have been proposed to serve as such a guess. By manually inspecting the estimates of the algorithm, 
a human can accept or discard a match. It is important to note that the output is not more than an 
initial guess and it is used to estimate the visibility constraints which will be used in the next step.
Based on the initial guess about the position of the robot for a given time step, it is possible to 
determine which observations in the dataset should have covered the same part of the space or the 
same objects. For a laser range finder, this can easily be achieved. Between each pair of poses that 
are  visible,  one  adds  a  relative  displacement  into  a  candidate  set.  In  the  next  step,  a  human 
processes  the  candidate  set  to  eliminate  wrong  hypotheses  by  visualizing  the  observation  in  a 
common  reference  frame.  This  requires  manual  interaction  but  allows  for  eliminating  wrong 
matches  and  outliers  with  high  precision.  Since  we  aim  to  find  the  best  possible  relative 
displacement, we perform pair-wise registration procedure to refine the estimates of the observation 
registration method. It furthermore allows the user to manually adjust the relative offset between 
poses so that the pairs of observations fit perfectly. Alternatively, the pair can be discarded. This 
approach might sound work-intensive but with an appropriate user interface, this task can be carried 
out without a large waste of resources. For example, for a standard dataset with 1700 relations, it 
took an unexperienced user approximately four hours to extract the relative translations that then 
served as the input to the error calculation. Figure 7 shows a screen-shot of the user interface used 
for evaluation. 
In addition to the relative transformations added upon visibility and matching of observations, one 
can  directly  incorporate  additional  relations  resulting  from  other  sources  of  information,  for 
example,  given the  knowledge about  the  length of  a  corridor  in  an  environment.  By adding  a 
relation  between two poses  — each at  one  side  of  the  corridor  — one can  easily  incorporate 
knowledge  about  the  global  geometry  of  an  environment  if  this  is  available.  This  fact  is,  for 
example, illustrated by the black dashed line in Figure 5 that implies a known distance between two 
not neighboring poses in a corridor. Figure 6 plots a corresponding error introduced by the relations.
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Figure 6: This figure shows the behavior of the RPE error metric for the maps (c) and (d) in  
the previous Figure. On the left we plot the error introduced by the individual relations. The 
right  plot  is  a  magnification of  the left  one in the region corresponding to  the manually 
introduced relations marked on the images with the dashed line. This results in a significant  
increase of the global ε of SLAM results under comparison.

Figure 7: User interface for matching, accepting, and discarding pairs of observations.
The RPE measure is a recommended measure.
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The SLAM Benchmark Problems

Description of the SLAM problem
The  basic  ability  that  a  mobile  robot  must  necessarily  possess  to  autonomously  operate  in  an 
unstructured (or partially structured) environment is moving safely and without collisions.
This requires, in particular, the robot to be able to localize itself, i.e., to estimate its own position in 
the environment. Moreover, the robot has generally to be able to construct some form of internal 
representation of the environment, i.e., a map, in order to determine its position on the map.
The presence of such capabilities are, of course, not sufficient to ensure that the robot is able to 
reach the goal; but they can be thought of as a necessary condition for a robot to be capable of 
autonomous navigation.
There  are  special  cases  in  which  the  capability  of  autonomous  building  a  world  model  is  not 
required, e.g. when the map is already known with sufficient precision and it does not change with 
time. Real-world applications where these conditions hold are not frequent.
In the most common applications, the problems of mapping and self-localization have to be tackled 
and solved simultaneously by the robotic system, in order to register the information gained in the 
many poses passed during the exploration. This is not a trivial task, and it is usually identified as 
SLAM (Simultaneous Localization And Mapping).
The  main  difficulty  comes  from  the  fact  that  the  data  on  which  the  robot  can  perform  its 
elaborations come from sensors, and are thus affected by their imperfections, such as:

● limited spatial range and/or field-of-perception; 
● noise; 
● sensibility to spurious effects; 
● low dynamic range; 
● systematic errors or drift effects; 
● failures.

