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Abstract A trustable and accurate ground truth is a key re-
quirement for benchmarking self-localization and mapping
algorithms; on the other hand, collection of ground truth is a
complex and daunting task, and its validation is a challeng-
ing issue. In this paper we propose two techniques for indoor
ground truth collection, developed in the framework of the
European project RAWSEEDS, which are mutually indepen-
dent and also independent on the sensors onboard the ro-
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bot. These techniques are based, respectively, on a network
of fixed cameras, and on a network of fixed laser scanners.
We show how these systems are implemented and deployed,
and, most importantly, we evaluate their performance; more-
over, we investigate the possible fusion of their outputs.

Keywords Ground truth · Benchmarking · Pose
estimation · Mobile robotics

1 Introduction

Progress in the field of robotics requires that robots gain
the ability to operate with less and less direct human con-
trol, without detriment to their performance and, most im-
portantly, to the safety of the people interacting with them.
A key factor for progress in this field is a substantial ad-
vancement in the performance of robots associated to the
concept of autonomy. Among the many facets of autonomy,
moving safely in the environment, and being able to reach
a goal location is the basic ability that a robot must neces-
sarily possess. This requires, in particular, the robot to be
capable to localize itself in the environment; this is usually
done by building some form of internal representation of the
environment, i.e., a map, and locating the positions of the
robot and its goal on the map.

Any mobile autonomous robot must have the abilities
needed to perform activities of mapping, self-localization or
Simultaneous Localization And Mapping (SLAM) (Thrun
et al. 2004, 2005; Folkesson and Christensen 2004; Lu and
Milios 1997). Obviously, these abilities are not sufficient to
ensure that the robot is also able to execute a task, but they
can be thought of as necessary conditions for a mobile robot
to be capable of effective autonomous behavior. There are a
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few applicative cases where the world modeling functional-
ity is not required, e.g., when the map is known and static.
In common applications, the mapping and self-localization
functionalities are usually tackled simultaneously, so to in-
tegrate the information gathered during the exploration.

The main problem that SLAM algorithms have to face
is perhaps the fact that the sensor data are affected by im-
perfections, like noise, limited dynamic range, systematic
errors, etc. These imperfections are significant for all sen-
sor, but they are even more critical with low-cost sensors,
whose use is unavoidable in most mass-market robotic do-
mains, because of economic constraints: “extensive market
analyses show that a complex sensing system for a mobile
robot cannot cost more that 10 US$, for a consumer-level
robot” (Angle 2004). Pirjanian (2007) was less strict, but
the mentioned budget, in the order of tens of US$ includ-
ing processing power, was still quite far from the current
budgets in sensors for mobile robotics. The algorithms for
solving the mapping and localization problem become much
more complex when multiple sensors are used (as is usu-
ally done to partially compensate for the intrinsic limita-
tions of each sensor), because they need to include a process
of sensor fusion between data coming from different sen-
sors (Durrant-Whyte 1987; Tardós and Castellanos 1999).

Successful implementation, tuning and deployment of
complex algorithms strictly depends on the ability to per-
form accurate benchmarking; the role of benchmarks is to
allow testing, evaluation and comparison of existing algo-
rithms. In turn, the availability of an accurate ground truth
(GT) is a key issue in benchmarking self-localization and
mapping algorithms. In particular, two set of unknowns are
relevant for the autonomous navigation tasks: those rep-
resenting the map, and those representing the robot pose.
In indoor scenarios, the former unknowns are often easily
defined by using executive drawings of the environments,
while the latter might require ad-hoc solutions. This paper
is focused on gathering the ground truth for the robot pose,
which is usually the most complex task.

Let us consider such task as an estimation problem, i.e.,
to provide an estimate of the actual poses passed by the ro-
bot during its motion in the environment: then, GT is a set
of very good approximations of the actual values of the un-
knowns, trusted by all research groups, which is a key to
allow a fair performance comparison between algorithms.
In order to be unbiased and act as an independent reference,
GT estimates should be derived by data from different sen-
sors than the robot’s own; otherwise such GT data could not
be considered as suitable for comparing algorithms that use
the robot’s sensors, and therefore would not be trustable. In
other words, we believe we need a statistically independent
measuring system, for measuring the mentioned unknowns.

The only option we found feasible, with respect to such
requirement, was based on observing the robot from outside.

This was also required by the fact that adding new sensors
dedicated to GT onboard the robot was not feasible in the
case of the RAWSEEDS mobile base; the capabilities of the
robot were actually fully exploited both in power consump-
tion and space by the sensor suite required by the project, see
also Fig. 2; for further details on the data gathering system,
see Sorrenti and Matteucci (2008). Our solution has been to
structure the robot so that it could perceive its surroundings
with a multiplicity of sensors, and then rely on a different set
of sensors, distributed in the environment, to observe the ro-
bot for the GT. This solution contrasts with those that rely on
robot-centric perception, such as scan matching approaches.

In this paper we present, compare and evaluate two differ-
ent systems for indoor Ground Truth acquisition developed
within the EC-funded RAWSEEDS project, which meet the
aforementioned independency requirements:

GTvision, based on data from an external network of cali-
brated fixed cameras, also mentioned as camera network
hereafter; the robot pose is reconstructed by basing on
the observation, by the camera network, of a set of vi-
sual markers attached to the robot;

GTlaser, based on readings from a network of fixed laser
scanners; the robot pose is reconstructed by basing on a
rectangular hull attached around the robot.

