
Camera Self-Calibration for Sequential Bayesian Structure From

Motion

Javier Civera, Diana R. Bueno, Andrew J. Davison and J. M. M. Montiel

Abstract— Computer vision researchers have proved the
feasibility of camera self-calibration —the estimation of a
camera’s internal parameters from an image sequence without
any known scene structure. Various self-calibration algorithms
have been published. Nevertheless, all of the recent sequential
approaches to 3D structure and motion estimation from image
sequences which have arisen in robotics and aim at real-time
operation (often classed as visual SLAM or visual odometry)
have relied on pre-calibrated cameras and have not attempted
online calibration.

In this paper, we present a sequential filtering algorithm
for simultaneous estimation of 3D scene estimation, camera
trajectory and full camera calibration from a sequence of
fixed but unknown calibration. This calibration comprises the
standard projective parameters of focal length and principal
point along with two radial distortion coefficients. To deal with
the large non-linearities introduced by the unknown calibration
parameters, we use a Sum of Gaussians (SOG) filter rather than
the simpler Extended Kalman Filter (EKF).

To our knowledge, this is the first sequential Bayesian
autocalibration algorithm which achieves complete fixed camera
calibration using as input only a sequence of uncalibrated
monocular images. The approach is validated with experimental
results using natural images, including a demonstration of loop
closing for a sequence with unknown camera calibration.

I. INTRODUCTION

Camera self-calibration (or auto-calibration) is the process

of estimating the internal parameters of a camera from a set

of arbitrary uncalibrated images of a general scene. Self-

calibration has several advantages over calibration with a

special calibration target. First, it avoids the onerous task

of taking pictures of the calibration object; a task that may

be difficult or even impossible if the camera is attached to a

robot. Second, internal parameters of a camera may change

either unintentionally (e.g. due to vibrations, thermical or

mechanical shocks) or even intentionally in the case of a

zooming camera. 3D estimation in this latter case could

only be performed via self-calibration. Finally, inaccurate

calibration (coming either from a poor calibration process

or from changed calibration parameters) produces the unde-

sirable effect of introducing bias in the estimation.

In recent years, there has been active research in the

robotics community on adapting the batch algorithms for

3D motion and structure estimation from the computer

vision community to the sequential domain suitable for real-

time robot implementation. Firstly, methods known as visual
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odometry ([17] and more recent works) have stretched Struc-

ture from Motion (SFM) methods for small image sets [11] to

recursive real-time estimation of the trajectory of a camera by

considering a sliding temporal window and performing SFM

and local optimisation over it. Visual odometry approaches,

sometimes with the help of inertial sensors, have successfully

estimated trajectories of several kilometres with impressive

accuracy [13]. Other remarkable recent related work in with

a slightly different emphasis includes [12] where globally

consistent room size maps based on bundle adjustment are

applied to real time augmented reality.

The second main type of approach has been based on

sequential probabilistic filtering as in earlier literature on

non-visual SLAM to propagate a full joint distribution over

camera and sparse map parameters. The original method of

[6] has been improved with developments such as inverse

depth feature parametrization [5] and robust matching based

on JCBB [16]. Perhaps the state of the art in this area is

[9] where a graph of probabilistic submaps allows accurate

probabilistic filtering for large numbers of features.

Although computer vision researchers have demonstrated

the feasibility of self-calibration and despite all the advan-

tages mentioned before, all of the recent sequential ap-

proaches to visual localisation and mapping above rely on a

pre-calibrated camera. In this paper, we propose a sequential

SLAM-based algorithm that is able to sequentially estimate

the structure of a scene, the trajectory of a camera and also

its full calibration — including two coefficients of radial

distortion. The only assumption made about the fixed camera

calibration is that the skew is zero and the pixel aspect ratio

is 1, a reasonable assumption in today’s digital cameras.