These imperfections are very significant for any sensor, including costly state-of-the-art ones; but 
they  become  increasingly  stringent  as  the  cost  of  the  sensors  decrease.  Very  sophisticated 
algorithms are needed to process sensor output, in order to extract the information needed to solve 
the mapping and localization problems.
These algorithms become much more complex when multiple sensors are used (as it is frequently 
done, to partially compensate for the intrinsic limitations of each sensor), because they need to 
include a process of sensor fusion between the data coming from different sensors. Sensor fusion is 
most difficult when different kinds of sensors are employed (e.g., cameras and sonars), which is 
exactly what is generally done to explore different aspects of the environment and to exploit the 
capabilities of different sensor technologies.
Cheap sensors (such as the ones that present and future mass-market robotic applications are forced 
to employ for cost reasons) are characterized by quite low performance, and so they need the most 
sophisticated algorithms to be effective sensors. Of course, the ability to use cheap sensors and 
nonetheless build high-performance robotic products is necessary for the diffusion of mass-market 
robotic  applications.  However,  the  use  of  sophisticated  algorithms  does  not  necessarily  have  a 
significant impact on the final cost of a robotic product, as the main economic and conceptual effort 
is required by the development and test  phases of the algorithms, while implementation can be 
usually made with inexpensive hardware.
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The study, design, engineering and marketing of autonomous robotic systems and solutions relies 
on the fact that the actors involved (enterprises and research groups) possess or can easily acquire 
the tools to develop and test sophisticated SLAM algorithms. Given the relevance of the SLAM 
problem  in  the  autonomous  robotics  domain,  the  RAWSEEDS  toolkit  is  likely  to  become  a 
significant tool.
The  RAWSEEDS  toolkit  will  include  the  following  BPs,  but  others  could  be  conceived,  and 
perhaps added in the future. Laser SLAM, Monocular SLAM, stereo SLAM, Trinocular SLAM, 
Omnidirectional vision SLAM, Sonar SLAM, Multi sensor SLAM.
It has to be noticed that most of these BPs currently include also access to two other sensor streams, 
i.e., IMU and odometry.

● Laser SLAM BP
This BP tackles the SLAM problem basing on data from the laser scanners streams. This is a quite 
well-known sensor in the robotic community, mainly for its accuracy and range, though it is an 
expensive, bulky, and power-hungry device.

● Monocular SLAM BP
This BP tackles the SLAM problem basing on data from a single perspective camera. This is a 
device with a promising potential, because of the richness of the output, the light weight and cost. 
Many recent  research is  actually  basing on this  type of  device.  The instance of  device that  is 
onboard the RAWSEEDS robot is a low-cost device.

● Stereo SLAM BP
This BP tackles the SLAM problem basing on data from stereo vision. This is a device slightly 
more complex than a single camera, though potentially capable to provide 3D data. According to 
the specific processing performed in the logical sensor, one might obtain segments or points, 2D or 
3D.

● Trinocular SLAM BP
This BP tackles the SLAM problem basing on data from trinocular stereo vision. This is a device 
more complex than a single camera,  though capable to provide 3D data.  Main difference w.r.t. 
stereo is the usage of the 3rd camera for simplifying the stereo matching. Commercial  devices 
producing 3D point are available, while also devices based on 3D segments are common.

● Omnidirectional vision SLAM BP
This BP tackles the SLAM problem basing on data from an omnidirectional vision system. This is a 
2D device, where the 3D data is generated in the SLAM filter, by means of the parallax produced by 
the observer motion, like for other vision-based SLAM BPs.

