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Abstract— In this paper we describe an algorithm to com-
pute cycle constraints that can be used in many graph-based
SLAM algorithms; we exemplify it in Hierarchical SLAM. Our
algorithm incrementally computes the minimum cycle basis
of constraints from which any other cycle can be derived.
Cycles in this basis are local and of minimum length, so
that the associated cycle constraints have less linearization
problems. This also permits to construct regional maps, that is,
it makes possible efficient and accurate intermediate mapping
levels between local maps and the whole global map. We
have extended our algorithm to the multi-robot case. We have
tested our methodology using the Victoria Park data set with
satisfactory results.

I. INTRODUCTION

Graph-based SLAM is one of the three fundamental
paradigms for solving SLAM [28]. Frese’s Treemap al-
gorithm [10] uses a binary-tree to divide the map into
regions and subregions to compute nonlinear map estimates.
It assumes, as most of the following graph-based methods,
known data association and requires a suitable building
topology. Graphical SLAM [6] compresses the graph into
star nodes. These star nodes are used to perform a coarse
adjustment of the graph in a similar manner as Hierarchical
SLAM [4] imposes cycle constraints [8]. They perform
afterwards a fine tuning to eliminate inconsistency between
features common to different star nodes. In their experiments
the graph relaxation is quite hard, resulting in computation
times significantly longer that EKF [7]. As the topology of
the graph becomes more complex (many cycles) it takes
longer to relax the graph. GraphSLAM [27] transforms
the SLAM posterior into a graphical network, representing
the log-likelihood of the data. It then reduces this graph
using variable elimination techniques, arriving at a lower
dimensional problem that is then solved using conventional
optimization techniques. When closing a cycle, GraphSLAM
reduces the number of variables to the path variables (just
like Graphical SLAM). Konolige’s method for Large-Scale
Map-making [19] reduces a pose chain graph to poses that
have a cycle constraint attached by marginalizing all poses
not directly involved in the cycle constraints. Tectonic SAM
[22] uses a submap-based SLAM. It employs what they call
a factor graph that then is compressed in a way very similar
to Graphical SLAM. It makes use of a smoothing approach
to optimize every single submap and a Levenberg-Marquardt
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optimization to align the submaps. Incremental SAM (iSAM)
[16] is an incremental smoothing and mapping method that
exploits the natural sparsity of the smoothing information
matrix. Reordering of the variables and factorization of the
new measurement Jacobian are not done at any step but
periodically to achieve real time. The method uses conser-
vative estimates for online data association. Sophisticated
optimization techniques such as Multilevel relaxation of
Frese [9] or Olson’s algorithm [23] use the incremental
sequence of robot poses along the travelled path to perform
the optimization, making the algorithm depend on the length
of the path and difficult to apply to the scenario of multi-
robot SLAM. Grisetti et al. [12] presented an extension of
Olson’s Stochastic Gradient Descent algorithm that, using
a tree parametrization that takes into account the topology
of the environment, defines and efficiently updates local
regions in each iteration. An online version of this method
is achieved by integrating adaptive learning rates in the
parametrization of the network [13].

The problem of nonlinearities makes graph-based methods
using relative coordinates more precise to perform SLAM
than graph-based methods using absolute coordinates. How-
ever, most of the above graph-based methods working with
relative coordinates assume that the constraints are given. If,
on the contrary, the constraints are obtained by the method,
nothing is said about classifying them to avoid redundancy
of constraints. The method that we propose in the present
paper is based in the Hierarchical SLAM [4] representation
and achieves, not only a classification of the constraints, but
an incremental classification that allows to decompose the
global map into regions that accelerate the obtention of a
regional map when we are not interested in the whole global
map (countries, cities, etc) but only in a reduced part of it.