The rest of the paper is organised as follows: Section

II surveys prior work related to the approach presented

here. Section III introduces the Sum of Gaussians (SOG)

filter. In Section IV we detail our self-calibration algorithm

using SOG. Section V presents real-image experiments that

validate our approach. The conclusions of the paper and

future lines of work can be found in Section VI.

II. RELATED WORK

Traditionally, photogrammetric bundle adjustment has in-

cluded camera calibration parameters — projective camera

parameters and also distortion parameters — in order to

refine a tight initial calibration guess and hence improve

reconstruction accuracy.

Self-calibration allows the computation from scratch of

projective calibration parameters: focal length, principal

point, and skew; the computed calibration is readily usable
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or might be used as an initial guess for bundle adjustment

refinement, and the refinement might include estimation of

distortion parameters. The standard off-line self-calibration

process is summarized as follows: first, matches along an

uncalibrated sequence with possibly varying parameters are

determined. Note that here, no assumptions about camera

calibration — except that non-projective distortions are negli-

gible — are applied. Then a projective reconstruction is com-

puted; a potentially warped version of the ideal Euclidean

reconstruction. If no more information about the camera

taking the images is available then projective reconstruction

is the best result that can be computed. However if some

knowledge about calibration parameters is available — that

they are constant, that there is zero skew, a known principal

point or known aspect ratio — then this can be exploited

to compute the rest of the unknown calibration parameters.

Faugeras et al. demonstrated auto-calibration for the first time

in 1992 [10]. Since then different methods for upgrading

projective reconstruction to metric using partial knowledge

about the camera calibration have been developed. A sum-

mary of all theses results is found in [11].

In spite of the vast amount of work related to autocal-

ibration, approaches to these problem under a sequential

Bayesian estimation framework are surprisingly few, and

none of them performs a complete calibration. In [2] the

authors propose for the first time the use of an EKF for

sequential Bayesian estimation of unknown focal length. This

is relevant seminal work but the 3D point parametrization is

basic and this makes it difficult to deal with occlusion and

feature addition and deletion. The approach of [19] estimates

a varying focal length assuming that the rest of the calibration

parameters are known, and using a particle filter to deal with

non-linearities.

Regarding the estimation techniques used in this work,

the nonlinearity of the self-calibration problem has forced

us to abandon the Extended Kalman Filter and adopt an

approach more suitable for nonlinear systems: the Sum of

Gaussians (SOG) filter [1]. This type of filter has already

been used in SLAM [18], [8]. The paper [14] is of particular

interest, as the combination of the Sum of Gaussians filter

plus Sequential Probability Ratio Test they use to deal with

the point initialization problem in monocular SLAM is the

same it is used in this paper for self-calibration purposes.

Finally, we feel that this paper forms an important part

of the recent stream of research on approaching the Struc-

ture From Motion problem using a Bayesian model of the

sequence and sequential filtering. Since the work of [6],

several concepts from off-line SfM have been brought into

this domain; for example: the need for projective point

parametrization [5], the model selection problem [4], or cor-

respondence search [3]. Self-calibration is another important

issue that must be tackled by on-line systems for them to be

truly practical.

III. SUM OF GAUSSIANS (SOG) FILTER

Within the SOG approach [1], the probability density

function of the estimated parameters p (x) is approximated

Fig. 1. Scheme of the Sum of Gaussians (SOG) filter

by a weighted sum of multivariate Gaussians:

p (x) =

ng
∑

i=1

α(i)N
(

x̂(i),P(i)
)

, (1)

where ng stands for the number of Gaussians, x̂(i) and

P(i) are the mean and covariance matrix for each Gaussian

and α(i) represents the weighting factors, which should obey
∑ng

i=1 α(i) = 1 and α(i) ≥ 0.

This Sum of Gaussians probability density function

evolves as follows: at every step, when new measurements

arrive, each one of the Gaussians is updated with the standard

prediction-update Extended Kalman Filter equations. The

central part of the SOG algorithm is, then, a bank of

EKF filters running in parallel. This bank of EKF filters is

illustrated in Figure 1.