● Multi sensor SLAM BP
This BP aims at using more than one sensor stream at the same time, in order to appreciate the 
combined effect of complex sensor suites, on reliability, accuracy, etc.
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Further BPs that can be devised basing on RAWSEEDS datasets
The RAWSEEDS datasets can be quite useful also for mobile robotics problems other than SLAM. 
These are all the problems where the offline collection of the sensor streams is realistic. Examples 
of such BP are the mapping BP, the self-localization BP, multi-robot SLAM, multi-robot mapping.
The main difference between mapping and SLAM is the absence of the requirement for online 
execution, for mapping. In such BP the algorithm can rely on the whole set of sensor data, to build a 
map of the environment. Notice that online, nowadays, does not imply real-time. A mapping BS 
trades being online with the accuracy. On one hand, being online, means handling new sensor data 
at each new activation, which typically implies a recursive formulation of the estimation problem, 
and also a more or less consistent exploitation of the Markov hypothesis during the exploration. On 
the other hand, the accuracy attainable cannot reach the levels of an offline algorithm, where all data 
can be used for smoothing away the noise as well as to invest time in order to reduce the effects of 
non-linearities.
Self-localization is devoted to localize the robot in the map of the working space, therefore making 
it  a  core  component  of  the  navigation  system.  There  are  cases  where  such  map,  in  terms  of 
executive drawings, is both available and accurate enough for being used in mobile robotics. Most 
of times, though, the appropriate way to approach this problem is through a map building process.
Multi-robot  SLAM,  and  multi-robot  mapping  are  cooperative  approaches  to  the  SLAM  and 
mapping activities. More than one robot is moving in the work space and collecting its own sensor 
data streams. In RAWSEEDS, whose datsets are collected once at a time, this can be obtained by 
considering a few datasets, from the same location, like if they were collected starting a the same 
time. The datasets need to be shifted in time to make the multiple explorations appear simultaneous. 
Such datasets will be referred to as "component datasets", and their union will be termed a "multi-
robot dataset". It is also important to note that, beside being from the same location, the component 
datasets need to satisfy some other condition, to be considered as simultaneous; e.g., two datasets 
taken in very different lighting conditions like at noon and at midnight, cannot be the component of 
the  same  multi-robot  dataset.  Given  the  degrees  of  freedom  in  shifting  the  timelines  of  the 
component datasets and the number of components, the issue arise of how to check whether a given 
combination appears as a real multi-robot dataset. We devised a condition that holds true when a 
multi-robot dataset of ours is not appearing as a real one: given a multi-robot dataset  built  by 
aggregating and possibly time-shifting multiple datasets, we claim that it cannot come from a real 
multi-robot system if all the following conditions are true:

1. a component datasets includes observations of a region of space R over a time interval T = 
[t1, t2];

2. another component dataset  includes observations,  over the time interval  T' = [t'1,  t'2],  of 
another region R';

3. the intersection RR' = R ∩ R' is not empty;
4. one or more objects move within RR' during a non-empty time interval

TT' = [ max[t1, t'1], min[t2, t'2] ], i.e., the intersection of T and T'.
This condition, though not easy to check, is a mean for building consistent multi-robot datasets. 
Notice that the special case of the condition is  multi-robot datasets where a component dataset 
features the robot passing a region of space, in a given time interval T1, while the same region is  
featured in another component dataset in time interval T2, and the intersection T1  T2 is not null,∩  
can be detected as being not realistic, and consequently cannot be used to build a multi-robot BP. 
This still leaves ample possibilities to define multi-robot BPs: in fact the amount of time shift that 
each component dataset is subject to can be tweaked to avoid triggering the condition.
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Sensor data
The sensor datasets useful for these BPs are all datasets available: indoor, mixed, outdoor. They can 
be reached from the project website (www.rawseeds.org). For a detailed description of the areas 
covered during each dataset collection, the sensors used,  etc.,  please refer to the other relevant 
project deliverables (D1.1, D1.2, D2.1, and D2.2).

Ground truth
For  a  more  accurate  description  of  the  GT  systems  used  in  RAWSEEDS,  i.e.,  poseGT  and 
mappingGT, please refer to the other relevant project deliverables (AD2.3, D2.1 and D2.2), and to 
the previous section about this topic.

Robot logs
Logs of all  robot motion and sensor data are part  of the datasets,  therefore,  please refer to the 
relevant project deliverable (D2.1 and D2.2) as well as to the project website.

Specifications of data formats
Data formats for the sensor streams are described in detail with the online datasets; therefore, please 
refer to the project website as well as to the relevant project deliverable (D2.1 and D2.2) for what 
concerns this aspect. On the other hand, data formats for the BSs will be described in the related 
project deliverable, from WP5 (D5.2). We only mention here that it will be difficult to define, a 
priori, formats for the maps. One option is to ask the BS to include both a detailed description of the 
format of the output file as well  as an email  of the corresponding BS author,  for assistance in 
decoding it. On the other hand, we can easily define formats for the trajectories, and also for the 
associations  between  mappingGT  features  and  reconstructed  features.  While  the  first  can  be 
expressed in the usual 3DoF set of coordinates,  the latter  can follow what is mentioned in the 
description of the ME measure about the pairs of reconstructed and mappingGT features, i.e., just a 
list of pairs of id, for each feature.

