
428 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2009

Nonlinear Constraint Network Optimization
for Efficient Map Learning

Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard

Abstract—Learning models of the environment is one of the
fundamental tasks of mobile robots since maps are needed for a
wide range of robotic applications, such as navigation and trans-
portation tasks, service robotic applications, and several others.
In the past, numerous efficient approaches to map learning have
been proposed. Most of them, however, assume that the robot lives
on a plane. In this paper, we present a highly efficient maximum-
likelihood approach that is able to solve 3-D and 2-D problems.
Our approach addresses the so-called graph-based formulation of
simultaneous localization and mapping (SLAM) and can be seen as
an extension of Olson’s algorithm toward non-flat environments.
It applies a novel parameterization of the nodes of the graph that
significantly improves the performance of the algorithm and can
cope with arbitrary network topologies. The latter allows us to
bound the complexity of the algorithm to the size of the mapped
area and not to the length of the trajectory. Furthermore, our
approach is able to appropriately distribute the roll, pitch, and
yaw error over a sequence of poses in 3-D mapping problems. We
implemented our technique and compared it with multiple other
graph-based SLAM solutions. As we demonstrate in simulated
and real-world experiments, our method converges faster than the
other approaches and yields accurate maps of the environment.

Index Terms—Graph-optimization, mapping, simultaneous
localization and mapping (SLAM), (stochastic) gradient descent.

I. INTRODUCTION

TO efficiently solve the majority of robotic applications
such as transportation tasks, search and rescue, or auto-

mated vacuum cleaning, a map of the environment is required.
Acquiring such models has therefore been a major research
focus in the robotics community over the past few decades.
Learning maps under pose uncertainty is often referred to as
the simultaneous localization and mapping (SLAM) problem.
In the literature, a large variety of solutions to this problem
can be found. The approaches mainly differ in the underlying
estimation technique such as extended Kalman filters (EKFs),
information filters, particle filters, smoothing, or least-squares
error-minimization techniques.

Manuscript received February 1, 2008; revised October 27, 2008. First
published July 14, 2009; current version published September 1, 2009. This
work was supported in part by the German Research Foundation under Contract
SFB/TR-8 (A3) and in part by the European Commission under Contract FP6-
2005-IST-5-muFly, Contract FP6-2005-IST-6-RAWSEEDS, and Contract FP7-
ICT-231888-EUROPA. The Associate Editor for this paper was C. Laugier.

The authors are with the Laboratory for Autonomous Intelligent Systems,
Department of Computer Science, University of Freiburg, 79110 Freiburg,
Germany (e-mail: grisetti@informatik.uni-freiburg.de; stachnis@informatik.
uni-freiburg.de; burgard@informatik.uni-freiburg.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2009.2026444

Fig. 1. Constraint network corresponding to a data set recorded with an
instrumented car at the École Polytechnique Fédérale de Lausanne (EPFL)
campus in Switzerland (left) before and (right) after optimization. The corrected
network is overlaid with an aerial image.

In this paper, we consider the popular and so-called “graph-
based” or “network-based” formulation of the SLAM problem,
in which the poses of the robot are modeled by nodes in a graph
[5], [8], [11], [13], [14], [16], [22], [26], [27], [36]. Spatial
constraints between poses that result from observations and
from odometry are encoded in the edges between the nodes.

In the context of graph-based SLAM, one typically considers
two different problems. The first problem is to identify the
constraints based on sensor data. This so-called data association
problem is typically hard due to potential ambiguities or
symmetries in the environment. A solution to this problem is
often referred to as the SLAM front end, and it directly deals
with the sensor data. The second problem is to correct the poses
of the robot to obtain a consistent map of the environment given
the constraints. This part of the approach is often referred to as
the optimizer or the SLAM back end. To solve this problem,
one seeks for a configuration of the nodes that maximizes the
likelihood of the observations encoded in the constraints. Often,
one refers to the negative observation likelihood as the error or
the energy in the network. An alternative view to the problem
is given by the spring–mass model in physics. In this view, the
nodes are regarded as masses and the constraints as springs
connected to the masses. The minimal energy configuration
of the springs and masses describes a solution to the mapping
problem. As a motivating example, Fig. 1 depicts an uncor-
rected constraint network and the corresponding corrected one.

Popular solutions to compute a network configuration that
minimizes the error introduced by the constraints are iterative
approaches. They can be used either to simultaneously correct
all poses [14], [20], [22], [36] or to locally update parts of
the network [5], [11], [13], [16], [26], [27]. Depending on the
technique used, different parts of the network are updated at

1524-9050/$26.00 © 2009 IEEE

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

GRISETTI et al.: NONLINEAR CONSTRAINT NETWORK OPTIMIZATION FOR EFFICIENT MAP LEARNING 429

each iteration. The strategy for defining and performing these
local updates has a significant impact on the convergence speed.

In this paper, we restrict ourselves to the problem of finding
the most likely configuration of the nodes given the constraints.
To find the constraints from laser range data, one can, for exam-
ple, apply the front end of the ATLAS framework introduced
in Bosse et al. [2], hierarchical SLAM [6], or the work of
Nüchter et al. [26]. In the context of visual SLAM, a potential
approach to obtain such constraints has recently been proposed
in Steder et al. [33].

Our approach uses a tree structure to define and efficiently
update local regions in each iteration by applying a variant of
stochastic gradient descent (SGD). It extends Olson’s algorithm
[27] and converges significantly faster to highly accurate net-
work configurations. Compared with other approaches to 3-D
mapping, our technique utilizes a more accurate way to distrib-
ute the rotational error over a sequence of poses. Furthermore,
the complexity of our approach scales with the size of the
environment and not with the length of the trajectory as with
the case for most alternative methods.

The remainder of this paper is organized as follows: In
Section II, we formally introduce the graph-based formulation
of the mapping problem and explain the usage of SGD to reduce
the error of the network configuration. Whereas Section III
introduces our tree parameterization, Section IV describes our
approach to distribute the rotational errors over a sequence of
nodes. In Section V, we then provide an upper bound for this
error distribution. Section VI explains how to obtain a reduced
graph representation to limit the complexity. After describing
the experimental results with our approach in Section VII, we
provide a detailed discussion of related work in Section VIII.

II. MAXIMUM-LIKELIHOOD MAPPING USING A

CONSTRAINT NETWORK

Most approaches to network- or graph-based SLAM focus
on estimating the most likely configuration of the nodes and are
therefore referred to as maximum-likelihood (ML) techniques
[5], [11], [13], [14], [22], [27], [36]. Such techniques do not
compute the full posterior about the map and the poses of the
robot. The approach presented in this paper also belongs to this
class of methods.

A. Problem Formulation

The goal of graph-based ML mapping algorithms is to find
the configuration of the nodes that maximizes the likelihood of
the observations. For a more precise formulation, consider the
following definitions.