We review related works in Sect. 2, then briefly present
the RAWSEEDS project in Sect. 3 and discuss the experi-
mental setup and the hardware we used for ground truth
gathering (Sect. 4). The GTvision and GTlaser techniques
are described in Sects. 5 and 6, respectively. In Sect. 7 we
show results and performance comparisons with respect to
a set of validation data, and also explore the possibility of
fusing the results of GTvision and GTlaser techniques into
a single improved estimate. Finally, we present conclusions
in Sect. 8.

2 Related works

The procurement of a reliable and accurate Ground Truth is
a key factor for the acceptance of datasets for benchmarking:
we feel this is an important missing part in Radish (Howard
and Roy 2003), which is currently considered the state-of-
the-art in supporting comparison of algorithms. Radish is a
community initiative, and a repository of datasets, provided
on a voluntary base by research groups. Unfortunately, the
datasets are not provided with Ground Truth, whose pro-
curement is certainly not a trivial task; the usage of GT-less
datasets is implicitly limiting the comparison to what a hu-
man could infer from the dataset itself.

In principle, a possible solution to indoor ground truth ac-
quisition could be an off-the-shelf commercial system such
as the Ultra Wide Band system developed by UBISENSE
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(Ubisense 2006). We have experience of such system, whose
published specifications state that an accuracy between
15 cm and 30 cm should be considered valid in best-case
installations. Such installations are those involving a large
number of devices and a careful configuration by Ubisense’s
own personnel. These requirements are often incompatible
with the budgets of research labs, especially when installa-
tions in different locations are planned; moreover, the fore-
seen accuracy is less than WHAT we WOULD expect, for
indoor data.

Several other possible solutions are based on an upward-
looking camera mounted on the robot. Under this class
we have methods basing on observing a marker physically
placed or projected on the ceiling, possibly not in the visi-
ble range (e.g., the NorthStar by Evolution Robotics). These
solutions might not be viable because (in the future) the
sensing suite of the RAWSEEDS robot might include, after
the successful experiences of the Rhyno and Minerva robots
(Thrun et al. 2005), an upward-looking camera, that would
be observing such markings, independently of them being
in the visible or infra-red range. This would turn into an un-
acceptable advantage when using such sensor stream. One
could place a NIR-cutoff filter on such camera to avoid their
detection but this would have implied reducing the sensitive-
ness of that camera, which could have required to increase
the exposure, possibly leading to motion-blur or increased
noise. In short, we do not want to alter the environment in a
way that might be perceived by the robot sensors.

3 The RAWSEEDS benchmarking toolkit for SLAM

RAWSEEDS (Robotics Advancement through Web-publish-
ing of Sensorial and Elaborated Extensive Data Sets) is an
EC-financed project aiming at addressing the need for a
benchmarking toolkit, within the field of self-localization,
mapping and SLAM. This is done by generating and pub-
lishing on the internet a comprehensive Benchmarking
Toolkit which includes:

1. several high-quality multisensorial datasets, with associ-
ated ground truth, gathered by exploring real-world en-
vironments (indoor and outdoor) with a mobile robot
equipped with a wide set of sensors;

2. a set of Benchmark Problems (BPs) built on such
datasets, i.e., well-defined problems that also include
quantitative criteria to assess solutions to them;

3. example solutions to the BPs, called Benchmark So-
lutions (BSs), based on state-of-the-art algorithms and
evaluated according to the criteria defined by the asso-
ciated BPs.

RAWSEEDS is not the only effort towards the def-
inition of benchmarks in SLAM, the most known be-
ing the already mentioned Robotics Data Set Repository

(Radish) (Howard and Roy 2003). However, RAWSEEDS’
Benchmarking Toolkit tries to overcome some of the limi-
tations (no multisensor datasets and almost no ground truth
available) of these projects. The most innovative features of
the Toolkit are:

− multisensoriality: each datasets is composed of multiple,
time-synchronized data streams coming from several dif-
ferent sensor systems on board of the robot;

− the set of sensors has been chosen to be representative
of both low- and high-end types of sensors ATTACH the
second item of the list to the end of the first, between
parentheses for mobile robotics;

− presence of ground truth: each dataset is associated to
suitable ground truth data (generated with means inde-
pendent from the robot sensors) in the form of trajecto-
ries recorded in predefined areas, and executive drawings
of the explored space;

− high quality: the project included an explicit validation
phase, aimed at ensuring the quality of the datasets;

− wide set of scenarios: the datasets have been captured in
different situations (indoor, outdoor and mixed environ-
ments), with natural and artificial light, in static (i.e., no
displaced objects or moving people) and dynamic condi-
tions;

− presence of explicit evaluation metrics: each Benchmark
Problem includes the methodologies needed to evaluate
objectively any solution, thus allowing comparison of
different solutions independently from the actual choice
of implementation and/or representation.

RAWSEEDS’ Benchmarking Toolkit is available through the
project’s website,1 along with the documentation needed to
use it and with additional documentation about the project.

One of the goals of RAWSEEDS was to provide datasets
that include data from most of the sensor families actually
employed in mobile robotics. Another goal was the gather-
ing of datasets in real-world environments, covering a wide
range of locations and different experimental conditions. To
reach this goal, RAWSEEDS used a custom (i.e., not commer-
cial) robotic platform called Robocom (see Fig. 1), built by
Università di Milano—Bicocca basing on joint background
with Politecnico di Milano. The mechanical structure was
inspired by the smallest version of the Volksbot family (see
www.volksbot.de), although all the internals, including the
low-level control were especially designed for Robocom.
This platform was chosen for its small overall dimensions,
associated to high payload and very good maneuverability: a
quality, this, most needed in cramped indoor environments.
Moreover, Robocom is capable of both indoor and (lim-
ited) outdoor operation. All in all, minimization of bulk and
mass notwithstanding, the complete robot used to acquire
RAWSEEDS’ datasets weighed almost 85 kg and measured

1http://www.rawseeds.org

http://www.volksbot.de
http://www.rawseeds.org
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Fig. 1 Robocom platform with
onboard sensors, in the outdoor
version

570 (width) by 780 (length) by 1250 (height) millimeters.
These data are near to the limits for easy movement in in-
door environments (especially for doors and corridors), and
have been cited to highlight how this aspect could easily be
underestimated while designing heavily sensorized robots.

