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Abstract— Recent works have shown that it is possible to
solve the Simultaneous Localization And Mapping problem
using an Extended Kalman Filter and a single perspective
camera. The principal drawback of these works is an inaccurate
modeling of measurement uncertainties, which therefore causes
inconsistencies in the filter estimations. A possible solution
to proper uncertainty modeling is the Unified Inverse Depth
parametrization. In this paper we propose the Inverse Scaling
parametrization that still allows an un-delayed initialization
of features, while reducing the number of needed parameters
and simplifying the measurement model. This novel approach
allows a better uncertainty modeling of both low and high
parallax features and reduces the likelihood of inconsistencies.
Experiments in simulation demonstrate that the use of the
Inverse Scaling solution improves the performance of the
monocular EKF SLAM filter when compared with the Unified
Inverse Depth approach; experiment on real data confirm the
applicability of the idea.

I. INTRODUCTION

Monocular cameras are in widespread use for SLAM,

as they are simple and low power sensors that allows to

estimate the bearing of interest points and, by means of

camera motion and triangulation, the whole 3D structure

of the environment [1]. A relevant issue in this case is

the initialization and the uncertainty modeling of the 3D

elements in the map: from a single frame we cannot estimate

the depth of the features, and measurements are affected by

uncertainties that strongly depend on the observer-to-feature

distance.

In their work, Davison et al. [1], using an extended Kalman

filter (EKF) to perform a real-time 6 DoF SLAM, used a

non parametric approach to initialize the feature depth and

bounded the maximum feature depth to about 5m. The depth

of an observed feature is first estimated using a particle filter

and the feature, once its distribution is close to normal,

is used in a EKF-based SLAM filter. Unfortunately, this

delayed use can cause a loss of information; in fact having

a landmark in the map, even without knowing its distance,

allows immediate use of pure bearing information. To avoid

this delay and to exploit low-parallax features, Solà et al.[2]

proposed to maintain several depth hypotheses combined in

a Gaussian Sum Filter, to cover the distribution along the

whole ray to the feature. An alternative solution for both un-

delayed initialization and depth uncertainty modeling was

introduced in [3] and [4]. They showed that the use of

inverse depth parameterizations make the observation model
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nearly linear (at least for small camera displacements), while

reducing both non-Gaussian-ness of depth measurement and

EKF linearization. In this way, it is possible to model the

uncertainty as Gaussian and use EKF filtering, without delay.

In [5] it was suggested to base on recursive estimation in

local coordinate frames and an iterative graph optimization,

obtaining a nearly linear observation model. At the same time

Clemente et al. [6] demonstrated that a different solution to

filter inconsistencies is to use a Hierarchical map approach

that, combined with the Joint Compatibility test, allows to

perform a mapping of a large loop.

Starting from these results, our aim is a novel parametriza-

tion that allows not only to estimate the depth of the

features without delay, but also to obtain a good accuracy in

uncertainty modeling for both low and high parallax features,

therefore improving the stability of the monocular SLAM

filter. In the next section we introduce the Inverse Scaling

parametrization, studying the linearity of the measurement

model in comparison with the Unified Inverse Depth (UID

hereafter) [3] approach. A complete EKF SLAM algorithm

using inverse scaling parametrization is presented in the

following sections. In section IV we validate our proposal

on simulated and real data, comparing the results with the

solution presented in [3].

II. THE INVERSE SCALING PARAMETRIZATION

As proposed in [3] and [4], it is possible to improve

the performance of a monocular EKF SLAM adopting an

inverse depth parametrization and thus allowing not only

an un-delayed initialization of features, but also a non-

linearity reduction of the observation model. The latter result

can be confirmed by analyzing the linearity of a simplified

measurement equation, as showed in [7], and it can be

generalized for scene points that are not on the principal

axis of the camera. Let us consider Figure 1, which sketches

two cameras, with the same focal length, observing a generic

point in the scene. If we consider that this point is not

laying on the two cameras principal axis (i.e., the general

case), the angles θ0 and θ1 will not be zero. To include this

information in the equation of [7] we can change the equation

representing the location error for the first camera as follows:

D =
1

ρ0 − ρ
cos(θ0), d0 =

1

ρ0
cos(θ0), (1)

d = D − d0 =
ρ

ρ0(ρ0 − ρ)
cos(θ0), (2)

where ρ0 is the UID of the feature, ρ ∼ N(0, σ2
ρ) is the

Gaussian depth uncertainty, d is the point’s location error

projected on the y axis w.r.t the first camera, d0 is the real
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Fig. 1. Modeling the uncertainty propagation from a generic scene point to
the image camera. In gray we represents the skewed uncertainty distribution
of the measurement.