Weighting factors α(i) are also updated at every step k

using this formula:

α
(i)
k =

α
(i)
k−1N

(

ν
(i)
k ,S

(i)
k

)

∑ng

j=1 α
(j)
k−1N

(

ν
(j)
k ,S

(j)
k

) ; (2)

where ν
(i)
k and S

(i)
k are the EKF innovation vector and

its covariance matrix respectively. The innovation vector

for each EKF is computed as the difference between the

actual measurements zk and the predicted measurements

h
(i)
k . The predicted measurements h

(i)
k result from applying

the measurement model equations to the state vector x̂
(i)
k

ν
(i)
k = zk − h

(i)
k , h

(i)
k = h

(

x̂
(i)
k

)

. (3)

The innovation covariance is obtained propagating each

EKF covariance P
(i)
k through the measurement equations and

adding the covariance of the zero-mean image noise R
(i)
k

S
(i)
k = H

(i)
k P

(i)
k H

(i)
k

⊤
+ R

(i)
k , H

(i)
k =

∂h

∂x

∣

∣

∣

∣

x̂
(i)
k

. (4)
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Finally, an overall mean and covariance for the whole filter

can be computed as follows:

x̂k =

ng
∑

i=1

α
(i)
k x̂

(i)
k

Pk =

ng
∑

i=1

α
(i)
k

(

P
(i)
k +

(

x̂
(i)
k − x̂k

) (

x̂
(i)
k − x̂k

)⊤
)

.

(5)

These values are used for visualization purposes in our

experiments. Nevertheless, notice (graphically in Figure 1)

that this is the only purpose of the overall mean and

covariance as they are not involved either in the filter bank

or in the evolution of the weighting factors.

From this brief introduction, the two fundamental advan-

tages of the SOG filter over the EKF can be intuitively

introduced. First, notice that any probability density function

can be reasonably approximated by a weighted Sum of

Gaussians if we make the number of Gaussians ng high

enough. So, the usual EKF assumption of Gaussian PDF

does not need to hold for the SOG filter. Second, and more

importantly for this work, as we increase the number of

Gaussians the uncertainty P(i) for each Gaussian becomes

smaller, favoring linearity.

IV. SELF-CALIBRATION USING SOG FILTERING

A. State vector definition

In order to estimate 3D scene structure and camera lo-

cation and calibration the SOG state vector x, –and hence

every EKF state vector x(i) that composes the filter bank–

will contain a set of camera parameters xcam and a set of

parameters xmap representing each estimated point yj .

x =
(

x⊤
cam,x⊤

map

)⊤
, xmap =

(

y⊤
1 , . . . ,y⊤

n

)⊤
(6)

Mapped points yj are first coded in inverse depth (ID)

coordinates and converted into cartesian (XYZ) coordinates

if and when their measurement equation becomes linear.

yID
j = (Xc, Yc, Zc, θ, φ, ρ)

⊤
, yXY Z

j = (X,Y,Z)
⊤

(7)

Inverse depth parameters represent the ray when the point

was first observed by (Xc, Yc, Zc), that is the camera optical

centre, and (θ, φ) that are the azimuth-elevation angles

coding the direction; all in the world frame. ρ represents

the inverse of the depth of the feature along that direction.

Full details about this parametrization can be found in [5].

The camera part of the state vector xcam, as the key

difference from previous work, now includes the internal

calibration parameters to estimate: the focal length f , the

principal point coordinates Cx and Cy and the parameters

modelling radial distortion κ1 and κ2.

xcam =
(

x⊤
cal,x

⊤
v

)⊤
; xcal = (f, Cx, Cy, κ1, κ2)

⊤
,

xv =
(

rWC⊤
,qWC⊤

,vW ⊤
, ωC⊤

)⊤

. (8)

Camera motion is modeled with a constant velocity model

[6] that we shall not reproduce here for space reasons.

Camera motion parameters in xv are then camera position

rWC and orientation qWC and respective linear and angular

velocities vW and ωC .