The sensor systems used by RAWSEEDS have been cho-
sen to cover a wide range of devices, while concentrating
on those which are more frequently used in the SLAM field.
Sensors mounted on board of the robot are listed below.

− Odometric system fitted to the robotic base.
− Binocular vision system, composed of a b/w two-camera

Videre Design STH-DCSG-VAR system.
− Trinocular vision system realized combining the binoc-

ular STH-DCSG-VAR with an additional Videre De-
sign DCSG camera (the same camera used by the STH-
DCSG-VAR).

− Color monocular vision, an Unibrain Fire-i 400 camera
(chosen as representative of low-cost devices).

− Omnidirectional color vision, obtained by using a Prosil-
ica GC1020C color GigE Vision camera fitted with an
off-the-shelf hyperbolic mirror by Vstone.

− Two Hokuyo URG-04LX low-cost laser range finders,
mounted on the front and the back of the robot. The scan-
ning planes of the LRSs have been slightly tilted down
towards the floor: this is coherent with a usage of such
sensors as obstacle avoidance devices and slope detec-
tors.

− Sick LMS291 and LMS200 laser range finders, mounted
on the front and the back of the robot.

− Xsense MTi inertial measurement unit (version with
1.7 g full scale acceleration and 150 deg/s full scale rate
of turn).

− Sonar belt composed of 12 Maxbotix EZ-2 ultrasonic
emitters/receivers attached to a custom acquisition board,
designed and built by Politecnico di Milano and based on
a DSPIC microcontroller (not shown in the outdoor setup
of Fig. 1).

In the RAWSEEDS project, we tried to include a wide
set of scenarios, covering different kinds of environments.
Presently, RAWSEEDS’ Benchmarking Toolkit includes data-
sets recorded in indoor, outdoor and mixed (i.e., partially in-
door and partially outdoor) locations; in natural and artificial
light conditions; and in static (i.e., with no moving objects
or people) or dynamic conditions. These datasets were all
gathered with the same robot setup already described, the
only difference being that sonar sensors were not used out-
door. In this way, the users of the datasets will also be able
to verify the performance of the chosen sensor types in a
range of conditions. Of course it is possible that in the fu-
ture new datasets will be included into RAWSEEDS’ Toolkit,
possibly acquired in new locations. The locations chosen
for data acquisitions are the following (for each of them, all
the types of datasets available are listed between parenthe-
ses): Bicocca (indoor only, static and dynamic, artificial and
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Fig. 2 The robot and its frame
of reference (a), with visual
markers (b) and the rectangular
gown (c). The checkerboard on
the gown is not currently
exploited for visual localization

natural lighting), and Polimi-Durando (outdoor and mixed,
static and dynamic, natural lighting).

Each of the datasets of RAWSEEDS’ Benchmarking
Toolkit is composed of data gathered by the robot on multi-
ple paths, partially overlapping and organized into loops to
help the testing of SLAM algorithms. One of the key per-
formance elements for such algorithms is, in fact, the ability
to correctly “close the loop” when the robot returns to a
previously visited zone: i.e., the ability to correctly detect
that the zone presently explored has been visited before and
to update the map built by the algorithm accordingly. It is
worth noting that each of the explored environments appears
in more than one dataset, with different robot paths and/or
exploring different areas, and in different conditions (e.g.,
static or dynamic, artificial or natural lighting). This allows
for some interesting use of the datasets: e.g., simulation of
multi-robot acquisition or evaluation of the map built by the
SLAM algorithm on a different dataset with respect to the
one used to build it.

As already mentioned, the recording of ground truth is
one of RAWSEEDS’ most interesting features. In outdoor en-
vironments ground truth has been collected by the use of a
standard RTK-GPS apparatus with precision up to 2–6 cen-
timeters (depending on reception of GPS satellite signals).
In indoor, as pointed out in the previous section, such kind
of apparatus does not exists and we had to develop the orig-
inal solutions presented in this paper together with a proper
validation of their accuracy. It should be noticed that ground
truth covers only a subset of the indoor area covered by the
robot path; however all the robot paths have been carefully
designed is such a way that multiple loops are closed in the
ground truth area making the most from its use.

4 Indoor ground truth definitions and hardware setup

In the RAWSEEDS project, indoor GT was gathered by
equipping the robot with six planar visual markers (see
Fig. 2) and a rectangular hull (“gown”) attached to the ro-
bot’s sides. Both the markers and the gown are placed in

such a way to be unobstructive to the onboard sensors, and
are needed for accurately reconstructing the robot position
when using cameras (GTvision) and laser scanners (GT-
laser), respectively.

The visual markers are a variation of the pattern com-
monly used in Augmented Reality, in particular in the AR-
Toolkit system (Kato and Billinghurst 1999). Markers are
black squares with a well-defined size, surrounded by a
white border of variable width and including a 6 × 6 ma-
trix of black and white squares, where an unique ID for each
marker is encoded. Before generating GT data, the relative
position of the markers on the robot hull has to be computed
and we used for this a number of high-resolution images
taken from a hand-held camera, as described below.