Specification of the evaluation criteria
For the SLAM BPs the performance evaluation parameters that we are proposing are:

● ME (for the selected features in the mappingGT);
● ATE (for the reconstructed poses where we have the poseGT);
● RCE;
● SLE (for the reconstructed poses where we have the poseGT);
● RPE (for the reconstructed poses where we have the poseGT).

ME and ATE are performance measures that evaluate the absolute map quality and trajectory, which 
is good, but does not matches completely the RAWSEEDS approach to performance evaluation. On 
the other hand, RAWSEEDS aims to performance measures that are a direct consequence of the 
usage of a given BS output. In the case of SLAM, as a SLAM algorithm produces a map, we would 
like  to  measure  the  effectiveness  of  such  map  for  typical  mobile  robotics  tasks.  The  task  we 
identified  for  the  evaluation  of  the  SLAM  BP is  self-localization.  Other  tasks  might  also  be 
appropriate, but self-localization is interesting because essential for navigation tasks. For this reason 
we introduce, as a measure of performance for the SLAM BPs, a performance measure of self-
localization (SLE). As we want to mimic the pattern a real robot would need to follow, i.e., using a 
map for navigating an environment, after having obtained a map of it. This map, in our situation 
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characterized by the usage of offline datasets, is the one that has been built by applying the SLAM 
algorithm to the dataset that is defining the BP instance (slamdataset). This map, i.e., the algorithm 
that produced it, is then evaluated by self-localizing the robot in it; this is obtained by using sensor 
streams from different datasets, though taken in the same location where the slamdataset was taken.

Alignment of mappingGT and reconstructed maps
Both  the  absolute  trajectory  error  (ATE)  and  our  usage-based  measure  SLE  depend  on  the 
availability of the roto-translation of the first-pose of the dataset used for generating the map, with 
respect to the GTframe, which is the frame to which the poseGT is referred.
Notice that there is no dependence on the first pose of the dataset from which the sensor streams 
used  for  self-localization  are  taken,  for  SLE.  Such  dependency  is  not  there  because  the  self-
localization algorithm will naturally provide a reconstructed pose that is expressed in the frame of 
the provided map (slamdataset), and not in the frame of the dataset from which the sensor stream(s) 
are taken.
We  shortly  review  hereafter  a  few  possible  steps  involved  in  the  determination  of  this  roto-
translation.

● if the first pose of dataset is in the GT area, then an estimate of RT1stpose
GTframe is available in 

the BP set of data (in the poseGT stream); as the accuracy of RT1stpose
GTframe is affecting the 

performance measure, we suggest to take this value as just a first estimate;
● if the first pose is not in the GT area, and/or to refine the first estimate, then the author of the 

BS has to determine the RT1stpose
GTframe, basing on her/his preferred method, and use it for 

referring the BS map and poses to the GTframe; the author has also to provide an exhaustive 
explanation of how she determined the value; a suggestion on how to execute such a task is 
to  perform an  ICP-like  alignment  between  the  mappingGT and  the  reconstructed  map, 
basing on the same features selected for computing the ME measure; notice also that such 
work might collapse into a simple "usage of the roto-translation provided by the preceding 
xyz BS author";

● for SLE, as the poses output by the self-localization algorithm are naturally referred to the 
first  pose  of  the  dataset  used  for  building  the  map  (slamdataset),  and  we  know  the 
RT1stpose

GTframe,  we  can  move  the  poses  output  by  the  self-localization  algorithm  to  the 
GTframe and compare with the poseGT;

● the performance measures (ATE and SLE) can then be computed for each such dataset.