B. Projection model

The projection model used in this work is fully detailed

here, for a good understanding of the role of the calibration

parameters. The first step of the projection model is to

transform the point coordinates in the world reference frame

to the camera reference frame. In the case of inverse depth

coded points, it is done as follows

hC = RCW (qWC)



ρ









Xc

Yc

Zc



 − rWC



 + m (θ, φ)



 ;

(9)

where m is the unit vector defined by azimuth and elevation

angles θ and φ. If the point is coded in cartesian coordinates:

hC = RCW (qWC)









X

Y

Z



 − rWC



 . (10)

Points in the camera reference are projected according to

the pinhole camera model. Appearing in this equation are the

focal length f and the principal point coordinates Cx and Cy

we want to self-calibrate

h =

(

uu

vu

)

=





Cx − f
hC

x

hC
z

Cy − f
hC

y

hC
z



 , (11)

To compensate for radial distortion a two-parameter model

is applied [15]. To recover the ideal projective undistorted co-

ordinates (uu, vu)
⊤

, from the actual distorted ones gathered

by the camera, (ud, vd)
⊤

:
(

uu

vu

)

= hu

(

ud

vd

)

=

(

Cx + (ud − Cx)
(

1 + κ1r
2
d + κ2r

4
d

)

Cy + (vd − Cy)
(

1 + κ1r
2
d + κ2r

4
d

)

)

rd =

√

(dx (ud − Cx))
2

+ (dy (vd − Cy))
2

(12)

Here, κ1 and κ2 are the radial distortion coefficients that

complete the internal calibration parameter set we want to

estimate. dx and dy represent the pixel size in both directions

of the image; and are fixed parameters that can be extracted

from the specifications of the camera.

C. Correspondence Search

One of the clear advantages of a recursive Bayesian

approach to the SfM problem is the so-called active search

[7]: the Bayesian propagation of the probabilistic estimation

to the image space defines a small region to search for each

match, reducing computation and the risk of mismatches.

Search regions are computed in a SOG filter as follows:

first, an estimation of the predicted measurements in the

image and its covariance is computed from equations 3 and 4
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for each EKF, being the measurement model h
(i)
k the camera

model described in section IV-B.

And second, an aggregation of all the multivariate Gaus-

sians that represent the predicted measurements for every

EKF is computed. ĥk and Sk are used to define the 3σ

ellipses in the image where the matches are searched [7].

ĥk =

ng
∑

i=1

α
(i)
k ĥ

(i)
k

Sk =

ng
∑

i=1

α
(i)
k

(

S
(i)
k +

(

ĥ
(i)
k − ĥk

) (

ĥ
(i)
k − ĥk

)⊤
)

(13)

D. Pruning of Gaussians with Low Weight

As it can be assumed that the final estimation result will

be unimodal, Gaussians that repeteadly obtain low weighting

factors can be pruned reducing the computational cost. To

do this, it is adopted the proposal in [14], which makes

use of the Sequential Probability Ratio Test (SPRT) [20].

Experiments have shown that SPRT achieves a high reduction

rate while maintaining similar performance.

For each Gaussian i in the SOG filter, the null hypothesis

H0 is that such Gaussian correctly represents the true state

and the alternative hypothesis H1 that the Gaussian does not

represent the true state. At every step k, the null hypothesis

is accepted if

k
∏

t=1

L
(i)
t (H0)

L
(i)
t (H1)

> A , (14)

and the alternative hypothesis is accepted (meaning that

Gaussian i can be pruned) if

k
∏

t=1

L
(i)
t (H0)

L
(i)
t (H1)

< B , (15)

where L
(i)
t (H0) and L

(i)
t (H1) are the likelihoods of the

data under hypothesis H0 and H1 at frame t. These likeli-

hoods are computed as follows:

L
(i)
t (H0) = N

(

ν
(i)
t ,S

(i)
t

)

(16)

L
(i)
t (H1) =

ng
∑

j=1;j 6=i

α(j)′N
(

ν
(j)
t ,S

(j)
t

)

(17)

α(j)′ =
α(j)

∑ng

k=1;k 6=i α(k)
. (18)

Thresholds A and B are approximated by the so-called

Wald Boundaries [20] A = 1−αb

αa
and B = αb

1−αa
, where αa

and αb are the probabilities of type I and type II errors.