4.1 Recovering the relative positions of visual markers on
the robot

In order to estimate the rigid transformations leading from
the robot’s frame of reference to the frame of reference of
each of the six markers, we implemented an ad-hoc tech-
nique based on the ability to localize a single marker in 3D
(see Sect. 5). We shot a number of images with a hand-held
high-resolution camera (see Fig. 3a), whose intrinsic para-
meters are precisely calibrated, but whose extrinsic parame-
ters are not known as the camera is handheld and freely
moved by the operator, in order to image the robot from
many different angles.

Our system analyzes each of those images in order to de-
tect and localize each marker in 3D: for each pair of markers
Mi , Mj visible in a single frame, we get two rototranslations
Ti and Tj , leading from the camera to the marker’s frame of
reference. The relative position of Mi with respect to Mj is

therefore found as T
j
i = (Tj )

−1 · Ti . Similarly, the inverse

transformation T i
j is also computed. Note that T

j
i and T i

j

are independent on the camera position.
We perform this operation on all the available frames,

also considering the (lower-quality) data acquired with the
external cameras. Finally, we consider a single marker k,
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Fig. 3 Relative positions
between markers: high
resolution images (a) are
processed in order to recover a
number of rigid transformations
between each pair of markers;
the number of such relations is
shown in (b), where nodes
represent the different markers

Fig. 4 Executive drawing of the
environment used for initial
validation of the GTvision
system (see Sect. 7.1), with
camera positions. Actual dataset
collection was performed in a
different environment

whose position in the robot’s frame of reference is manually
measured, and gather all the computed transformations to-
wards each of the other markers. As some markers are not
directly reachable from k (i.e., they are never detected in the
same frame as k, this happens, e.g., when they lie on differ-
ent sides of the robot), the composition of two rigid transfor-
mations must be computed by considering “bridge” markers.
As many different rigid transformations are detected in mul-
tiple frames, for a given couple of markers (see Fig. 3b),
those are then averaged in order to recover a better estimate.
This operation is assisted by the user, which validates the
results and ensures that no outliers are considered.

4.2 Fixed cameras

The environment is equipped with a camera network com-
posed by a few cameras. These are mounted on poles, in
order to observe the robot from above; special care has been
taken in order to ensure that cameras do not move nor rotate.
In order to reconstruct the robot position in the world frame
of reference W , the cameras must be calibrated: i.e., their in-
trinsic parameters must be computed, and their position and
orientation (extrinsic parameters) with respect to W must be
found.

The intrinsic parameters of each camera, including ra-
dial distortion parameters, have been first calibrated by us-

ing the popular “Camera Calibration Toolbox for MAT-
LAB” (Bouguet 2002), using a large enough chessboard,
which is well visible from the cameras, see e.g., one of the
two chessboards in Fig. 5. Then, the rigid transformations
between the world reference frame and each of the cameras
have to be computed.

Since only one camera directly images the world refer-
ence frame, and the overlapping field of view for any two ad-
jacent cameras is quite narrow, calibrating the extrinsic cam-
era parameters is not straightforward. In order to connect
the fields of view of two adjacent cameras, we built a dou-
ble calibration checkerboard mounted on a solid mechanical
frame (see Fig. 5), in such a way that the relative position
of the two patterns is known and stable. Then, we can place
each of the two patterns in the field of view of each of the
two adjacent cameras, and acquire several images with dif-
ferent positions and orientations of the double chessboard:
this allows us to compute an accurate estimate of the rela-
tive position between the two cameras. The extrinsic para-
meters of each camera with respect to the “world” reference
frame (which is only seen by the first camera) are finally
computed by chaining the camera-to-camera rigid transfor-
mations. The accuracy of the resulting calibration data has
been manually validated, and found to be satisfactory (see
Sect. 7 and Sorrenti and Matteucci 2008 for numerical de-
tails).
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Fig. 5 (a) The double
calibration pattern we use for
calibrating cameras. (b) shows
the involved reference systems

Fig. 6 Top: panoramic image
representing the indoor
environment during the laser
alignment procedure. The fixed
laser scanners are circled in
black. Note the objects scattered
in the room for easing
alignment. The object that
allows to overlap the scans with
the W reference frame is circled
in white; note that it features a
checkerboard for extrinsic
camera calibration in the same
reference frame. Bottom: the
resulting aligned scans (detail);
data from the four lasers is in
different colors

4.3 Fixed laser scanners

The environment was also equipped with a number of fixed
planar laser scanners. Each laser scanner has a field of view
of 180 deg, and returns 180 samples per scan, at 75 Hz
scanning frequency. Each measurement represents the dis-
tance between the laser and the first object in that direc-
tion. The laser scanners are placed in such a way to operate
on a horizontal plane set at about 25 centimeters from the
ground.

We estimate the position of each laser scanner with re-
spect to each other by aligning their output, after several ob-
jects of known shape were placed in the environment (see
Fig. 6). As a result, the readings from all the laser scanners
can be merged. Moreover, one of the objects has edges co-
inciding with the “world” reference frame. A camera cal-
ibration chessboard has been placed nearby, at a known
offset from such object; this allowed us to determine a
common reference frame for both cameras and laser read-
ings.

5 Ground truth from visual markers

GTvision is computed by reconstructing the positions of vi-
sual markers attached to the robot by means of their im-
ages, acquired by the fixed calibrated cameras. As the rel-
ative positions of the markers on the robot frame are known
(see Sect. 4.1) and the ID of each marker can be decoded,
we can compute the position of the robot’s frame of refer-
ence, even if only few (or one) markers are visible in an
image.