1) Let x = (x1 · · · xn)T be a vector of parameters that
describes a configuration of the nodes. Note that the
parameters xi do not need to be the absolute poses of the
nodes. They are arbitrary variables that can be mapped to
the poses of the nodes in real-world coordinates.

2) Let us furthermore assume that δji describes a constraint
between nodes j and i. It refers to an observation of node
j seen from node i. These constraints are the edges in the
graph structure.

Fig. 2. Example of an observation of node j seen from node i.

3) The uncertainty in δji is represented by the information
matrix Ωji.

4) Finally, fji(x) is a function that computes a zero-noise
observation according to the current configuration of
nodes j and i. It returns an observation of node j seen
from node i.

Fig. 2 illustrates an observation between two nodes.
Given a constraint between nodes j and i, we can define the

error eji introduced by the constraint as

eji(x) = fji(x) − δji (1)

as well as the residual rji, i.e.,

rji(x) = −eji(x). (2)

Note that at the equilibrium point eji is equal to 0 since
fji(x) = δji. In this case, an observation perfectly matches the
current configuration of the nodes. Assuming a Gaussian obser-
vation error, the corresponding negative log likelihood results in

Fji(x) ∝ (fji(x) − δji)
T Ωji (fji(x) − δji) (3)

= eji(x)T Ωjieji(x) (4)
= rji(x)T Ωjirji(x). (5)

Under the assumption that the observations are independent,
the overall negative log likelihood of a configuration x is

F (x) =
∑

〈j,i〉∈C
Fji(x) (6)

∝
∑

〈j,i〉∈C
rji(x)T Ωjirji(x). (7)

Here, C = {〈j1, i1〉, . . . , 〈jM , iM 〉} is a set of pairs of indices
for which a constraint δjmim

exists.
The goal of an ML approach is to find the configuration x∗

of the nodes that maximizes the likelihood of the observations.
This can be written as

x∗ = argmin
x

F (x). (8)

There are multiple ways of solving (8). They range from
approaches applying gradient descent, conjugate gradients,
Gauss–Seidel relaxation, multilevel relaxation (MLR), or LU
decomposition. In the following section, we briefly introduce
SGD, which is the technique on which our approach is based.

B. SGD for ML Mapping

Olson et al. [27] propose to use a variant of the precon-
ditioned SGD to address the SLAM problem. The approach

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

430 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2009

minimizes (8) by sequentially selecting a constraint 〈j, i〉 (with-
out replacement) and by moving the nodes of the network
to decrease the error introduced by the selected constraint.
Compared with the standard formulation of gradient descent,
the constraints are not optimized as a whole but individually.
The nodes are updated according to the following equation:

xt+1 = xt + λ · KJT
jiΩjirji︸ ︷︷ ︸

Δxji

. (9)

Here, x is the set of variables describing the locations of the
poses in the network, and K is a preconditioning matrix. Jji is
the Jacobian of fji, Ωji is the information matrix capturing the
uncertainty of the observation, and rji is the residual.

Reading the term Δxji of (9) from right to left gives an
intuition about the iterative procedure.

1) The term rji is the residual, which corresponds to the
negative error vector. Changing the network configuration
in the direction of the residual rji will decrease the
error eji.

2) The term Ωji represents the information matrix of a
constraint. Multiplying it with rji scales the residual
components according to the information encoded in the
constraint.

3) The Jacobian JT
ji maps the residual term into a set of

variations in the parameter space.
4) The term K is a preconditioning matrix. It is used to scale

the variations resulting from the Jacobian depending on
the curvature of the error surface. Approaches such as
Olson’s algorithm [27] or our previous work [13] apply
a diagonal preconditioning matrix computed from the
Hessian H as

K = [diag(H)]−1 . (10)

5) Finally, the quantity λ is a learning rate that decreases
with each iteration of SGD and that ensures the conver-
gence of the system.

In practice, the algorithm decomposes the overall problem
into many smaller problems by individually optimizing each
constraint. Thus, a portion of the network, namely, the nodes
involved in a constraint, is updated in each step. Obviously,
updating the different constraints one after another can have
antagonistic effects on a subset of variables. To merge the
contribution of the individual constraints, one uses the learning
rate to reduce the fraction of the residual that is used for
updating the variables. This makes the solutions of the different
subproblems asymptotically converge toward an equilibrium
point that is the solution reported by the algorithm.

Whereas this framework allows us to iteratively reduce the
error given the network of constraints, it leaves open how the
nodes are represented or parameterized. However, the choice of
the parameterization has a strong influence on the performance
of the algorithm. The next section addresses the problem of how
to parameterize a graph so that the optimization can efficiently
be carried out.

III. TREE PARAMETERIZATION FOR SGD

The poses p = {p1, . . . , pn} of the nodes define the config-
uration of the network. They can be described by a vector of
parameters x such that a bijective mapping g between p and x
exists, i.e.,

x = g(p), p = g−1(x). (11)

As explained earlier in this paper, in each iteration, SGD
decomposes the problem into a set of subproblems and sequen-
tially solves them, where a subproblem is the optimization of a
single constraint.

The parameterization g defines not only how the variables
of the nodes are described but the subset of variables that
are modified by a single constraint update as well. A good
parameterization defines the subproblems in a way that the
combination step only leads to small changes of the individual
solutions.

Olson et al. [27] proposed to use the so-called incremental
pose parameterization for 2-D problems. For each node i in
the graph, they store the parameter xi, which is the vector
difference between the poses of node i and node i − 1, i.e.,

xi = pi − pi−1. (12)

This parameterization has the advantage of allowing fast con-
straint updates. As discussed in [13], updating a constraint
between two nodes i and j requires one to update all nodes k =
i + 1, . . . , j. This leads to a low convergence speed if i � j.
Furthermore, this parameterization requires that the nodes are
arranged in a sequence given by the trajectory.

As aforementioned, a major contribution of this paper is
an algorithm that preserves the advantages of the incremental
approach but overcomes its drawbacks. The first goal is to be
able to deal with arbitrary network topologies since this enables
us to compress the graph whenever the robot revisits a place.
As a result, the size of the network is proportional to the visited
area and not to the length of the trajectory. The second goal is
to make the number of nodes in the graph, which are updated
by each constraint, mainly dependent on the topology of the
environment and not on the trajectory taken by the vehicle.
For example, in the case of a loop closure, a large number of
nodes need to be updated, but in all other situations, the update
is limited to a small number of nodes to keep the interactions
between constraints small.

Our idea is to define a parameterization based on a tree
structure. To obtain a tree from a given graph, we compute a
spanning tree. Given such a tree, we define the parameterization
for a node as

xi = pi � pparent(i) (13)

where pparent(i) refers to the parent of node i in the spanning
tree. The operators ⊕ and � are the standard pose compounding
operators [22]. As defined in (13), the tree stores the relative
transformations between poses.