Monday, March 16, 2009 rawseeds.d4.1.v19.odt page 25/29



RAWSEEDS
Deliverable D4.1

Benchmark Problems
page 26 of 29

Table summarizing the proposed BPs

PROBLEM SENSOR 
DATA

GROUND TRUTH EVALUATION 
MEASURES

Laser SLAM
perform a map 

building activity 
with SLAM 

(online)

laser, IMU and 
odometry from 

a dataset
mappingGT; poseGT ME, ATE, RCE, SLE, RPE

Monocular SLAM 
perform a map 

building activity 
with SLAM 

(online)

single camera, 
IMU and 

odometry from 
a dataset

mappingGT; poseGT ME, ATE, RCE, SLE, RPE

Stereo SLAM
perform a map 

building activity 
with SLAM 

(online)

stereo camera, 
IMU and 

odometry froma 
a dataset

mappingGT; poseGT ME, ATE, RCE, SLE, RPE

Trinocular SLAM 
perform a map 

building activity 
with SLAM 

(online)

trinocular IMU 
and odometry 
from a dataset

mappingGT; poseGT ME, ATE, RCE, SLE, RPE

Omnidirectional 
vision SLAM

perform a map 
building activity 

with SLAM 
(online)

omnidirectional 
vision, IMU 

and odometry 
from a dataset

mappingGT; poseGT ME, ATE, RCE, SLE, RPE

Sonar SLAM
perform a map 

building activity 
with SLAM 

(online)

sonar sensors, 
IMU and 

odometry from 
a dataset

mappingGT; poseGT ME, ATE, RCE, SLE, RPE

Multisensor 
SLAM

perform a map 
building activity 

with SLAM 
(online)

streams from 
more than one 
sensor, for a 

dataset
mappingGT; poseGT ME, ATE, RCE, SLE, RPE

There are currently 11 validated datasets, from indoor, mixed and outdoor locations (Bicocca and 
Bovisa);  those  are  combined with the  defined BPs,  giving  rise  to  a  quite  large  number  of  BP 
instances, more than 60.
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List of items constituting a BS
A BS is built of some pieces of information, which so far have been introduced and described in a 
dispersed way. We summarize hereafter the list of items that are required for the submission, for the 
benefit of the potential submitter.

1. title of the BS;
2. author(s) of the BS;
3. contact details (including email) of the corresponding author as well as of a faculty persone, 

in case the corresponding author is a temporary person (the idea behind this is to be able to 
reach the authors even years after the submission);

4. BP instance to which the BS applies;
5. document describing the algorithm, the level of detail is such that it must allow replication; 

thsi document have to describe also the settings used in the BSs;
6. (not mandatory) source code of the algorithm;
7. full output of the algorithm;
8. document describing the format of the full output; this document should allow anybody to 

read and interpret the submitted output; this is important for replicating the results;
9. reference to the mappingGT used for the ME measure;
10. map estimate (list of features) to be used for the ME performance evaluation; the format is 

the same as for the mappingGT features ( xi = [ i xi yi ] );
11. list of the associations between the mappingGT features and the reconstructed features, this 

is just a list of pairs of  ids, an  id for the mappingGT feature, an  id for the reconstructed 
feature;

12. complete  description  of  the  procedure  followed  to  determine,  from  the  originally 
reconstructed features, the ones used in the performance evaluation, in case the BS output is 
not homogeneous to the mappingGT;

13. trajectory  (list  of  poses)  specified  in  the  expected  format  (i.e.,  the  usual  3DoF  set  of 
coordinates < time-stamp, [xj, yj θj] >, at each time-stamp; if the algorithm under evaluation 
is not able to provide a pose at such frequency, then an interpolation have to be provided;

14. document with description of the interpolation above, accurate enough to allow replication;
15. document with the explanation of how the RT1stpose

GTframe value has been determined;
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Conclusions
We presented a few Benchmark Problems, i.e., class of problems and rating methodologies, which 
are then instantiated in their union with the RAWSEEDS datasets.
The performance measures that we developed concern the evaluation of SLAM algorithms. Some 
measure aim at rating the absolute quality of the output of the SLAM algorithms, while one follows 
what we call the "usage-based" idea, i.e., to measure the performance of the SLAM algorithm by 
running, on its output, some another algorithm, for solving another mobile robotics problem.
We then very shortly introduce the SLAM BPs as well as other potentially interesting BPs, for 
future developments.  We finally describe how the performance measure have be applied to the 
output of an algorithm, in order to obtain data for the submission of a BS to the RAWSEEDS list on 
the web.
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