The procedure first detects visual markers in each frame
(Sect. 5.1), then refines the corner positions of each marker
(Sect. 5.2), and finally uses the resulting data to reconstruct
the robot 3D position in the W reference frame (Sect. 5.3).

This techniques basically reproduces the functionality of
ARToolkit, but provides a significantly higher accuracy at
the expense of an increased computation time. Section 7 de-
tails the comparison between GTvision using the developed
system, and GTvision using the original ARToolkit.
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Fig. 7 (Color online)
(a–d) Image processing steps
for marker detection (see text);
(e) filled masks of candidates
passing all initial tests, with
detected corners (red); the
middle candidate will be
discarded later in the process

Fig. 8 (Color online) (a) Rough corners from previous steps (red), and
areas where border lines are fit (blue). (b) Rough marker edges (blue)
vs. refined marker edges (yellow): the maximum distance is about 3
pixels, which would reflect to significant reconstruction errors. (c) Re-

covered ID matrices. (d) Resulting image, with markers decoded; note
false detection (rightmost blue quadrangle), rejected as not validated
in the refinement stage

5.1 Detection of visual markers

The marker detection step analyzes every frame of the input
video and detects visible markers, providing rough estimates
of the coordinates of the corners of each visible marker.

First, a set C of candidate markers in the given frame is
built and a roughly-segmented binary mask Mi representing
each marker is provided. This phase is designed to be very
sensitive, in order to reduce the probability of missing valid
candidates; hence a significant amount of invalid candidates
(i.e., candidates not being actual markers) are likely to be de-
tected in this phase and returned in set C; they are discarded
and filtered in the following.

Elements in C are added as their brightness pattern is
compatible with the presence of a marker. In particular, the
original image I1 is divided by its own grayscale closure,
then inverted:

I2 = 1 − I1

close(I1,K)
, (1)

where K is a disk-shaped kernel with a radius roughly as
large as the expected image of the marker. The effect of the
closure operation is to fill the area with the white grey-level
surrounding the marker. As a consequence, in I2 the square
markers have large intensity values; I2 is then binarized, and
each of its connected components is considered a candidate
marker with binary mask Mi (see Fig. 7).

All elements of C are now subject to a number of mor-
phological tests on their binary masks Mi in order to discard

obvious misidentifications. In particular, all of the following
conditions must be met by each marker mask:

Size, which should be compatible to the expected area of a
marker; although we tolerate a wide variation in the mea-
sured marker area vs. the expected area (up to 6 times
bigger or smaller), this test still usually discards most of
the candidates in a crowded scene.

Euler number: Mi is expected to have at least one hole,
caused by the white cells in the marker ID matrix; this
corresponds to enforcing that the Euler number of Mi is
at most 0.

Fraction of the marker image covered by holes: as roughly
half of the cells of the marker ID matrix are white, and
the ID matrix itself covers 1/4 of the marker area, we
expect holes in Mi to cover about 1/8 of its total area.

Solidity, i.e., the fraction of the marker’s convex hull which
overlaps with the marker itself; as the marker projects to
a convex quadrangle, we expect this to be close to 1.

We then implement a final test on the surviving candi-
dates by looking for four well-defined corners on the filled
marker mask; when our routine detects such corners, the
candidate is accepted and passed to the subsequent step,
where such approximate corner localization will initialize
the refinement of the marker localization in the image. Lo-
calizing well-defined corners from the binary marker image
is not trivial, because most simple algorithms are fooled by
small errors due to imprecise binarization. We use an ad-hoc
iterative algorithm, which searches and refines a set of four
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roughly evenly-spaced points on the chain of perimeter pix-
els of Mi , such as those where the quadrangle they define
has the largest area.

5.2 Refinement of marker corners and ID decoding

Once the rough corner points of a marker i are known, the
binary mask Mi used for the previous processing is disre-
garded, and the original image data is again taken into con-
sideration in order to refine as much as possible the local-
ization of the four corners; this is especially critical as the
subsequent 3D reconstruction step heavily depends on the
accuracy of this corner localization.

In order to provide accurate results, we localize the cor-
ners of each marker by considering all the pixels along its
four external edges. This contrasts with faster but less accu-
rate techniques such as the ARToolKit, which instead use
only local information for corner localization. Such tech-
niques are particularly sensitive to noise and systematic er-
rors: in particular, due to defocus and motion blur, corners
often appear smoothed and are misplaced even by one or
more pixels towards the center of the marker. By exploiting
a much larger amount of data, our technique reaches supe-
rior accuracy, noise resiliency and robustness.

We first precisely localize the four straight lines sur-
rounding the marker by using data from all the pixels near
the expected position of such edges (except those near
the corners, which are deemed unreliable as previously
introduced)—see Fig. 8. The expected position of the edges
is computed from the rough localization of the corners pro-
vided by the previous phases. The four lines are then (alge-
braically) intersected in order to recover the refined corner
points. Any error in this process leads to a late rejection of
the candidate marker. One such possibility is the failure to
find a well-fitting line to the edge in the image area where
the marker border is expected (which we have found to be a
rare occurrence).

Once the refined corner points are known, they are ex-
ploited in order to rectify the marker image and recover the
binary matrix represented inside. If that does not match with
any known marker, the marker is rejected.

5.3 Reconstruction of the robot pose

For every input frame, the set of the detected markers is used
in order to recover the 3D position of the robot. As a first
step we compute the 3D position of each corner of each de-
tected marker in the reference frame of the robot, by exploit-
ing the known rigid transformation between the robot frame
and the marker itself. Then we exploit the known location
of the image points associated to each marker corner, which
we have precisely localized in the previous steps.