Given a root node that represents the origin, such a spanning
tree can be obtained by using Dijkstra’s algorithm. In this paper,
we use the uncertainty encoded in the information matrices

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

GRISETTI et al.: NONLINEAR CONSTRAINT NETWORK OPTIMIZATION FOR EFFICIENT MAP LEARNING 431

Fig. 3. (Left) Example for a constraint network. (Right) Possible tree param-
eterization for this graph. For illustration reasons, the off-tree constraints are
also plotted (as a gray dashed line).

of the constraints as costs. This way, Dijkstra’s algorithm
provides the “lowest uncertainty tree” (shortest path tree) of the
graph.

Note that this tree does not replace the graph as an internal
representation. The tree only defines the parameterization of the
nodes. For illustration, Fig. 3 depicts a graph, together with one
potential parameterization tree.

According to (13), one needs to process the tree up to the root
to compute the actual pose of a node in the global reference
frame. However, to obtain only the relative transformation
between two arbitrary nodes, one needs to traverse the tree
from the first node upward to the first common ancestor of both
nodes and then downward to the second node. The same holds
for computing the error of a constraint. Let the path Pji of a
constraint between nodes i and j be the sequence of nodes in
the tree that need to be traversed to reach node j, staring from
node i. Such a path can be divided into an ascending part P [−]

ji

of the path starting from node i and a descending part P [+]
ji to

node j. We refer to the length of path of a constraint on the
tree as |Pji|. We can then compute the residual of the con-
straint by

rji = (pi ⊕ δji) � pj . (14)

For simplicity of notation, we will refer to the pose vector
of a node as the 6-D vector pi = (x y z φ θ ψ)T and
to its associated homogeneous transformation matrix as Pi.
The same holds for the parameters used for describing the
graph. We denote the parameter vector of the pose i by xi

and its transformation matrix by Xi. The transformation matrix
corresponding to a constraint δji is referred to as Δji.

A transformation matrix Xk consists of a rotational
matrix Rk and a translational component t and has the follow-
ing form:

Xi =
(

Rk tk
0 1

)
(15)

with

X−1
i =

(
RT

k −RT
k tk

0 1

)
. (16)

Accordingly, we can compute the residual in the reference
frame of node j as

rji = P−1
j (PiΔji) (17)

=

⎛
⎜⎝ ∏

k[+]∈P[+]
ji

Xk[+]

⎞
⎟⎠

−1 ∏
k[−]∈P[−]

ji

Xk[−]Δji. (18)

At this point, one can directly compute the Jacobian from the
residual and apply (9) to update the constraint. Note that, with
this parameterization, the Jacobian has exactly |Pji| nonzero
blocks, since only the parameters in the path of the constraint
appear in the residual.

IV. UPDATING THE TREE PARAMETERIZATION

So far, we have described the prerequisites for applying the
preconditioned SGD to correct the poses of a network. The goal
of the update rule in SGD is to iteratively update the config-
uration of a set of nodes to reduce the error introduced by a
constraint. In (9), the term JT

jiΩji maps the variation of the error
to a variation in the parameter space. This mapping, however,
is a linear function. As illustrated in Frese and Hirzinger [10],
the error might increase when applying such a linear function
in the case of nonlinear error surfaces. In the 3-D space, the
three rotational components often lead to highly nonlinear error
surfaces. Therefore, it is problematic to directly apply SGD and
similar minimization techniques to large mapping problems
in combination, particularly when there is high noise in the
observations.

In our approach, we therefore choose a modified update
rule. To overcome the aforementioned problem, we apply a
nonlinear function to describe the variation. As in the linear
case, the goal of this function is to compute a transformation
of the nodes along the path Pji of the tree so that the error
introduced by the corresponding constraint is reduced. The
design of this function is presented in the remainder of this
section. In our experiments, we observed that such an update
typically leads to a smooth deformation of the nodes along
the path when reducing the error. This deformation is done in
two steps. We first update the rotational components Rk of the
variables xk before we update the translational components tk.

A. Update of the Rotational Component

Without loss of generality, we consider the origin pi of the
path Pji to be in the origin of our reference system. The
orientation of pj (in the reference frame of pi) can be computed
by multiplying the rotational matrices along the path Pji.
To increase the readability of the document, we refer to the
individual rotational matrices along this path as Rk, neglecting
the indices [compare with (18)]. The orientation of pj is de-
scribed by

R1:n := R1R2 · · ·Rn (19)

where n is the length of the path Pji.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

432 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2009

Distributing a given error over a sequence of 3-D rotations
can be described in the following way: We need to determine
a set of increments in the intermediate rotations of the chain so
that the orientation of the last node (here, node j) is R1:nB,
where B the matrix that rotates xj to the desired orientation
based on the error/residual. Formulated in a mathematical way,
we need to compute a set of new rotational matrices R′

k to
update the nodes so that

R1:nB =
n∏

k=1

R′
k. (20)

To obtain these matrices R′
k, we compute a rotation Q in the

global reference frame such that

AnB = QAn (21)

where An denotes the rotation of the nth node in the global
reference frame. By multiplying both sides of (21) with AT

n ,
from the right-hand side, we obtain

Q = AnBAT
n . (22)

We now decompose the rotation Q into a set of incremental
rotations, i.e.,

Q1:n := Q = Q1Q2 · · ·Qn (23)

and compute the individual matrices Qk by using the spherical
linear interpolation (slerp) [1].

For this decomposition of Q, we use the parameter u ∈ [0, 1]
with slerp(Q, 0) = I and slerp(Q, 1) = Q. Accordingly, the
rotation Qk is

Qk = [slerp(Q,uk−1)]
T slerp(Q,uk). (24)

Furthermore, the rotation matrix A′
k of the poses P ′

k along the
path is

A′
k = Q1:kAk. (25)

We furthermore compute the new rotational components R′
k of

each node k as

R′
k = [A′

parent(k)]
T A′

k. (26)

In (27), the learning rate λ is directly incorporated in the
computation of the values of uk. This way, the slerp function
takes care of the appropriate scaling of the rotations.

In addition to that, we consider the preconditioning matrix
and the length of the path when computing uk. Similar to
Olson et al. [27], we clamp the product λ|Pji| to lie between
[0, 1] so that it does not overshoot. In our implementation, we
compute these values as

uk = min (1, λ|Pji|)

⎡
⎣ ∑

m∈Pji∧m≤k

d−1
m

⎤
⎦
⎡
⎣ ∑

m∈Pji

d−1
m

⎤
⎦
−1

. (27)

Here, dm is defined as the sum of the smallest eigenval-
ues of the information matrices of all constraints connecting

node m, i.e.,

dm =
∑
〈i,m〉

min [eigen(Ωim)] . (28)

This is an approximation that works well in the case of roughly
spherical covariances. Note that the eigenvalues need to be
computed only once in the beginning and are then stored in
the tree.