The Hierarchical SLAM method obtains accurate metric
maps of large environments in real time by using two levels
of representation: a lower (or local) level of statistically
independent submaps and an upper (or global) level that,
using an adjacency graph, maintains a relative stochastic
map between the local map references (see Figure 1). Due
to its graph-based upper level structure and data association
capabilities, the Hierarchical SLAM method is an excellent
candidate for implementing the new methodology that we
describe in this paper.

To generalize the algorithm proposed we have extended
it to the multi-robot case. Several approaches to the multi-
robot SLAM problem can be found in the literature. Some of
them make the assumption that the relative initial pose of the
robots is known from the beginning as in [26]. Others assume
that, although the relative initial poses are not known, each
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Fig. 1. Two level hierarchical SLAM model.

robot starts within the map of another robot [25], [5]. Finally,
when there is no knowledge of the pose of a robot within
other robot’s map, we can recur to rendezvous strategies as
in [18] or search for map correspondences as in [29]. We
have decided to adopt this last strategy to make the method
as general as possible. Some examples of multi-robot SLAM
using a constraint graph have appeared recently, as C-SAM
[1], a multi-robot extension of Tectonic SAM using relative
pose observations to connect maps from different robots, or
as the Topological/Metric approach of [3], where the map
fusion is represented in the graph by adding a link between
the corresponding nodes using the observations of relative
robot poses. As in the single-robot approach, none of the
multi-robot methods that use relative coordinates make any
mention about constraints classification.

This paper is organized as follows: after the introduction
in section I, we analyze, in section II, the treatment of
constraints in the upper level of the Hierarchical SLAM,
proposing an incremental minimum cycle basis algorithm
to organize them. We describe our algorithm in section
III. In Section IV we extend our algorithm to the multi-
robot case. Section V describes the experiment employed
to validate our approach. Finally, in section VI we draw the
main conclusions of this work and outline the future research
directions.

II. TREATMENT OF CONSTRAINTS IN THE UPPER LEVEL

OF THE HIERARCHICAL SLAM

A. Selection of constraints to avoid redundancy

When a cycle formed by a sequence of n local maps is
detected by the Hierarchical SLAM method the following
constraint is imposed in the global level:
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Fig. 2. Example of the global level after closing two cycles.

h(x) ≡ x1 ⊕ x2 ⊕ · · · ⊕ xn−1 ⊕ xn = 0 (1)

As more cycles are closed more constraints can be im-
posed in the global level. Figure 2a shows an example of
a possible situation after a closing of two cycles. We can
observe in this figure that closing the two cycles generates
three possible constraints:

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 = 0

x1 � x5 ⊕ x6 ⊕ x7 = 0

x2 ⊕ x3 ⊕ x4 ⊕ x5 = 0 (2)

where ⊕ represents composition of transformations and �
composition with the inverse.

However, one of the three constraints is redundant, as it
can be obtained using the other two. For instance, the first
constraint can be obtained by composing the second and third
constraints:

x1 ⊕ (x2 ⊕ x3 ⊕ x4 ⊕ x5)� x5 ⊕ x6 ⊕ x7 = 0 (3)

The problem of redundancy of constraints can be easily
treated using graph theory. In Figure 2b we have drawn a
graph whose edges e1, e2, · · · , e7 correspond to the trans-
formations x1,x1 · · · ,x7 and whose nodes n1, n2 · · · , n6

correspond to the local map references B1, B2, · · · , B6. A
tree is a connected subgraph containing no cycles. If it
contains all the nodes of the graph it is called a spanning
tree. Chords are all the edges of the connected graph that
don’t belong to the spanning tree. In our example, the edges
of the graph can be classified into edges (or branches) of
a spanning tree (e1, e2, e3, e4, e6) and chords (e5, e7). The
spanning tree of a directed graph can be used to obtain the
absolute references of the local maps with respect to the
origin, defined by the reference of the map associated to the
tree root (in our case B1). We can represent the cycles of a
graph by means of a vector whose rows are associated to the
edges of the graph: 1 if the cycle contains the edge and 0
otherwise. One constraint is redundant if its associated cycle
can be expressed as a composition, using the xor operation
(+), of other cycles. In our example, if the i − th row
represents ei, the cycle associated to the first constraint can
be obtained by the composition of the cycles associated to
the second and third constraints:
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(4)

The maximal set of linearly independent cycles is called
a cycle basis. Every cycle of a graph can be expressed as
a linear combination of the cycles that form a cycle basis.
The number of cycles that belong to a cycle basis is N =
m − n + 1, where m is the number of edges, and n the
number of nodes of the graph.