In short, if r markers are detected in a frame, we have
4 · r image points (from a single calibrated camera), paired

with 4 · r 3D points in the frame of reference of the robot.
Since the camera is calibrated, each of the image points can
be backprojected to a viewing ray in world coordinates. Our
goal is to recover the 3D rigid transformation leading from
the world reference frame to the robot reference frame, such
that the 3D points project to the known image points. This
corresponds to the well-known PNP problem (Perspective
N -Point—in our case N = 4 · r): such problem is not triv-
ial, but several different solution techniques are available,
e.g., Schweighofer and Pinz (2008), Moreno-Noguer et al.
(2007) and Lu (1999). In particular, we use the algorithm
proposed in Schweighofer and Pinz (2008), which we have
found to be the most robust in this case, especially when
only one marker is visible—a frequent occurrence in our
data.

6 Ground truth from laser scanners

GTlaser data is derived by means of a number of fixed
laser scanners placed in the environment. As described in
Sect. 4.3, their relative positions are known and referred to
the world reference frame W . The following procedure is
adopted in order to analyze scans acquired during robot mo-
tion, for reconstructing its pose. Readings from the four laser
scanners are initially aligned to the common reference frame
W ; this is made possible by the calibration procedure de-
scribed in Sect. 4.3. Then, we use the popular Iterative Clos-
est Point (ICP) algorithm to recover the pose of the robot in
the environment.

In order to provide a robust system, we implemented a fil-
tering technique to remove noise from the data gathered by
the laser scanners, to remove points not belonging to the ro-
bot outline. In particular, we implemented an approach sim-
ilar to the classical background subtraction technique used
in video-surveillance:

− laser scans obtained from the static environment are used
to build a “background scan” of it;

− the points generated by the environment (such as walls)
are removed from the scans by excluding readings that
are close in space to the background scan;

− points which are not close to the last acquired profile of
the robot are also discarded as noise too.

At the end of this processing we obtain a scan where only
a very reduced amount of noise is present; the ICP algo-
rithm (Besl and McKay 1992) is used to align two point sets
by computing the rigid transformation between them. In our
case such two sets are defined as:

− the cloud of points obtained by fusing the laser scanner
data and deleting all background and noise as mentioned
before; these scan points are in the world frame;
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Fig. 9 (Color online) An example of ICP execution where the pose initialization has been intentionally set in a suboptimal way. Filtered laser data
(black) and robot model (magenta) at some of the ICP iterations

Fig. 10 (a) Laser scans after
filtering, overlapped from
several consecutive acquisitions;
(b) the recovered robot outline
for each acquisition

− the shape model of the robot, represented by a set of
points along the rectangular contour of the robot, which
is expressed in the reference frame of the robot.

The resulting rigid transformation represents the robot pose.
In Fig. 9 a few iteration of the GTlaser approach is presented
where the algorithm has been intentionally initialized with a
quite suboptimal rigid transformation between the two sets
of points. In the real execution, we initialize the orientation
with the previous known position of the robot, in order to
ease and speed-up convergence: as the scanners run at 75 Hz
the previous pose is usually very near to the current one; the
results on a chunk of data is reported in Fig. 10.

7 Experimental results and validation

We worked with two different indoor setups, in different
places. Both environments were equipped with calibrated
cameras and laser scanners. In particular, in the first ex-
periment, performed in a room called GTroom in the se-
quel, GTvision has been computed, along with a set of
manually acquired validation GT measurements (“GTvali-
dation”). The experiment in the GTroom allowed us to com-
pare the original ARToolkit-based approach with the more
accurate algorithm that we are proposing to use.

In the latter experiment, which was performed in the Bic-
occa location, i.e., the specific location where the RAW-
SEEDS indoor acquisition campaigns have also been per-
formed, we computed both GTvision and GTlaser, and we
could measure the metric errors of both, again with respect
to GTvalidation, so that a comparison could be performed.
Differently from what happened in the GRroom, the GTval-
idation measurements could not be gathered manually be-
cause of the lower accuracy implicated by the much larger
size of this location. To tackle this problem, i.e., to get accu-
rate GTvalidation measurements, we used the robot onboard
laser scanners to improve manual measurements.

7.1 Acquisition of validation ground truth in the GTroom

In the GTroom we manually measured the pose of the robot
in 26 different positions along its trajectory. These measure-
ments have been used for the validation of the results of the
GTvision collection methods.

In order to manually measure the robot pose, we accu-
rately measured the positions of 16 points in the room (world
points) in the world reference frame. Moreover, we also de-
fined relevant points on the robot, whose coordinates are
known with respect to the robot itself: we selected the ex-
trema of the robot-frame axes. We manually moved the ro-
bot around the room, to the poses where we gathered the
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validation measurements. Then, for each such robot pose,
we collected the validation data. This meant to project, i.e.,
to draw, on the floor the robot-points and then, for each
robot-point, to measure their distance from 16 known world

Table 1 Details of the metric error for both GTvision methods with
respect to GTvalidation. Note that ARToolkit detects less markers than
our detector

GTvision

Our detector ARToolkit

Average error [cm] 9.53 17.02

Maximum error [cm] 14.53 36.70

Standard deviation [cm] 2.35 8.72

Number of poses localized 25/26 15/26

points. These measurements were performed with a laser
meter whose usage is typical in civil engineering, having
a range of several tens of meters with an accuracy of some
millimeters. These data allowed us to compute the pose of
the robot frame, along with its uncertainty, for each of the
26 validation poses.