For simplicity of presentation, we demonstrated how to
distribute the rotational error while keeping node i fixed. In our
implementation, however, we fix the position of the so-called
“top node” in the path, which is the node that is closest to the
root of the tree (smallest level in the tree). As a result, the update
of a constraint has less side effects on other constraints in the
network. Fixing the top node instead of node i can be obtained
by simply saving the pose of the top node before updating the
path. After the update, one transforms all nodes along the path
in a way that the top node maintains its previous pose. Further-
more, we used the matrix notation in this paper to formulate
the error distribution since it provides an easier notation. How-
ever, in our implementation, we use quaternions to represent
the rotations because they are numerically more stable. Both
formulations are theoretically equivalent. Note that an open-
source implementation of our optimizer is available online [32].

B. Update of the Translational Component

Compared with the previously described update of the ro-
tational component, the update of the translational component
can be done in a straightforward manner. In our current sys-
tem, we distribute the translational error over the nodes along
the path without changing the previously computed rotational
component.

All nodes along the path are translated by a fraction of the
residuals in the x, y, and z components. This fraction depends
on the uncertainty of the individual constraints encoded in
the corresponding covariance matrices and is scaled with the
learning rate, similarly to the case of updating the rotational
component.

V. ANALYSIS OF THE ROTATIONAL RESIDUAL

When distributing a rotational error over a sequence of nodes
i, . . . , j, one may increase the absolute value of the residual
rk,k−1 between consecutive constraints along the path (and,
thus, the error ek,k−1). For the convergence of SGD, however,
it is important that this error is bounded. Therefore, in this
section, we analyze the evolution of the rotational residual after
distributing an error according to Section IV-A.

A generic 3-D rotation can be described in terms of an axis
and an angle. Given a rotational matrix R, we will refer to its
axis of rotation as axisOf(R) and angleOf(R), respectively.
According to [1], the slerp interpolation returns a set of rotation
along the same axis as follows:

R′ = slerp(R, u) (29)
axisOf(R′) =axisOf(R) (30)

angleOf(R′) =u · angleOf(R). (31)

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

GRISETTI et al.: NONLINEAR CONSTRAINT NETWORK OPTIMIZATION FOR EFFICIENT MAP LEARNING 433

When distributing the rotation Q over a sequence of poses
according to (23), we decompose it into a sequence of incre-
mental rotations Q = Q1Q2 · · ·Qn. From (24), we know that

αk = angleOf(Qk) = (uk − uk−1) · angleOf(Q). (32)

In the following, we will show that when distributing the
rotational error along a loop, the angle of the residual
angleOf(rk,k−1) between the consecutive poses k − 1 and k
along the path does not increase by more than αk.

According to (18), the residual of a constraint between nodes
k − 1 and k is

rk,k−1 = X−1
k Δk,k−1. (33)

Since we are only focusing on the rotational component of the
residual, we ignore the translational part, i.e.,

rk,k−1 = RT
k Δk,k−1 (34)

RT
k = rk,k−1ΔT

k,k−1. (35)

After updating the rotations A1, . . . , An along the chain
using (25), we obtain a new set of rotations A′

1, . . . , A
′
n in the

global reference frame. From these rotations, we recover the
updated rotational parameters R′

k by using (26), i.e.,

R′
k

(26)
= A′T

k−1A
′
k (36)

(25)
= [Q1:k−1R1:k−1]T · [Q1:kR1:k] (37)

= [R1:k−1]T QkR1:k (38)

= [R1:k−1]T QkR1:k−1Rk. (39)

We then compute the residual r′k,k−1 after the update as

r′k,k−1

(34)
= R′T

k Δk,k−1 (40)

(39)
= RT

k [R1:k−1]T QT
k R1:k−1Δk,k−1 (41)

(35)
= rk,k−1 ΔT

k,k−1[R1:k−1]T︸ ︷︷ ︸
=:Y T

QT
k R1:k−1Δk,k−1︸ ︷︷ ︸

=:Y

= rk,k−1Y
T QT

k Y. (42)

In (42), the term Y T QT
k Y quantifies the increase in the residual

of a constraint between two consecutive nodes after the update.
Since Y and Q are rotation matrices, we obtain∣∣angleOf

(
Y T QT

k Y
)∣∣ = |angleOf(Qk)| = |αk|. (43)

Thus, the change of the new residual is at most αk and is
therefore bounded. This is a relevant advantage compared with
the error distribution presented in Grisetti et al. [12], which was
not bounded in such a way.

VI. COMPLEXITY AND GRAPH REDUCTION

Due to the nature of SGD, the complexity of our approach
per iteration linearly depends on the number of constraints since
each constraint is selected once per iteration (in random order).

For each constraint 〈j, i〉, our approach exactly modifies those
nodes that belong to the path Pji in the tree.

The path of the constraint is defined by the tree parame-
terization. As a result, different paths have different lengths.
Thus, we consider the average path length l to specify the
complexity. It corresponds to the average number of operations
needed to update a single constraint during one iteration. This
results in the complexity of O(M · l), where M is the number
of constraints. In our experiments, we found that l is typically
on the order of log N , where N is the number of nodes.

Note that there is further space for optimizations. The com-
plexity of the approach presented so far depends on the length
of the trajectory and not on the size of the environment. These
two quantities are different if the robot revisits areas that are
already known. This becomes important whenever the robot is
deployed in a bounded environment for a long time and has
to update its map over time. This is also known as lifelong
map learning. Since our parameterization is not restricted to
a trajectory of sequential poses, we have the possibility of
a further optimization. Whenever the robot revisits a known
place, we do not need to add new nodes to the graph. We can
assign the current pose of the robot to an already existing node
in the graph and update the constraints with respect to that node.

To avoid adding new constraints to the network, we can refine
an existing constraint between two nodes in the case of a new
observation. Let δ(1)

ji be a constraint that has already been stored

in the graph, and let δ
(2)
ji be the new constraint that would result

from the current observation. Both constraints can be combined
to a single constraint, which has the following information
matrix and mean:

Ωji = Ω(1)
ji + Ω(2)

ji (44)

δji = Ω−1
ji

(
Ω(1)

ji · δ(1)
ji + Ω(2)

ji · δ(2)
ji

)
. (45)

This can be seen as an approximation similar to adding a
rigid constraint between nodes. However, if local maps (e.g.,
grid maps) are used as nodes in the network, it makes sense
to use such an approximation since one can quite accurately
localize a robot in an existing map.

As a result, the size of the problem does not increase when
revisiting known locations. The previously specified complex-
ity stays the same, but M and N are referred to as the reduced
quantities. As our experiments illustrate, this node-reduction
technique leads to an increased convergence speed since fewer
nodes and constraints need to be considered.