V. EXPERIMENTAL RESULTS

Two experiments have been carried to test the performance

of the algorithm. The design of the SOG filter, which is the

same for both experiments, it is explained here previous to

the experimental results.
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Fig. 2. Probability density function considered for the focal length.
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Fig. 3. Probability density function for distortion parameters κ1 and κ2.

An interval for the focal length f from around 100 pixels

to around 600 pixels is considered to be the usual range for

cameras used in robotics. It has been experimentally found

that the projection measurement equation from section IV-

B is fairly linear in intervals of 30 pixels. So, in order to

estimate the focal length, the full range of possible focal

length values is divided into 18 Gaussians with standard

deviations of 7.5 pixels and separation between means of 30
pixels. Figure 2 shows the resulting probability distribution

function.

A similar procedure applies for κ1 and κ2. It is considered

that usual values for these parameters go from 0 (no ra-

dial distortion) to 0.08mm−2 and 0.018mm−4 respectively.

The projection model is approximately linear if these two

variation ranges are divided into 2 intervals for κ1 and 3
for κ2. The resulting probability density functions for radial

distortion parameters can be seen in Figure 3.

The final SOG filter will be composed of all possible

combinations of the above divisions, that is 18×2×3 = 108
filters.

Finally, regarding the optical centre coordinates Cx and

Cy; as the measurement equation is linear for those param-

eters, they are coded with one single Gaussian. The optical

centre is assumed to be a maximum of 10 pixels from the

centre of the image. For a 320× 240 image, this results in a

bidimensional Gaussian whose mean is [160, 120] and whose

standard deviations are 3.3 pixels in each coordinate.

A. Indoor Sequence

The first sequence used to test the self-calibration algo-

rithm is an indoor sequence taken with a hand-held 320×240
IEEE1394 camera in a computer room. The purpose of this

experiment is to test the accuracy of the proposed algorithm,

comparing its results with an offline calibration.

Figure 4 shows three frames of the sequence, one at the

beginning, the second in the middle and the last frame of the

sequence, and with the 3D estimation at each instant. The
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Fig. 4. Images and top-down view 3D estimation for frames #20 (a), #80
(b) #260 (c), which is the last frame of the sequence.
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Fig. 5. Estimated calibration parameters over the computer room sequence.
Thick blue line is the estimated value, the horizontal black line is the offline
calibration value and the red thin lines represent the 99% uncertainty region.

evolution of the calibration parameters estimation over the

sequence can be observed in Figure 5. The same figure also

shows the number of Gaussians in the SOG filter at each step.

Notice the steep decrease in the first steps of the estimation,

and how after image 120 of the sequence the SOG filter

is composed of only one filter, becoming an EKF. Table I

details the initial and final values of the estimation with a

99% confidence interval and the offline calibration values for

a better visualization of the accuracy of our self-calibration

results. Notice that although initial values cover a wide range

of variation for the parameters, the SOG ends up with a tight

and consistent estimation for all of them. Estimation results

for the entire sequence are shown in the video accompanying

the paper.

TABLE I

CALIBRATION RESULTS FOR INDOOR SEQUENCE

Initial SOG
Interval

Final SOG
Estimation

Offline
Calibration

f [pixels] [100, 610] 193.0± 1.9 194.1
Cx[pixels] [150, 170] 161.6± 2.3 160.2
Cy [pixels] [110, 130] 127.0± 2.4 128.9
κ1[mm−2] [0, 0.08] 0.0639± 0.0032 0.0633
κ2[mm−4] [0, 0.018] 0.0139± 0.0009 0.0139

TABLE II

CALIBRATION RESULTS FOR THE LOOP CLOSING SEQUENCE.