The robot pose estimates were then compared to the out-
put of the GT systems, in order to evaluate their accuracy.
We checked whether the validation system was accurate
enough by reconstructing the position of a point 20 mm from
a known one. The outcome was accurate to less than 5 mm.

7.2 Preliminary GTvision validation and comparison with
ARToolkit

The validation setup in the GTroom has been used to com-
pare the accuracy of GTvision with the GTvalidation data,

Fig. 11 (Color online)
(a) Blueprint of the GTroom,
with the 16 world points marked
as red circles; (b) the 26
recovered robot poses included
in GTvalidation, with the
computed covariance ellipses

Fig. 12 Performance
comparison of GTvision,
GTvision (ARToolkit), and GT
Validation
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Fig. 13 Details of the metric errors of both GTvision methods with respect to the GTvalidation. Note that ARToolkit detects much less markers
than our detector

in the 26 poses where the latter is available. More inter-
esting and unique to the GTroom experiment (the com-
parison with the validation poses has been also performed
in the actual location where the datasets have been gath-
ered), is the comparison of the results of our GTvision tech-

nique with the results obtained by localizing markers using
ARToolkit.

Table 1 shows the results of GTvision when using AR-
Toolkit, and when using our improved detector: notice that
our detector is more accurate in estimating the poses and
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Fig. 14 Comparison of the
validation poses obtained from
the manual procedure and the
ICP-based one

Fig. 15 Onboard scans in the
validation poses, using the
manually determined values for
the poses. Cluttered areas
correspond to tables and chairs
(x = −4 m, y = 0 . . . − 15 m)
and to the area where
RAWSEEDS’ equipment was
installed (x = 5 . . .10 m,
y = −2 m)

manages to localize the robot in more frames. Figure 12

shows the location of these poses along the robot trajec-

tory and the poses estimated with the different methods. In

Fig. 13 we show the detailed metric error of each pose for

both methods: notice that the resulting mean metric error of

the GTvision is less than 100 mm, which represents an ac-

ceptable results for our needs.

7.3 GTvision and GTlaser validation in the Bicocca
location

In Bicocca location we could not base only on the man-
ual procedure used in the GTroom, for gathering valida-
tion robot poses. The reason is the reduced accuracy of this
triangulation-based procedure in the much larger GT area
defined in the Bicocca location, see Fig. 6. In order to get
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Fig. 16 Onboard scans in the
validation poses, using the
ICP-based values for the poses

estimates as accurate as in the GTroom we had to exploit
the onboard laser scanner. While performing this activity
we also discovered that the map, as in the available blue-
prints, included some mistakes, which we manually cor-
rected, see Fontana et al. (2009) for details.

The determination of the validation poses exploits ICP, in
order to align the onboard scans of each pose to the world
map. This is obtained as follows: the (less accurate) pose ob-
tained with the manual procedure followed in the GTroom
is used as initialization for an ICP-based alignment of the
two onboard scans to the world map. In the Bicocca loca-
tion we defined 20 world points and 23 validation poses,
see again Fontana et al. (2009) for details. The 23 valida-
tion poses can be observed together in Fig. 14, though just
by looking at this figure we cannot say which system is the
more accurate. In order to show that the quality of the man-
ual procedure is not accurate enough in the larger GTarea of
the Bicocca location, we drew all the scans gathered in the
validation by using the manually-determined pose, together
with the map, see Fig. 15. This can be compared with the
similar figure obtained by drawing the onboard scans from
the ICP-based poses, see Fig. 16. The latter figure is also the
only way we had to check the absolute quality of the values
of the validation poses, and it cannot be possible to give a
precise estimate of the error for this improved GTvalidation,
in comparison to the manual one.

Exploiting the ICP-aligned poses, we could determine the
accuracy of the GTpose collection systems that we set up.
Figure 17 shows the output of the two systems for the 23
validation poses. From Fig. 18 it is also easy to notice that
the poses reconstructed by GTlaser are more precise than
those from GTvision, particularly when we consider poses
that are far from the world reference frame. This is coher-
ent with the inner working of the GTvision system, as in

such cases the robot is observed by cameras having a ref-
erence frame that is linked to the world reference frame by
a chain of multiple roto-translations. Errors for GTlaser are
always smaller than 50 mm, while orientation are typically
within a range of ±2.5 degrees. GTvision errors are char-
acterized by large peaks together with much more accurate
results, for some poses even better than GTlaser. For GT-
laser the mean linear distance error amounts to 20 mm, with
a standard deviation of 11 mm; the mean angular distance
error amounts to 0.15 degrees with a standard deviation of
1.56 degrees. For GTvision the mean linear distance error
amounts to 112 mm, with a standard deviation of 90 mm;
the mean angular distance error amounts to −0.80 degrees
with a standard deviation of 2.16 degrees. It is worth notic-
ing that in several poses the angular errors are of opposite
sign, which is expected because of the independence of the
two systems. Therefore a proper combination of GTvision
and GTlaser could compensate them obtaining an even bet-
ter estimate of robot pose.

Figure 19 shows the results of the online execution. In
this case we localized the pose of the robot in each frame of
the camera videos. The GTvision and GTlaser data acquired
were spatially aligned with the world reference frame W

and aligned in time by matching the timestamps. The rela-
tive distances of corresponding poses for the two data stream
were calculated: the average metric error was 93.5 mm with
a standard deviation of 42.0 mm, which are again acceptable
for our needs.