Adding a chord to a spanning tree of a connected graph
produces a unique cycle in the graph, called a fundamental
cycle. The set of fundamental cycles with respect to a span-
ning tree are easy to construct and form a cycle basis called
fundamental cycle basis. In Figure 2b the fundamental cycle
basis will be {e7e1e2e3e4e6, e5e2e3e4}. Another possible
cycle basis is the minimum cycle basis, that is, the cycle
basis of minimum weight in the graph. We have weighted
the edges of a graph with the distances between local map
references. Assuming that the length of the edges of the
graph of Figure 2b is proportional to their weights, the
minimum cycle basis will be {e7e1e5e6, e5e2e3e4}.

In practical situations we are only interested in mapping a
specific part of a global map, what we call a regional map,
instead of the whole of it. For this purpose we propose to
use the minimum cycle basis to obtain the set of independent
constraints in the upper level. To build an accurate regional
map we only need to apply the Hierarchical SLAM method
with the constraints associated to that region. Another reason
for this decision is that nonlinearities play an increasing role
as cycles are longer in length: orientation uncertainty can
be very large in a long cycle, producing large linearization
errors [15].

B. Algorithms to obtain the minimum cycle basis of a
connected graph

The problem of computing a cycle basis of minimum
weight in a graph was solved in polynomial time for the
first time by Horton [14] with running time O(m3n). Using
a different approach de Pina [24], and recently Berger et
al. [2], solved the problem in O(m3 + mn2logn). For very
large and sparse graphs the running time of the algorithm
is O(n3logn). Experimental findings have shown [20] that
the true bottleneck of a sophisticated implementation of de
Pina’s algorithm, which can be decomposed into two parts
with time O(m3) and O(m2n + mn2logn) respectively, is
the O(m2n+mn2logn) part. Golynski and Horton [11] used
fast matrix multiplication to improve Horton’s algorithm to
O(mwn), where w < 2.376. Kavitha et al. [17], using also
fast matrix multiplication, improved de Pina’s algorithm into
O(m2n + mn2logn). More recently Mehlhorn and Michail
[21] achieved an O(m2n/logn + n2m) algorithm.

However, all the above algorithms have in common that
they solve the minimum cycle basis problem in batch mode
using all the nodes and edges of the graph and don’t take
advantage of the incremental construction of the graph inher-
ent to our SLAM methodology. We propose an incremental
algorithm to obtain the minimum cycle basis of the connected
graph associated to the upper level of the Hierarchical SLAM
method. Our algorithm only needs to check for an update of
the cycle basis when there is a fusion between local maps
and, what is more important, the update process is maintained
locally as changes in the minimum cycle basis affect only
cycles around the fused maps.

III. INCREMENTAL MINIMUM CYCLE BASIS
ALGORITHM

When a robot traverses the environment using the Hier-
archical SLAM method, a graph associated to the relative
transformations between the local map references is main-
tained. If the graph has any cycles, the minimal cycle basis
of the graph will be used to impose the constraints in the
upper level as explained in the previous section. A complete
representation of the minimum cycle basis consists on the
enumeration, for each cycle of all its chords and branches,
in the consecutive order in which they appear starting from
an arbitrary edge. Apart from this we will also have as in
[17] a simplified representation of a cycle basis that consist
of two matrices: cycles matrix C and witnesses matrix S, both
of dimension N×N , where N is the number of cycles in the
basis. Each matrix is formed by a set of N column vectors
Cj and Sj in the space {0, 1}N spanned by the set of all the
chords of the graph Ch = {ch1, ..., chN}. A cycle vector Cj