Initial SOG
Interval

Final SOG
Estimation

Offline
Calibration

f [pixels] [100, 610] 195.0± 0.4 196.9
Cx[pixels] [150, 170] 159.6± 1.0 153.5
Cy [pixels] [110, 130] 133.9± 1.0 130.8
κ1[mm−2] [0, 0.08] 0.0652± 0.0019 0.0693
κ2[mm−4] [0, 0.018] 0.0132± 0.0005 0.0109

B. Loop-Closing Sequence

Loop-Closing is a standard benchmark in SLAM to test

the validity of an estimation algorithm: when a sensor revisits

known areas, the estimation error should be small enough for

the algorithm to recognize previous mapped landmarks.

A challenging indoor loop-closing sequence available as

multimedia material in [5] –previously used to test inverse

depth EKF monocular SLAM with a calibrated camera–

has been used in this experiment. The estimated calibration

values are accurate enough to close the loop. The complete

sequence is shown in the video accompanying the paper.

Figure 6 shows three representative frames of the sequence

and their estimated scene, including the loop closing frame.

As we show in Table II and in Figure 7, the estimated

calibration is close to the offline calibration, but in a slightly

over-confident manner. This experiment when compared with

the previous one presents more difficult linearization issues

because uncertainty increases when the camera explores new

areas, and increases in uncertainty imply more non-linear

effects. Besides, the fixed model for the calibration parame-

ters implies a monotonic uncertainty reduction that becomes

unrealistic after processing several hundred of images.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented for the first time an algo-

rithm that fully auto-calibrates a camera within a sequential

Bayesian framework, the only input being a sequence of

images from a moving uncalibrated camera. Due to non-

linearities introduced by the estimation of calibration param-

eters, a Sum of Gaussian filter is used to divide the whole

non-linear range of variation into small almost-linear pieces.

The SOG approach uses several filters in the first steps of the

estimation to cover all of these almost-linear hypothesis. A

pruning algorithm has been added that cuts Gaussians whose

weighting factors are low and reduces the SOG filter to a
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Fig. 6. (a) Image and 3D estimation at frame 60. (b) Image and 3D
estimation at frame 330 of the sequence, when first loop-closure feature
(signaled in the image) is detected. (c) Image and 3D estimation at frame
670, the last one of the sequence.

100 200 300 400 500 600
100

150

200

250

300

100 200 300 400 500 600

145

150

155

160

165

100 200 300 400 500 600

120

125

130

135

140

100 200 300 400 500 600
0

0.05

0.1

100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

100 200 300 400 500 600
0

25

50

75

100

f [pixels] C
x
 [pixels]

C
y
 [pixels] κ

1
 [mm

−2
]

κ
2
 [mm

−4
]

Number of
Gaussians

Fig. 7. Estimated calibration parameters over the loop closing sequence.
Thick blue line is the estimated value, the horizontal black line is the offline
calibration value and the red thin lines represent the 99% uncertainty region.

simple EKF in a few steps so complexity is reduced after an

initial computation overhead. As the multiple Gaussians have

to be kept only at initial stages when the map size is small,

we expect the computational complexity to be low enough

to achieve real time performance.

Experimental results with real-images show that an accu-

rate and consistent camera calibration is achieved for a wag-

gling motion in an indoor sequence. A loop closure has been

successfully performed, achieving calibration values close to

offline calibration, what is a remarkable achievement, though

the estimation is somewhat inconsistent due to non-linearities

and to the unrealistic monotonic uncertainty reduction that

EKF produces when dealing with static parameters.

Regarding future lines of work, an interesting one would

be to analyze how this self-calibration algorithm behaves

with respect to degenerate camera motion. Also, being al-

ready demonstrated that sequential camera self-calibration is

feasible for a camera with fixed unknown parameters, next

natural step is to deal with varying calibration parameters.
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