feature position projected on the y axis and D is position

with uncertainty. Considering the second camera pose, we

can estimate the image of the scene point:

x1 = ρ0 sin(θ0) cos(α)+ρ cos(θ0) sin(α)
ρ0(ρ0−ρ) , (3)

y1 = d1 + ρ (cos(θ0) cos(α)−sin(θ0) sin(α))
ρ0(ρ0−ρ) , (4)

u1 = ρ0 sin(θ0) cos(α)+ρ cos(θ0) sin(α)
ρ0d1(ρ0−ρ)+ρ(cos(θ0) cos(α)−sin(θ0) sin(α)) . (5)

Analyzing the linearity index proposed in [7]:

Lρ =

∣
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ρ=0
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∣

, (6)

we obtain:

Lρ =
2σρ

ρ0
2

∣

∣

∣

∣

1 −
d0

d1
(cos(θ0)cos(α) − sin(θ0)sin(α))

∣

∣

∣

∣

.

(7)

In order to have an acceptable linearization, it should be

Lρ ≈ 0. The result obtained shows that, in this analysis,

we can not ignore the θ0 if ρ0 ≈ 4σρ, and, when we have

a low parallax angle, θ0 becomes important since the term

(1− d0

d1

(cos(θ0) cos(α)−sin(θ0) sin(α))) → (1− d0

d1

cos(θ0)).
In Figure 2 it is possible to see the value of this term

as the parallax angle increases. Another important linearity

consideration concerns the initialization procedure: every

time the camera perceives a new feature, we have to estimate

the value of its θ angle (and, in 3D, also the value of φ). This
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Fig. 2. UID parametrization linearity analysis: value of term (1 −
d0

d1
(cos(θ0) cos(α) − sin(θ0) sin(α))) when α goes from 0.05 to π/4,

θ0 from 0 to π/4 and d0 ≈ d1.

introduces another non-linearity factor in the measurement

equation, since this has to be taken into account in the

Jacobian calculation. These observations motivate our work.

We propose to change the parametrization, in order to avoid

this coordinate transformation and to reduce further the non-

linearity of the measurement equation. Our idea, introduced

in its preliminary form in [8], is based on the observation

that it is possible to represent a 3D point in the scene by

appropriately scaling the triangle formed by the image point,

the image center, and projection center, which turns into

using homogenous coordinates:




Xi

Yi

Zi



 =
1

ωi





xi

yi

zi



 . (8)

Taking into account the inverse scaling 1/ωi, we can model

the uncertainty skewness as with the UID approach and, at

the same time, simplify the measurement equation. Following

this intuition we can rewrite the formulae for the error

propagation analysis (see again Figure 1 for a reference):

D =
1

ω0 − ω
, d0 =

1

ω0
, (9)

d = D − d0 =
ω

ω0(ω0 − ω)
. (10)

The image point in the second camera will be:

x1 =
u cos(α)ω0 + ω sin(α))

ω0(ω0 − ω))
, (11)

y1 = d1 +
ω cos(α) − u0 sin(α)

ω0(ω0 − ω)
, (12)

u1 =
u0 cos(α)ω0 + ω sin(α)

d1ω0(ω0 − ω) + ω(cos(α) − u0 sin(α))
, (13)

and the linearity index Lω:

Lω =

∣

∣

∣

∣

∣

∣

∂2u
∂ω2

∣

∣

∣

ω=0
2σω

∂u
∂ω

∣
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ω=0

∣

∣
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= (14)
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Fig. 3. Inverse scaling linearity analysis: value of term (1− d0

d1
(cos(α)−

u0 sin(α)) when α goes from 0.05 to π/4, u0 from 0 to 1 (this range
corresponds, for a normalized camera, to the range of θ0 in Figure 2: we
calculate the value of u0 for each θ0 thus it is possible to have a direct
correspondence between the two graphs) and d0 ≈ d1.
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2
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(cos(α) − u0 sin(α))
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In this case, when we have a low parallax (α → 0, cos(α) →
1 and sin(α) → 0), the displacement u0 will be balanced by

the value of sin(α), so improving the equation linearity as

clearly stated from Figure 3. These results are confirmed by

experiments with simulated data, presented in Section IV.

III. MONOSLAM USING INVERSE SCALING

The parametrization proposed in the previous section has

been validated as part of a complete SLAM system that uses

an Extended Kalman Filter to jointly represent the map of

the world and the robot pose. In this paper, we consider the

camera pose represented by six degrees of freedom, and a

sensor providing 2D data.