VII. EXPERIMENTS

This section is designed to evaluate the properties of our
previously described approach. We first demonstrate that our
method is well suited to cope with the motion and sensor
noise from an instrumented car equipped with laser range scan-
ners. Second, we present the results of simulated experiments
based on large 2-D and 3-D data sets. Finally, we compare
our approach with different other methods, including Olson’s
algorithm [27], MLR [11], and SAM [4], [19].

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

434 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2009

Fig. 4. Evolution of the average error per constraint (computed according to
(7) divided by the number of constraints) of the approach of Triebel et al. [36]
and our approach for the data set recorded with the autonomous car. The right
image shows a magnified view to the first 400 ms.

A. Mapping With a Carlike Robot

In the first experiment, we applied our method to a real-world
3-D data set recorded with an instrumented car. Using such
cars as robots has become popular in the robotics community
[3], [29], [34], [38]. We used a Smart car equipped with five
SICK laser range finders and various pose estimation sensors
for data acquisition. Our robot constructs local 3-D maps, i.e.,
so-called multilevel surface maps [36], and builds a network of
constrains, where each node represents such a local map. The
localization system of the car is based on the Differential Global
Positioning System (here, using only the standard Global Po-
sitioning System) and Inertial Measurement Unit (IMU) data.
This information is used to compute the incremental constraints
between subsequent poses. Constraints resulting from revisiting
an already known area are obtained by matching the individual
local maps using the Iterative Closest Point. More details on
this matching can be found in our previous work [29].

We recorded a large-scale data set at the EPFL campus,
where the robot moved on a 10-km-long trajectory. The data set
includes multiple levels such as an underground parking garage
and a bridge with an underpass. The motivating example of this
paper (see Fig. 1) depicts the input trajectory and an overlay
of the corrected trajectory on an aerial image. As can be seen,
the trajectory actually matches the streets in the aerial image
(image resolution: 0.5 m/pixel).

We used this data set to compare our new algorithm with the
approach of Triebel et al. [36], which iteratively applies LU
decomposition. In this experiment, both approaches converge to
more or less the same solution. The time needed to achieve this
correction, however, is by orders of magnitudes smaller when
applying our new technique. Fig. 4 plots the average error per
constraint versus the execution time.

B. Quantitative Results and Comparison With SAM in 3-D

The second set of experiments is designed to measure the
performance of our approach for correcting 3-D constraint
networks and in comparison with the smoothing and mapping
(SAM) approach of Dellaert [4]. In these simulation experi-
ments, we moved a virtual robot on the surface of a sphere. An
observation was generated each time the current position of the
robot was close to a previously visited location. We corrupted
the observations with a variable amount of Gaussian noise to
investigate the robustness of the algorithms.

Fig. 5 depicts a series of graphs obtained by our algorithm
using three data sets generated with different noise levels. The
observation and motion noise was set to σ = 0.05/0.1/0.2 in
each translational component (in meters) and rotational com-
ponent (in radians).

As can be seen, our approach converges to a configuration
with a low error. In particular, for the last data set, the rotational
noise with a standard deviation of 0.2 (in radians) for each
movement and observation is high. After around 250 iterations,
the system converged. Each iteration took 200 ms for this data
set with around 85 000 constraints.

We furthermore compared our approach with the SAM ap-
proach of Dellaert [4]. The SAM algorithm can operate in two
modes: as a batch process, which optimizes the entire network
at once, or in an incremental mode. The latter only performs an
optimization after a fixed number of nodes have been added.
This way of incrementally optimizing the network is more
robust since the initial guess for the network configurations is
computed based on the result of the previous optimization. As
a result, the risk of getting stuck in local minima is typically
reduced. However, this procedure leads to a significant compu-
tational overhead. Table I summarizes the results obtained with
the SAM algorithm. As can be seen, the batch variant of the
SAM algorithm got stuck in local minima for the sphere data
sets with medium and large noise. The incremental version,
in contrast, always converged but still required substantially
more computation time than our current implementation of our
approach.

C. Comparison to MLR and Olson’s Algorithm in 2-D

In this third experiment, we compare our technique with two
current state-of-the-art SLAM approaches that aim to correct
constraint networks, namely, MLR proposed in the Frese et al.
[11] and Olson algorithms [27]. Since both techniques are
designed for 2-D scenarios, we also used the 2-D version of our
system, which is identical to the 3-D version, except that the
three additional dimensions (z, roll, pitch) are not considered.

We furthermore tested two variants of our method: one that
uses the node reduction technique described in Section VI and
one that maintains all the nodes in the graph.

In these simulation experiments, we moved a virtual robot
on a grid world. Again, we corrupted the observations with
a variable amount of noise for testing the robustness of the
algorithms. We simulated different data sets, resulting in graphs
that consisted of 4000 and 2 000 000 constraints.

Fig. 6 depicts the actual graphs obtained by Olson’s algo-
rithm and our approach for different time steps. As can be seen,
our approach converges faster. Asymptotically, both approaches
converge to a similar solution. In all our experiments, the results
of MLR strongly depend on the initial positions of the nodes.
We found that, in the case of a good starting configuration
of the network, MLR converges to a highly accurate solution
similar to our approach (see Fig. 7, left). Otherwise, it is likely
to diverge (Fig. 7, right). Olson’s approach and our technique
are more or less independent of the initial poses of the nodes.

To quantitatively evaluate our technique, we measured the
error in the network after each iteration. Fig. 8 (left) depicts a

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

GRISETTI et al.: NONLINEAR CONSTRAINT NETWORK OPTIMIZATION FOR EFFICIENT MAP LEARNING 435

Fig. 5. Results obtained by our approach using a virtual robot moving on a sphere with three different noise realizations in motion and observations (row 1:
σ = 0.05; row 2: σ = 0.1; row 3: σ = 0.2). Each network consists of around 85 000 constraints. The error is computed according to (7) divided by the number
of constraints.

TABLE I
COMPARISON WITH SAM

statistical experiment over ten networks with the same topology
but different noise realizations. As can be seen, our approach
converges significantly faster than the approach of Olson et al.
For medium-sized networks, both approaches asymptotically
converge to approximatively the same error value (see Fig. 8,
middle). For large networks, the high number of iterations
needed for Olson’s approach prevented us from experimentally
analyzing the convergence. For the sake of brevity, we omit-
ted comparisons with the EKF and Gauss–Seidel relaxation
because Olson et al. already showed that their approach out-
performs those techniques.

Additionally, we evaluated the average computation time per
iteration of the different approaches (see Fig. 8, right) and ana-
lyzed a variant of Olson’s approach, which is restricted to spher-
ical covariances. The latter approach yields execution times
per iteration similar to our algorithm. However, this variant has
still the same convergence speed with respect to the number
of iterations as Olson’s original technique. As can be seen
in Fig. 8 (right), our node-reduction technique speeds up the
computations up to a factor of 20.