7.4 Integration of visual markers, laser, and odometry data

Although the GTlaser and GTvision data are theoretically
independent and could be used by themselves, they can be
fused with the readings from the robot’s odometry sensor, in
order to obtain a more reliable measurement of the robot’s
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Fig. 17 (Color online) The 23
validation poses in black, the 23
poses reconstructed by GTlaser
in green, the 23 poses
reconstructed by GTvision in
blue. Please note that for poses
9, 5, 15, 17, 18 GTvision was
unable to localize the robot.
Measurement units are
millimeters

Fig. 18 (Color online) Differences between the output of GTlaser and GTvision. In particular, linear and angular errors with respect to the
validation poses. GTlaser in green, GTvision in blue; measurement units are millimeters and degrees

real position in the environment. To do this, we can assume
the uncertainty associated with the source measurements to

be Gaussian: therefore, we can use a classical Kalman ap-
proach to perform data fusion.
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Fig. 19 (a) Comparison of
GTlaser and GTvision for the
online execution. (b, c) Close up
of the area covered by two
cameras of the network

In particular, when both streams are available, we use an
Extended Kalman Smoother, which beside optimally inte-
grating the two independent estimates according to their ac-
curacy, also allows to further improve the estimate of the
robot position by using the both past and future information,
at each time stamp. This is applicable in our case as data
fusion can be performed as a postprocessing step, when the
whole dataset is available.

The algorithm is composed by two phases: a forward fil-
tering (just like the classical Extended Kalman Filter), fol-
lowed by a backward recursion that smooths the past esti-
mates, integrating the future ones. Being a detailed descrip-
tion of the Kalman Smoother out of the scope of this paper,
we point the interested reader to Yu et al. (2004); here we
just report the fact that, by fusing GTlaser and GTvision ac-

cording to their uncertainties, we can obtain an accuracy of
5 cm and 0.5 degrees.

8 Discussion and conclusions

In this paper we dealt with the often overlooked problem
of collecting ground truth data, which is a critical step for
benchmarking self-localization and SLAM algorithms. We
described two independent techniques, GTvision and GT-
laser, which do not rely on the robot’s own sensor suite,
but instead use external cameras and external laser scanners,
respectively; we compared and validated their performance
also using manually-acquired validation data, whose uncer-
tainty is very low, at the expense of a major effort required
to acquire them.
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Results show that both techniques provide sufficient ac-
curacy for most uses; in particular, we have shown that the
technique exploiting visual markers needs to locate them
very accurately in the images, and required a more accurate
approach in comparison to off-the-shelf systems such as the
ARToolkit (which is designed for efficiency rather than ac-
curacy). We have also underlined the many issues related to
ground truth data gathering using these techniques—namely
calibration of cameras, estimation of rigid transformations
between markers, and alignment of laser sensors—along
with our solutions, whose validity has been proved by ex-
perimental validation.

Each of the two proposed GT-collection systems has its
own pros and cons so the choice of which one should use
has to take both of them into account. GTlaser can be em-
ployed in order to obtain more precise measurement than
GTvision (the laser range finders used in our experiments
provided errors in the range of a few centimeters) and it can
get this measurement online. Moreover each single sensor
has a wider horizontal field of view than a perspective cam-
era and thus allows one to use less sensors to cover the same
area. However, using linear laser range finders the system
can reconstruct the robot position in three degrees of free-
dom, and thus it is not suited for non planar movement; in
addition to this, such a system requires a well defined robot
profile (i.e., the gown).

GTvision is undoubtedly more cumbersome in setup and
the present implementation is meant for off-line computa-
tion, but it allows the computation of a six degree of freedom
pose for the robot. GTvision does not require the presence of
the gown, but exploits a set of markers. Moreover, it has to
be noticed that illumination has to be reasonably uniform in
order to obtain a good localization. From a cost perspective,
the hardware cost for this system is much lower than the GT-
laser one, but we have to consider that setup and calibration
activities bring their own costs.

When it is feasible, both GT-collection systems could be
used and their estimates combined as suggested in Sect. 7.4,
but in case only one of them has to be chosen this choice
has to be made by taking into account the algorithm to be
benchmarked. In case we are interested in a full six degrees
of freedom SLAM algorithm to be benchmarked the choice
is forced toward the GTvision method, while in case we are
interested only in three degrees of freedom the obtainable
accuracy suggests to go for the GTlaser solution. However,
this consideration does not take into account the environ-
ment in which the ground truth is collected; in very clut-
tered environments such as offices or libraries the presence
of several objects on the floor (e.g., tables, chairs, bags, trol-
leys, etc.) make the field of view of the laser occluded so
the camera solution has to be preferred instead. Moreover,
the GTlaser is perfectly suited for wide halls while in long
corridors the number of points reflected by the gown might

be small and grouped on just one of the gown sides; in this
situation there might be not enough information to obtain a
good estimate both in position and orientation.

An orthogonal issue might be related to the appropriate-
ness of the accuracy obtained with the ground truth systems
presented in this paper when measuring the results of today’s
SLAM algorithms. This is not an easy answer to give since,
nowadays, a clear quantification of the accuracy in SLAM
independently from the sensor used is not possible, and in-
deed this is the final aim of the RAWSEEDS project. Some
kind of feeling about the “accuracy bound” obtainable from
a SLAM algorithms can be obtained by looking at the ac-
curacy of the sensor used. Some concerns might arise when
SLAM algorithm using laser scanners are compared using
our ground truth since the accuracy of a laser range finder
is definitely higher. Conversely, when we use vision sensors
to perform SLAM, the uncertainty in the measurements, es-
pecially when features are far away from the observer, is
higher than the accuracy obtained by our systems.
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