State representation in a EKF-based SLAM system is:

x =
[

xW
R vR xW

F1
. . . xW

Fm
. . . xW

FM

]T
(16)

being xW
R = [φ, γ, θ, x, y, z]

T
the six degrees of freedom

representation of the camera pose w.r.t. the world reference

frame W , vR = [vφ, vγ , vθ, vx, vy, vz]
T

is the camera

velocity w.r.t the camera pose, and xW
Fm

= [x, y, z, ω]
T

is

the Inverse Scaling parametrization of the feature w.r.t. the

world reference frame W .

A constant linear and angular velocity is assumed and

this produces, at each step, a roto-translation x
Rk−1

Rk
between

the previous camera reference system (Rk−1) and the actual

pose (Rk). Moreover, at each step we assume an additive

white and zero mean Gaussian error due to an unknown

acceleration factor a with covariance Q.

vRk−1 = v̂Rk−1 + a · ∆t, (17)

x
Rk−1

Rk
= v̂Rk−1 · ∆t. (18)

The state is updated in two steps: prediction and update. The

state, after the prediction step will be:

xk|k−1 =















xW
Rk−1

⊕ x
Rk−1

Rk

vRk

xW
F1

...

xW
Fm















, (19)

where: vRk−1 = vRk−1 + ak∆t,x
Rk−1

Rk
= vRk−1∆t,vRk =

vRk−1 ; ⊕ is the transformation composition operator. The

corresponding covariance is:

Pk|k−1 = J1Pk−1|k−1J
T
1 + J2QJT

2 (20)

being

J1 =
[

Jx Jv . . . JFm

]

, J2 =
[

Jak

]

(21)

with

Jx =
∂xk|k−1

∂xW
Rk−1

,Jv =
∂xk|k−1

∂v
Rk−1

Rk

, (22)

JFm
=

∂xk|k−1

∂xW
Fm

,Jak
=

∂xk|k−1

∂ak

. (23)

In order to define the measurement equation, one can

immediately derive, from our parametrization, the following.

hRk =





hRk
x

hRk
y

hRk
z



 = M·R
Rk

W









xW
Fi

yW
Fi

zW
Fi



 − ωW
Fi

rW
Rk



 (24)

where hRk is in homogeneous coordinates, R
Rk

W is the

rotation matrix between robot pose at time k and the world

reference frame W , rW
Rk

is the translation vector between

W world reference frame and the robot pose at time k, M

is the calibrated projection matrix of the camera, and D its

covariance:

M =





fcx 0 ccx

0 fcy ccy

0 0 1



 , (25)

D =









σ2
fcx

0 0 0

0 σ2
fcy

0 0

0 0 σ2
ccx

0
0 0 0 σ2

ccy









; (26)

x
Rk

W is the roto-translation matrix between pose k and the

world reference frame W ; hRk above is the projection of the

3D point in the camera frame, in homogeneous coordinates.

The measurements, i.e., the pixel coordinates, are:

hk =

[

hku

hkv

]

=

[

h
Rk
x

h
Rk
z

,
h

Rk
y

h
Rk
z

]T

. (27)

Moreover, we add D to the state covariance matrix

Pk|k−1:

Pk|k−1 =

[

Pk|k−1 0

0 D

]

. (28)

In this way we take the uncertainty of the projection matrix

into consideration.
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The classical EKF update equations give the new estimate

of both the state vector xk|k and the camera motion from

the world reference frame to the camera pose k.

S = HkPk|k−1H
T
k + Rk

K = Pk|k−1H
T
k S−1

Pk|k = Pk|k−1 − KSKT

xk|k = xk|k−1 + K (z − hk)

(29)

where Rk is the measurement error covariance, z the obser-

vations and Hk:

Hk =
∂hk

∂xk−1
=

[

HxW
Rk

Hvk
HF1

. . . HFi
. . . HFm

HM

]

,

(30)

where

HxW
Rk

= ∂hk

∂xW
Rk

,Hvk
= ∂hk

∂v
Rk

,HFi
= ∂hk

∂xW
Fi

,HM = ∂hk

∂M
.

A. Initialization of a new feature

The initialization of a new feature, though perceived from

the camera, has to be moved in the map reference frame,

unless to follow a robo-centric approach, like it was done in

[8]. With Inverse Scaling, we can initialize the features with

a huge uncertainty in the depth, as with UID, in order to

represent that most of the uncertainty lays in the direction of

the interpretation ray. Moreover, the uncertainty of the map

is described by Gaussian distributions over the parameters,

in Inverse Scaling, as it was with UID.