has 1 in row i if chord chi forms part of the associated cycle
and 0 otherwise. A witness Sj is a non-zero vector in the
subspace orthogonal to {C1, ..., Cj−1} and not orthogonal to
Cj . A witness Sj is orthogonal to a cycle Ck if the standard
inner product 〈Sj , Ck〉 = 0. This inner product is defined
using an AND as the product operator and a XOR as the
sum operator.

When a local map is incorporated to the global map it
produces the addition of a new node and a new branch to
the graph. This operation, although it modifies the graph,
does not modify the minimum cycle basis of the graph.
The only operation that may modify the cycle basis of the
graph is the fusion between maps. The fusion between maps
occurs, in our implementation, when two local maps with
a high degree of overlapping are matched and its fusion is
geometrically consistent with the global map. This situation
arrives when revisiting previous mapping areas or when, after
an optimization process of the Hierarchical SLAM method,
new matchings between maps are detected. As each node
of the graph represents a unique map, the fusion of two
local maps will produce in the graph the fusion of the two
nodes representing the maps. We have defined a sequence of
steps in our algorithm to update the graph and the minimum
cycle basis after the fusion of two maps. We will describe
these steps in the following subsections using the example
of Figure 3. During the intermediate steps of the process
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Fig. 3. Process of node fusion

we may have a cycle basis that is not a minimum cycle
basis. However, at the end of the last step, we will obtain
the minimum cycle basis. New matrices C and S resulting
from the process will verify the orthogonality conditions
mentioned above. Although we will focus mainly in the cycle
basis update it is understood that simultaneously to the cycle
basis we also update the graph representation.
〈C ′i, Si〉 = 1 is equivalent to say that cycle C ′i has odd

intersection with Si. Every time a pair Ci, Si is updated in
matrices C and S we will obtain, using Dijkstra’s algorithm,
all the nodes nj from the graph whose minimum distance to
at least one of the nodes from the chords of Si, dmin(nj , Si),
is less than length(Ci). This set of nodes, NodeSet(i), con-
tains all the nodes of possible cycles C ′i that verify simultane-
ously length(C ′i)<length(Ci) and 〈C ′i, Si〉 = 1. However, we
are interested in the inverse function, CycleSet(nj): for each
node nj of the graph we want to obtain all the cycles i from
C that verify nj ∈ NodeSet(i). We will use NodeSet(i) to
update CycleSet. We will also store the minimum distances
in DSet(i, nj). The purpose of CycleSet and DSet is to
maintain locality at the final step of the algorithm. As we
can stop Dijkstra’s algorithm when distances are greater than
length(Ci) the algorithm is locally bounded.

A. Adding a chord between two nodes.

When there is a fusion between two maps represented
by two nodes from a graph we have two situations: either
the two nodes are previously connected to each other or
not. If they are not connected, our algorithm proceeds to
connect them by adding a chord between the two nodes.
This situation is represented in Figure 3a and Figure 3b for
nodes n1 and n6.

Adding a chord chi between two nodes increments the
number of cycles of our base by one. This update of the cycle
basis is done by adding a cycle orthogonal to the previous
ones. The fundamental cycle associated to chord chi satisfies
this condition and will be added to the cycle basis. After this
operation the cycle basis may stop being a minimum cycle
basis. If the previous minimum cycle basis is represented by
chords Ch1 and matrices C1 and S1, the new cycle basis is
obtained as follows:

Ch = {Ch1, chi} (5)

C =
[

C1 0
0 1

]
(6)

S =
[

S1 0
0 1

]
(7)

If the two nodes are connected (or we have connected them
using the previous procedure) we have again two situations:
the two nodes are connected either by a chord or by a branch.