We also applied our 3-D optimizer to such 2-D problems
and compared its performance with our 2-D version. Both tech-
niques lead to more or less the same results. The 2-D version,
however, is around three times faster than the 3-D version.

This results from removing the irrelevant components from the
state space and thus avoids the corresponding trigonometric
operations.

D. Error Distribution in 3-D

We furthermore compared our technique to distribute a rota-
tional error in 3-D with our previously proposed method [12].
Compared with this method, our new distribution limits the
fraction of the error that is added to the intermediate nodes—a
bound that is not available in [12]. Without this bound, it can
happen that the error of the overall network drastically increases
because a high error is introduced in the intermediate nodes.
Note that, even if this effect rarely occurs in real data sets, it can
lead to divergence. Fig. 9 illustrates such an example recorded
with a car in a parking lot with three floors.

While the previous method diverges after a few iterations,
our new algorithm leads to a limited and balanced distribution
of the error. This results in a more stable algorithm, which
successfully solved all tested data sets.

E. Constraint Sampling

SGD selects in each iteration a random order in which
the constraints are updated. In our previous work [13], we
neglected this randomization and selected a fixed order based
on the level of a constraint in the tree. This was needed to per-
form efficient updates, given our previously presented param-
eterization of the nodes.

With the parameterization presented in this paper, we are free
to choose an arbitrary order. We therefore compared two differ-
ent sampling techniques: 1) random sampling and 2) a variant
in which we sample a constraint without replacement with a
probability inversely proportional to the path length. We figured

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

436 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2009

Fig. 6. Results obtained with (first row) Olson’s algorithm and (second row) our approach after one, 10, 50, 100, and 300 iterations for a network with 64 000
constraints. The black areas in the images result from constraints between nodes that are not perfectly corrected after the corresponding iteration (for timings, see
Fig. 8).

Fig. 7. The result of MLR strongly depends on the initial configuration of the
network. (Left) Small initial pose error. (Right) Large initial pose error.

out that, in situations with nested loops, it is advantageous to
first process the constraints that have a shorter path length (and
thus correspond to the smaller loops). This is due to angular
“wraparounds” that are more likely to occur when first correct-
ing a large loop starting with a poor initial guess. A wraparound
is an error in the initial guess of a relative configuration between
two nodes that is bigger than 180◦. Such wraparounds cause the
algorithm to converge to a local minimum.

This effect can be observed in Fig. 10. It illustrates a statis-
tical experiment carried out using the sphere data set (ten runs
per strategy). As can be seen, sampling the constraints in each
iteration inversely proportional to the length of their path in the
tree gives the best results. In contrast to this, getting stuck in
local minima is more likely when performing random sampling.
Note that this effect only occurs for large networks or high noise
in the rotational components. Otherwise, both strategies provide
comparable results. As a result, we sample without replacement
the constraints in each iteration inversely proportional to the
length of the their path in the parameterization tree.

VIII. RELATED WORK

Mapping techniques for mobile robots can be classified
according to the underlying estimation technique. The most
popular approaches are EKFs [21], [31], sparse extended infor-
mation filters (SEIFs) [7], [35], particle filters [23], and least-
squares error minimization approaches [11], [14], [22]. For

some applications, it might be even be sufficient to learn local
maps only [15], [34], [39].

The effectiveness of the EKF approaches comes from the fact
that they estimate a fully correlated posterior about landmark
maps and robot poses [21], [31]. Their weakness lies in the
strong assumptions that have to be made on both the robot
motion model and the sensor noise. If these assumptions are
violated, the filter is likely to diverge [18], [37].

Thrun et al. [35] proposed a method to correct the poses
of a robot based on the inverse of the covariance matrix. The
advantage of SEIFs is that they make use of the approximative
sparsity of the information matrix. Eustice et al. [7] presented
a technique that more accurately computes the error bounds
within the SEIF framework and therefore reduces the risk of
becoming overly confident.

Recently, Dellaert et al. have proposed a smoothing method
called square root SAM [4], [19], [30]. It has several advantages
compared with EKF-based solutions since it better covers the
nonlinearities and is faster to compute. In contrast to SEIFs,
it furthermore provides an exactly sparse factorization of the
information matrix. In addition to that, SAM can be applied in
an incremental way [19] and is able to learn maps in 2-D and
3-D. Paskin [28] presented a solution to the SLAM problem
using thin junction trees. This way, Paskin is able to reduce
the complexity compared with the EKF approaches since thin
junction trees provide a linear-time filtering operation.

Frese’s TreeMap algorithm [9] can be applied to compute
nonlinear map estimates. It relies on a strong topological as-
sumption on the map to perform sparsification of the infor-
mation matrix. This approximation ignores small entries in
the information matrix. This way, Frese is able to perform an
update in O(log n), where n is the number of features.

An alternative approach to find ML maps is the application
of least-squares error minimization. The idea is to compute a
network of relations given the sequence of sensor readings.
These relations represent the spatial constraints between the
poses of the robot. In this paper, we also follow this way of for-
mulating the SLAM problem. Lu and Milios [22] first applied
this approach in robotics to address the SLAM problem using
a kind of brute-force method. Their approach seeks to optimize

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

GRISETTI et al.: NONLINEAR CONSTRAINT NETWORK OPTIMIZATION FOR EFFICIENT MAP LEARNING 437

Fig. 8. (Left) Error of our approach and Olson’s approach in a statistical experiment (σ = 0.05 confidence). (Middle) Both techniques asymptotically converge
to the same error. (Right) Average execution time per iteration for different networks. For the network consisting of 1 900 000 constraints, the execution of MLR
required too many resources. The result is therefore omitted. The error is computed according to (7) divided by the number of constraints.

Fig. 9. Network obtained from a car driving multiple times through a parking
lot with three floors. Different error-distribution techniques result in different
networks. The inconsistencies are marked by the arrows. (First row) Previous
method [12]. (Second row) Our approach, both after three iterations of the
optimizer. (Third row) Multilevel surface map created from the corrected
constraint network. (Fourth row) Aerial image of the parking lot.

the whole network at once. Gutmann and Konolige [14] pro-
posed an effective way to construct such a network and to
detect loop closures while running an incremental estimation

Fig. 10. Evolution of the error per constraint in a statistical experiment using
different strategies to sample the constraint that is to be updated next. The error
is computed according to (7) divided by the number of constraints.

algorithm. Howard et al. [16] apply relaxation to localize the
robot and build a map. Duckett et al. [5] propose the usage
of Gauss–Seidel relaxation to minimize the error in the net-
work of constraints. To make the problem linear, they assume
knowledge about the orientation of the robot. Frese et al. [11]
propose a variant of Gauss–Seidel relaxation called MLR. It
applies relaxation at different resolutions. MLR is reported to
provide very good results in flat environments, particularly if
the error in the initial guess is limited.