Each feature in the camera reference frame is defined as:

x
Rk

Fnew
=

(

x, y, z, ω
)T

; (31)

when we obtain an observation h = (u, v)
T

of a new feature

from the camera, we initialize its parameters as:








x
y
z
ω









=









u − ccx

v − ccy

fc
ω̂









; (32)

being fc the focal length of the camera (we suppose unit

aspect ratio), [u, v] the 2D image point and [ccx, ccy] the

projection center of the camera. The initial value of ω̂ can

be defined so to cover the entire working range; for 1/ω un-

certainty to cover (with 96% probability) the range between

some minimum distance mind to infinite, ω needs to be in

the 4% confidence interval [0, 1/mind]. In our experiments,

we used initial ω̂ = fc/(2∗mind) and σω = fc/(4∗mind);
this allows to represent the non-normal uncertainty extending

from mind to infinite.

Feature initialization takes into consideration all informa-

tion available without any linearization process. The projec-

tion matrix values and the observations are taken as initial

values for the inverse scaling variables. The uncertainty on

projection matrix and on observations are used to initialize

the uncertainty on these variables in linear way. The result is

that we have inverse scaling parameters represented correctly

by Gaussian stochastic variables and we can represent a point

to infinity without any special trick.

Subsequently, we have to roto-translate this new feature in

the world coordinate frame, but still in homogeneous form.
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Fig. 4. In the first row we report the samples from the uncertainty
distribution of a feature in the camera frame of reference (on the left) and
in the world reference frame after roto-translation. In the second row we
introduced roto-translation uncertainty (represented in the plot by the 3σ
angles and uncertainty ellipse) in the camera reference frame initialization
(left) and after Jacobian uncertainty propagation (right).

The new state covariance, after the initialization, is obtained

using the image measurement error covariance Rk, the state

vector covariance Pk|k, and the projection matrix covariance

D (to keep in consideration the uncertainty on the camera

parameters). It becomes:

xk|k =

[

xk|k

xW
Rk

⊕ x
Rk

Fnew

]

(33)

Pk|k = J









Pk|k 0 0 0

0 Rk 0 0

0 0 σω
2 0

0 0 0 D









JT (34)

with:

J =

[

I 0
∂x

W
Fnew

∂xW
Rk

,0
∂x

W
Fnew

∂h

∂x
W
Fnew

∂ω

∂x
W
Fnew

∂M

]

. (35)

In a previous work [8] we applied a robo-centric approach

so this rotation was not needed in the initialization phase; it

might be objected that by the application of this rotation

we loose the skewness of the distribution and, with it,

the effectiveness of our novel parametrization. It turns out

that this roto-translation is applied to the inverse scaling

parametrization to obtain a new inverse scaling parametriza-

tion in the world frame of reference (i.e., roto-translation

happens in the homogeneous coordinates space), and thus the

proper modeling of uncertainty is preserved. To show this we

simulated this operation and the result is reported in Figure 4.

The two plots in the upper part of the figure represent

the feature initialized in the camera frame (left) and in the

world reference frame (right). Samples in the camera frame

(top left in Figure 4) are generated by sampling the feature
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Fig. 5. Belief distribution for a 2D scene point 15m away from the
observer: (red) true distribution (computed with particle transformation),
(blue) Inverse Scaling parametrization, (brown) classical parametrization
(Gaussian approximation via Jacobians). x is on the left, y on the right.

initialized in the camera frame; each sample is then roto-

translated in the world reference frame by applying the exact

roto-translation between the two frames. The samples in the

world reference frame (top right in Figure 4) are directly

sampled from the inverse scaling representation after the

roto-translation applied to it as from Equations 33, and 34.

When adding uncertainty to the roto-translation we obtain the

plots in the second row of Figure 4; the samples on the left

are from the feature initialization, and are then combined

with a sample from the roto-translation distribution; the

samples on the right are sampled directly from the feature

distribution after the uncertainty propagation. It is clear from

the simulations that the skewed uncertainty is preserved and

the deformation introduced by the linearization process is

negligible.

IV. EXPERIMENTAL RESULTS

In this section we present the capabilities of our represen-

tation using a simulator for a monocular vision system. Given

a point in the map, and the position of the camera w.r.t. the

map, we simulate the image formation on the device, as well

as the uncertainty of the measurements. The motivation for

using a simulated environment to test the proposed model is

to have access to the ground truth and therefore to compare

different methods using the same data. On the other hand,

in simulation we can easily use a sample based approach

to produce a proper representation of the true uncertainty

through exact particle triangulation as we did in the previous

section.