B. Edge-swapping between a chord and a branch.

If they are connected by a chord, say chi, we first must
locate which of the two nodes is further from the origin
of the graph, and then perform an edge-swapping between
chord chi and branch bm defined by the furthest node and its
father. Following with our example chord chi corresponds to
edge n1n6 and branch bm to edge n5n6 in Figure 3b, as the
furthest node from the origin is n6. Edge swapping between
these two edges gives the situation represented in Figure 3c.

Although edge-swapping doesn’t change the cycle basis
itself, its representation by means of Ch, C and S changes.
Supposing that the cycle basis previous to edge-swapping is
represented by chords Ch1 and matrices C1 and S1, the new
cycle basis is obtained as follows:

We will update the set of chords Ch1 by substituting chord
chi with branch bm, now transformed into a chord. The new
matrix C will be the same as C1 except for the i-th row:
C(i, j) = 1 if branch bm belonged to the cycle represented
by C1

j and 0 otherwise. A change in row i of cycle C1
j is

equivalent to the following update:

Cj = C1
j + FCi (8)

where FCi is the simplified representation of the fundamen-
tal cycle associated to chord i:

FCi(i) = 1 ; FCi(j) = 0 ∀j 	= i (9)

We will also construct column vector S1
k using witnesses

from all the cycles C1
k1, ..., C

1
kn that have been updated using

FCi:

S1
k = S1

k1 + · · ·+ S1
kn (10)

Matrix S will be obtained from S1 by the following
operations:

When
〈
FCi, S

1
j

〉
= 1:
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Sj = S1
j + S1

k (11)

When
〈
FCi, S

1
j

〉
= 0, Sj = S1

j .

C. Branch contraction.

If the two nodes to be fused are connected by a branch
(or we have connected them this way using the previous
procedure) we proceed to the contraction of the branch that
joins them. Contraction of edge n1n6 of Figure 3c into node
n1f produces the graph represented in 3d. The contracted
branch will be eliminated from every cycle of the basis
that has it, reducing by one the number of edges of the
cycle. Suppose that before the contraction the cycle basis
is represented by chords Ch1 and matrices C1 and S1. Any
chord of Ch1 that has at one of its extremes one of the two
nodes involved in the fusion will update the label associated
to this node to the new node label. Matrices C1 and S1 will
remain the same unless cycles of two edges appear in the
graph (two nodes linked between them with more than one
edge, what we call a degenerate cycle). This is the situation
of Figure 3d where a degenerate cycle formed by two chords
has appeared between nodes n1fn4 as a consequence of
the branch contraction. If this situation arrives we shall
proceed to eliminate every degenerate cycle, leaving only
one edge connecting every two nodes. The two edges of
a degenerate cycle are either two chords or a branch and
a chord. Depending on the case we will use one of the
following procedures.

D. Elimination of a chord-chord cycle.

If we have two chords between two nodes we must
eliminate one of them and a cycle from the basis. This
operation is done with the graph represented in Figure 3d
producing the final graph of Figure 3e. Suppose the cycle
basis is represented by Ch1, C1 and S1. We can locate the
rows associated to the chords using Ch1, as two chords of
this set will have the same extreme nodes. Suppose that these
chords are located at positions i and j in Ch1 and that we
decide, arbitrarily, to eliminate the chord associated to row
i. First we must locate in C1 the column k associated to the
double chord cycle with chords i and j. This column will
satisfy the following criteria:

〈
DCij , S

1
k

〉
= 1 ;

〈
DCij , S

1
m

〉
= 0 ∀m > k (12)

where DCij = FCi + FCj is the double chord cycle with
chords i and j.

We will update columns of C1, changing chord i to chord
j in all cycles m where C1(i,m) = 1, m 	= k:

C2
m = C1

m + DCij (13)

The rest of rows and columns of C2 remain the same as
in C1. The same update will be performed in the complete
representation of the cycles.