Note that techniques such as Olson’s algorithm, MLR, or our
method focus on computing the best map and assume that the
constraints are given. The ATLAS framework [2], hierarchical
SLAM [6], or the work of Nüchter et al. [26], for example, can
be used to obtain the data associations (constraints). They also
apply a global optimization procedure to compute a consistent
map. One can replace their optimization procedures by our
algorithm and, in this way, make them more efficient.

A technique that combines 2-D pose estimates with 3-D data
has been proposed by Howard et al. [17] to build maps of urban
environments. They avoid the problem of distributing the error
in all three dimensions by correcting only the orientation in the
x and y planes of the vehicle. The roll and pitch are assumed to
be measured accurately enough by an IMU.

In the context of 3-D ML mapping, only a few approaches
have been presented so far [24]–[26], [36]. The approach of
Nüchter et al. [26] describes a mobile robot that builds accurate
3-D models. In their approach, loop closing is achieved by
uniformly distributing the error resulting from odometry over
the poses in a loop. This technique provides good estimates but
cannot deal with multiple/nested loops.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

438 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2009

Montemerlo and Thrun [24] proposed to utilize the conjugate
gradients to efficiently invert the sparse information matrix of
the system. Their approach was used to learn large campus
maps using a Segway robot. Recently, Triebel et al. [36]
described an approach that aims to globally correct the poses
given the network of constraints in all six dimensions. At each
iteration, the problem is linearized and solved using LU decom-
position. This yields accurate results for small- and medium-
sized networks, particularly when the error in the rotational
component is small. As illustrated in our experimental section,
this approach is orders of magnitudes slower than our method
and is thus not suited to learn maps of large scenes.

The approach closest to the work presented here is the work
of Olson et al. [27]. They apply SGD to reduce the error in
the network. In contrast to their technique, our approach uses
a different parameterization of the nodes in the network that
better takes into account the topology of the environment. This
results in a faster convergence. Furthermore, our approach
allows us to avoid adding new nodes and constraints to the
graph when revisiting areas that have already been mapped. As
a result, the complexity of our algorithm only depends on the
size of the environment and not on the length of the trajectory
traveled by the robot. This is an advantage compared with
approaches such as MLR or Olson’s algorithm since it allows
for lifelong map learning.

The work presented in this paper furthermore extends two
previous conference publications [12], [13]. The first one [13] is
only applicable to 2-D scenarios and uses a different parameter-
ization of the nodes. The second one is an extension to 3-D [12].
It allows a robot to distribute a rotational error over a sequence
of poses. This distribution, however, was not bounded, as
was the one presented in this paper. As demonstrated in the
experimental section, the previous error-distribution approach
more often leads to divergence.

IX. CONCLUSION

In this paper, we have presented a highly efficient solution
to the problem of learning 2-D and 3-D ML maps for mobile
robots. Our technique is based on the graph formulation of the
SLAM problem and applies a variant of SGD. Our approach ex-
tends an existing algorithm by introducing a tree-based param-
eterization for the nodes in the graph. This has a significant
influence on the convergence speed and execution time of the
method. Furthermore, it enables us to correct arbitrary graphs
and not only a list of sequential poses. This way, the complexity
of our method depends on the size of the environment and not
directly on the length of the input trajectory. This is an impor-
tant precondition for lifelong map learning. Additionally, we
have presented a way to accurately distribute a 3-D rotational
error over a sequence of poses, which increases the robustness
over previous approaches.

Our method has been implemented and exhaustively tested
in simulation experiments and on real robot data. We fur-
thermore compared our method to three existing state-of-the-
art algorithms. The experiments demonstrate that our method
converges faster and yields more accurate maps than the other
approaches.

ACKNOWLEDGMENT

The authors would like to thank the following: U. Frese
for his insightful comments and for providing them with his
MLR implementation for comparisons; E. Olson for fruitful
discussions; M. Kaess and F. Dellaert for carrying out the exper-
iments with their SAM/iSAM implementation; S. Grzonka for
his valuable input on the slerp interpolation used in this paper
and for his support while carrying out experiments; D. Hähnel
and R. Kümmerle for providing them with the parking lot
data set recorded with Stanford’s autonomous car Junior; and
R. Siegwart and his laboratory at EPFL and the Swiss Federal
Institute of Technology (ETH), Zürich, for financial and techni-
cal support while working with the Smart car.

REFERENCES

[1] T. Barrera, A. Hast, and E. Bengtsson, “Incremental spherical linear
interpolation,” in Proc. SIGRAD, 2004, vol. 13, pp. 7–13.

[2] M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller, “An Atlas
framework for scalable mapping,” in Proc. IEEE ICRA, Taipei, Taiwan,
2003, pp. 1899–1906.

[3] D. Braid, A. Broggi, and G. Schmiedel, “The TerraMax autonomous
vehicle,” J. Robot. Syst., vol. 23, no. 9, pp. 693–708, Sep. 2006.

[4] F. Dellaert, “Square root SAM,” in Proc. RSS, Cambridge, MA, 2005,
pp. 177–184.

[5] T. Duckett, S. Marsland, and J. Shapiro, “Fast, on-line learning of
globally consistent maps,” J. Auton. Robots, vol. 12, no. 3, pp. 287–300,
May 2002.

[6] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical slam: Real-time
accurate mapping of large environments,” IEEE Trans. Robot., vol. 21,
no. 4, pp. 588–596, Aug. 2005.

[7] R. Eustice, H. Singh, and J. J. Leonard, “Exactly sparse delayed-state
filters,” in Proc. IEEE ICRA, Barcelona, Spain, 2005, pp. 2428–2435.

[8] J. Folkesson and H. Christensen, “Graphical slam—A self-correcting
map,” in Proc. IEEE ICRA, Orlando, FL, 2004, pp. 383–390.

[9] U. Frese, “Treemap: An o(log n) algorithm for indoor simultaneous
localization and mapping,” J. Auton. Robots, vol. 21, no. 2, pp. 103–122,
Sep. 2006.

[10] U. Frese and G. Hirzinger, “Simultaneous localization and mapping—A
discussion,” in Proc. IJCAI Workshop Reasoning Uncertainty Robot.,
Seattle, WA, 2001, pp. 17–26.

[11] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algorithm
for simultaneous localization and mapping,” IEEE Trans. Robot., vol. 21,
no. 2, pp. 1–12, Apr. 2005.

[12] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard, “Efficient
estimation of accurate maximum likelihood maps in 3D,” in Proc. IEEE/
RSJ IROS, San Diego, CA, 2007, pp. 3472–3478.

[13] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree parameteri-
zation for efficiently computing maximum likelihood maps using gradient
descent,” in Proc. RSS, Atlanta, GA, 2007.