After the update we will look in S1 for columns m, m <
k, where

〈
DCij , S

1
m

〉
= 1 (14)

and update them as follows:

S2
m = S1

m + S1
k (15)

The rest of the columns of S1 will remain the same in S2.
Next we eliminate chord i from Ch1 and row i and column

k from C2 and S2 to produce the final Ch, C and S. We
also eliminate cycle k from the complete representation of
the cycles.

E. Elimination of a branch-chord cycle.

If we have a branch and a chord between two nodes
(we detect it by checking the graph) we must eliminate the
chord and a cycle from the basis. Suppose the cycle basis
is represented by Ch1, C1 and S1. First we must locate the
position of the chord in Ch1: position i. Next we must locate
the column k in C1 associated to the fundamental cycle of
chord i. Column k must satisfy:

〈
FCi, S

1
k

〉
= 1 ;

〈
FCi, S

1
j

〉
= 0 ∀j > k (16)

We substitute chord i for a branch (if the branch doesn’t
exist yet) in all the cycles of the complete representation
except in cycle k. If C1(i, j) = 1, j 	= k we eliminate chord
i from cycle j using (8) and assign to the other elements of
C2 the same value they had in C1.

Matrix S2 will be obtained from S1 doing the following
operations:

When
〈
FCi, S

1
j

〉
= 1, j < k, S2

j = Sj + Sk.
When

〈
FCi, S

1
j

〉
= 0, S2

j = S1
j .

We don’t modify column k of S1: S2
k = S1

k , as we are
going to delete it.

Next we eliminate chord i from Ch1 and row i and column
k from C2 and S2 to produce the final Ch, C and S. We
also eliminate cycle k from the complete representation of
the cycles.

F. Calculation of the minimum cycle basis after the fusion.

Fusion of nodes n1 and n2 to produce node nf may add, in
the case nodes n1 and n2 weren’t previously connected, new
cycles that contain nf to the cycle space of the graph and, in
any case, may modify the length of cycles that contain nf ,
as distance between nf and their adjacent nodes may have
changed with the contraction of n1n2. This means that cycles
that may modify the cycle basis obtained in the previous
subsections are only cycles that contain node nf .

Before proceeding with the last part of the algorithm we
need to construct CycleSet(nf ) for nf . For that purpose we
will find the nodes connected to nf , say nj , and obtain, using
these nodes, distances from Si to nf , d(i, nf ):

d(i, nf ) = min
j

(DSet(i, nj) + djf ) (17)

where djf is the graph distance from node nj to node nf

and i = CycleSet(nj)(k) for a certain k.
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If d(i, nf ) < length(Ci) we will add CycleSet(nj)(k) to
CycleSet(nf ) and set DSet(i, nf ) = d(i, nf ). If there is any
chord adjacent to nf we will search for all Si that contain
that chord, add i to CycleSet(nf ) and set DSet(i, nf ) =
0. As nf may have established a new path between their
adjacent nodes we must propagate CycleSet(nf ) in a radial
way using a similar approach until no more actualization of
CycleSet is detected.

To update the minimum cycle basis after the fusion we
have developed an incremental algorithm, derived from de
Pina’s batch algorithm, that uses as inputs matrices C =
[C1 · · ·CN ] and S = [S1 · · ·SN ] obtained using the rules of
the previous subsections, being N the final number of chords
of the graph after the fusion. It also uses CycleSet(nf ) as
input to maintain locality. CycleSet is updated in the form
explained at the beginning of the section each time a pair
Ci, Si is changed.