[14] J.-S. Gutmann and K. Konolige, “Incremental mapping of large cyclic
environments,” in Proc. IEEE Int. Symp. CIRA, Monterey, CA, 1999,
pp. 318–325.

[15] J. Hermosillo, C. Pradalier, S. Sekhavat, C. Laugier, and G. Baille,
“Towards motion autonomy of a bi-steerable car: Experimental issues
from map-building to trajectory execution,” in Proc. IEEE ICRA, 2003,
pp. 2430–2435.

[16] A. Howard, M. J. Matarić, and G. Sukhatme, “Relaxation on a mesh: A
formalism for generalized localization,” in Proc. IEEE/RSJ IROS, 2001,
pp. 1055–1060.

[17] A. Howard, D. F. Wolf, and G. S. Sukhatme, “Towards 3D mapping in
large urban environments,” in Proc. IEEE/RSJ IROS, 2004, pp. 419–424.

[18] S. Julier, J. Uhlmann, and H. Durrant-Whyte, “A new approach for
filtering nonlinear systems,” in Proc. Amer. Control Conf., Seattle, WA,
1995, pp. 1628–1632.

[19] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Fast incremental
smoothing and mapping with efficient data association,” in Proc. IEEE
ICRA, Rome, Italy, 2007, pp. 1670–1677.

[20] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai, “A practical,
decision-theoretic approach to multi-robot mapping and exploration,” in
Proc. IEEE/RSJ IROS, Las Vegas, NV, 2003, pp. 3232–3238.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

GRISETTI et al.: NONLINEAR CONSTRAINT NETWORK OPTIMIZATION FOR EFFICIENT MAP LEARNING 439

[21] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by
tracking geometric beacons,” IEEE Trans. Robot. Autom., vol. 7, no. 3,
pp. 376–382, Jun. 1991.

[22] F. Lu and E. Milios, “Globally consistent range scan alignment for envi-
ronment mapping,” J. Auton. Robots, vol. 4, no. 4, pp. 333–349, Oct. 1997.

[23] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization and
mapping that provably converges,” in Proc. IJCAI, Acapulco, Mexico,
2003, pp. 1151–1156.

[24] M. Montemerlo and S. Thrun, “Large-scale robotic 3-D mapping of urban
structures,” in Proc. ISER, 2004, pp. 141–150.

[25] P. Newman, D. Cole, and K. Ho, “Outdoor slam using visual appear-
ance and laser ranging,” in Proc. IEEE ICRA, Orlando, FL, 2006,
pp. 1180–1187.

[26] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6d
SLAM with approximate data association,” in Proc. 12th ICAR, 2005,
pp. 242–249.

[27] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of
pose graphs with poor initial estimates,” in Proc. IEEE ICRA, 2006,
pp. 2262–2269.

[28] M. A. Paskin, “Thin junction tree filters for simultaneous localization and
mapping,” in Proc. IJCAI, Acapulco, Mexico, 2003, pp. 1157–1164.

[29] P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, W. Burgard, and R. Siegwart,
“Towards mapping of cities,” in Proc. IEEE ICRA, Rome, Italy, 2007,
pp. 4807–4813. under review.

[30] A. Ranganathan, M. Kaess, and F. Dellaert, “Loopy SAM,” in Proc.
IJCAI, 2007, pp. 2191–2196.

[31] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” in Autonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. New York: Springer-Verlag, 1990, pp. 167–193.

[32] C. Stachniss and G. Grisetti, TORO project at OpenSLAM.org, 2007.
[Online]. Available: http://openslam.org/toro.html

[33] B. Steder, G. Grisetti, S. Grzonka, C. Stachniss, A. Rottmann, and
W. Burgard, “Learning maps in 3D using attitude and noisy vision sen-
sors,” in Proc. IEEE/RSJ IROS, San Diego, CA, 2007, pp. 644–649.

[34] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. M. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk,
E. Jensen, P. Alessandrini, G. R. Bradski, R. Davies, S. Ettinger,
A. Kaehler, A. V. Nefian, and P. Mahoney, “Stanley: The robot that won
the DARPA Grand Challenge,” J. Field Robot., vol. 23, no. 9, pp. 661–
692, Sep. 2009.

[35] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and
H. Durrant-Whyte, “Simultaneous localization and mapping with
sparse extended information filters,” Int. J. Robot. Res., vol. 23, no. 7/8,
pp. 693–716, 2004.

[36] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in Proc. IEEE/RSJ IROS,
2006, pp. 2276–2282.

[37] J. Uhlmann, “Dynamic map building and localization: New theoretical
foundations,” Ph.D. dissertation, Univ. Oxford, Oxford, U.K., 1995.

[38] C. Urmson, “Navigation regimes for off-road autonomy,” Ph.D. disserta-
tion, Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, 2005.

[39] M. Yguel, C. T. M. Keat, C. Braillon, C. Laugier, and O. Aycard,
“Dense mapping for range sensors: Efficient algorithms and sparse
representations,” in Proc. RSS, Atlanta, GA, 2007.

Giorgio Grisetti received the Ph.D. degree from
the University of Rome “La Sapienza,” Rome, Italy,
in 2006.

He is currently a Postdoctoral Researcher with
the Laboratory for Autonomous Intelligent Systems,
Department of Computer Science, University of
Freiburg, Freiburg, Germany. His previous and cur-
rent contributions in robotics aim to provide effective
solutions to various mobile robot navigation prob-
lems, including simultaneous localization and map-
ping, localization, and path planning. His research

interests are in the areas of mobile robotics.

Cyrill Stachniss received the Ph.D. degree in com-
puter science from the University of Freiburg,
Freiburg, Germany, in 2006.

After receiving the Ph.D. degree, he joined the
Swiss Federal Institute of Technology (ETH) Zurich,
Zurich, Switzerland, as a Senior Researcher. Since
2007, he has been an Academic Advisor with the
Laboratory for Autonomous Intelligent Systems,
Department of Computer Science, University of
Freiburg. His research interests are in the areas of
robot navigation, exploration, simultaneous localiza-

tion and mapping, and learning approaches.

Wolfram Burgard received the Ph.D. degree in
computer science from the University of Bonn,
Bonn, Germany, in 1991.

He is currently a Professor of computer science
with the University of Freiburg, Freiburg, Germany,
where he heads the Laboratory for Autonomous In-
telligent Systems, Department of Computer Science.
His areas of interest are in artificial intelligence and
mobile robots. In the past, he and his group devel-
oped several innovative probabilistic techniques for
robot navigation and control. They cover different

aspects such as localization, map building, path planning, and exploration.
Prof. Burgard is a Fellow of the European Coordinating Committee for

Artificial Intelligence. He has been the recipient of several best paper awards
from outstanding national and international conferences.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 25, 2009 at 10:24 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