The algorithm proposed is:

Candidates = {}.
For i ∈ CycleSet(nf ) or with Candidates{i} 	= {}

If i ∈ CycleSet(nf ) then
Find the shortest cycle Ca that contains nf

and satisfies 〈Ca, Si〉 = 1.
end
Select cycle Cb with minimum length
from Candidates{i} that
satisfies 〈Cb, Si〉 = 1.
C ′i is the cycle with minimum length
chosen between Ca and Cb.
If length(C ′i) < length(Ci) then

Add Ci to Candidates{i}.
Ci = C ′i.
Update CycleSet.
For j = 1 to i− 1

If 〈Ci, Sj〉 = 1 then
Sj = Sj + Si.
Update CycleSet.

end
end
For j = i + 1 to N

If 〈Ci, Sj〉 = 1 then
Sj = Sj + Si.
Add Candidates{i} to Candidates{j}.
Update CycleSet.

end
end

end
Delete Candidates{i}.

end

For large and sparse graphs, node fusion will only modify
locally a few cycles of the graph, and most of the cycles
of the previous minimum cycle basis will remain the same.
The shortest path method used to compute the shortest cycle
C ′i is only executed for node nf , reducing the shortest cycle
computation at step i with respect to de Pina’s algorithm
from O(mn + n2logn) to O(m + nlogn). The cost of

updating Sj at step i is N2, that is O(m2). The total cost of
our algorithm is O(m3 + mnlogn). In practice, Sj is only
updated when either it exists C ′i and its length is smaller
than length of Ci or there are candidates for that column
of S. The first condition, for large and sparse graphs, only
happens for a small percentage of cycles Ci of the basis. If
we also take into consideration that Ck and possibly also Sk

are sparse vectors and that we can manage them locally for
all operations described we may state, similar to [20] with
respect to de Pina’s algorithm, that the O(m3) part is not
the bottleneck of our algorithm and that the practical cost
is O(nlogn). Additionally, as the shortest path computation
using Dijkstra’s algorithm is stopped when distance from
node nf is greater than length(Ci), or even before if a
shortest cycle C ′i is found, only local nodes to nf are checked
and not all the nodes of the graph, reducing even more the
computational time of our algorithm and making it local to
node nf .

IV. MULTI-ROBOT HIERARCHICAL SLAM USING
A MINIMUM CYCLE BASIS OF CONSTRAINTS

We extend the results of the previous section to the multi-
robot case. We have considered a centralized approach,
although leaving the vehicles full autonomy when performing
SLAM to obtain their own local maps. A central manager
will be in charge of collecting all the local maps from
the different vehicles when they make them available, and
constructing the global map from them, fusing local maps,
if the fusion is geometrically consistent with the global map,
when it detects a high degree of overlapping between maps.
This situation arrives, as explained before, when revisiting
previous mapping areas or when, after an optimization
process of the Hierarchical SLAM method, new matchings
between maps are detected. In the multi-robot scenario, the
fusion between local maps belonging to different graphs will
also produce the fusion of the graphs, as it is explained in
the following subsection.

Although each vehicle can use the global and local in-
formation provided by the manager to make decisions when
performing its own SLAM, it doesn’t incorporate uncertainty
information from other maps into its new local maps, to
assure at every time the maintenance of map independence.

A. Graphs management

To facilitate global map management a set of graphs will
be used. At the beginning of the process there will be as
many graphs as vehicles performing SLAM. Each graph will
only have one root node and a spanning tree constructed from
this node, to provide a unique calculation of the absolute
position of the features from the origin of the initial map,
using the relative transformations between maps. Fusion
between maps of the same graph will be treated as in the
single-robot case.

Local map fusions can also be done between local maps
collected from different vehicles, leading to the fusion of
their respective graphs. Before considering a fusion between
graphs we need to define a minimum number of nodes to be
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previously paired. This is done to check for consistency of
the graph fusion. Priority between graphs must be established
at the beginning, to select, during the graph fusion process,
the root of the new graph from the two roots available. The
direction of the tree path from the other root to the fused
node will be inverted to maintain the tree structure after the
fusion. If during the fusion process an inconsistency in the
upper level is detected, the fusion is not performed. In the
Victoria Park experiment detailed below we have set to two
the minimum number of paired nodes necessary to proceed
to check for a graph fusion. The process of fusing the first
pair of nodes produces the fusion of the two graphs. Once
this operation is done the next pairs of nodes to be fused
belong to the same graph.

B. Calculation of the minimum cycle basis after a fusion of
two graphs.

In the process of fusion of two graphs, these two graphs
become subgraphs that are connected, but not 2-connected,
by means of the fused node. For this reason, the new
minimum cycle basis consists of the concatenation of the
two previous minimum cycle bases [2].

Before fusion, the minimum cycle basis of graph 1 is
represented by chords Ch1 and matrices C1 and S1 of
dimension N1 ×N1, and the minimum cycle basis of graph
2 by chords Ch2 and matrices C2 and S2 of dimension
N2 ×N2. After fusion the minimum cycle basis of the new
graph is represented by chords Ch and matrices C and S
constructed as follows:

Ch = {Ch1, Ch2} (18)

C =
[

C1 0N1×N2

0N2×N1 C2

]
(19)

S =
[

S1 0N1×N2

0N2×N1 S2

]
(20)

V. EXPERIMENTAL RESULTS

We have tested the multivehicle hierarchical SLAM
methodology described in this paper using a real world data
set: the Victoria Park data set, widely used as a benchmark
for SLAM algorithms. Although the data set was collected
by only one vehicle, it will be adapted to several vehicles by
constructing consecutive local maps and using every local
map around the origin to finish with the local maps assigned
to one vehicle and to start with the maps assigned to the
following one. We have used, as criterium to finish a local
map, that the distance travelled by the vehicle is 40 m. We
have obtained 99 local maps that we have assigned to 6
different vehicles: 21 consecutive maps for the first vehicle,
14 for the second, 13 for the third and forth, 17 for the fifth
and 21 for the sixth vehicle. We assume that the vehicles
don’t know their initial position: it is initially assigned as
[0, 0, 0]′ for all of the 6 vehicles. We have established a
priority between vehicles to be used when fusing two graphs:
vehicle 1 has the highest priority and vehicle 6 the lowest.
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Fig. 4. Graph after the fusion of graphs 1 and 4.
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Fig. 5. Graph after the fusion of graphs 1+2+3+4+5 and 6.

We have employed a process of 21 steps. During each step
the 6 vehicles, in a consecutive way, pass one of their maps
to the central manager, until they finish with their last map.
The central manager updates the different graphs and cycle
bases using the methods detailed above.

Figures 4 and 5 show the new graphs produced by the
Multivehicle Hierarchical SLAM at two different moments
of the process: when the first fusion of graphs occurs, and
when the last fusion of graphs occurs. Figure 6 show the
global map generated after this last fusion. At the end of the
process all graphs from the 6 different vehicles have been
fused into a unique graph.

During the experiment we have compared the minimum
cycle bases obtained with our incremental algorithm with
the minimum cycle bases obtained using an implementation
of the batch algorithm from de Pina [24]. All the minimum
cycle bases obtained are the same for the two algorithms.
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Fig. 6. Global map after the fusion of graphs 1+2+3+4+5 and 6.

VI. CONCLUSION

We have proposed to divide the upper (or global) level
of the Hierarchical SLAM method using a minimum cycle
basis of constraints. Doing so we can obtain accurate regional
maps that are very useful when we are only interested in
mapping a part and not the whole of the global map. For
this purpose we have developed an incremental algorithm
that, after two local maps are fused, updates the minimum
cycle basis. This update is local to the fusion area. We have
extended our algorithm to the multi-robot case. Finally we
have tested our method using the Victoria Park data set
with satisfactory results. In future work we will research for
algorithms that accelerate the detection of graph fusion and
try to obtain, using different simulations, the practical cost of
the incremental minimum cycle basis algorithm for different
map topologies.
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