The simulated world is planar with 1D cameras, this totally

suffice to prove the paper claims. The parameters used for

the simulated monocular system are: image resolution of 640

pixels at 30Hz and an uncertainty associated to the image

measurements set to σ=0.5 pixels. We consider the projection

matrices known altogether with their uncertainty, assumed

normal; focal length of 650 pixels with an uncertainty of σ=3

pixels and projection center of 320 pixel with σ=2 pixels. The

purpose of the experiments is to analyze the performance of

the inverse scaling parametrization with features at different

locations and depths.

The graphs in Figure 5, 6, and 7 represent the Probability

Distribution Function along the axis. In Figure 5 it is possible

to compare the triangulation result using our model with

the classical approach, i.e., Jacobian uncertainty propagation

and [x, y, z]T point representation. The graph shows the

Fig. 6. Belief distribution for a 2D scene point 2.5m away from the
observer: (red) true distribution (computed with particle transformation),
(blue) Inverse Scaling parametrization, (brown) UID parametrization. x is
on the left, y on the right.

Fig. 7. Belief distribution for a 2D scene point 15m away from the
observer: (red) true distribution (computed with particle transformation),
(blue) Inverse Scaling parametrization, (brown) UID parametrization. Only
the y coordinate is depicted.

reconstruction of a scene point at 15m from the observer

using stereo cameras with baseline of 0.6m. We can see the

non-gaussian-ness of the real distribution in comparison with

the classical Gaussian representation. Moreover, notice the

better distribution approximation of inverse scaling.

In Figure 6 we compare the uncertainty distribution gen-

erated using Inverse Scaling versus the UID approach when

we try to estimate the 2D scene point at 2.5m (i.e., with a

large parallax angle). The plot shows that the distribution

estimated by our model is realistic in different experimental

condition, i.e., with both the large and the small parallax

conditions. This property allows to use our representation

in different real conditions. Figure 7 shows that the two

parameterizations are more or less equivalent for long range

data.

Finally, in figure 8 we shown the distribution, coded with

the classical cartesian point representation (X,Y ), of the

same point. Notice the non-Gaussian distribution of these

variables, after triangulation. Figure 9 shows the uncertainty

on a 2D point coded with the inverse scaling parametrization.

It remains Gaussian after triangulation.

A. Comparison within SLAM

To verify if a better uncertainty modeling lead to better

SLAM results (somehow confirming the results in [9]),

we tested two SLAM systems in a simulated rectangular

environment (point features are equally distributed along the

environment borders); the former implements what is pro-

posed in Section III, the latter uses the UID parametrization.

Our UID implementation is an adapted version of [3] to

the particular case of 3DoF simulation (matrixes instead of
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Fig. 8. Estimated distribution of a 2D scene point 15m away from the
observer coded with cartesian (X, Y ) representation. It is computed with a
particle transformation through the triangulation process. The x coordinate
is depicted above, the y below.

Fig. 9. Estimated distribution of the same 2D scene point as above when
coded with inverse scaling (X, Y, W ) representation. The x coordinate is
depicted above, the y and w below, respectively.

quaternions for rotations). In simulation the data association

has been performed manually, so that estimates are compara-

ble and the main aspect considered is uncertainty modeling.

We assume obvious to the reader, for the evaluation of

the simulation results, that the differences between the two

approaches in a real setting, i.e., without relying on a correct

data association, can only be larger.

Figure 10(a) represents the initialization process. This

figure shows the comparison between a cartesian Gaussian

parametrization of the features (in red) and our inverse

scaling Gaussian parametrization (represented by the cloud

of points in blue). The standard Gaussian uncertainty el-

lipsoids are obtained by a Jacobian uncertainty propagation

(linearization) to transform the 3 dimensional (x,y,ω) inverse

scaling coordinates in 2 dimensional cartesian (x,y) coor-

dinates. The inverse scaling representation is obtained by

sampling directly from the 3 dimensional ellipsoid (x,y,ω).

We notice that at the beginning we have a huge depth

uncertainty (from zero to infinity) as we do not have any

information about the depth of the features. This situation is

easily coded in the inverse scaling parametrization through

the ω factor. This allows to represent features seen for

the first time (where we know the direction of the pixel

interpretation ray, but we do not know exactly where the

features is along this ray). After the initialization step,

the camera moves. This movement produces parallax and

thereby the features depth estimate is improved, reducing

the uncertainty on the features (see Figure 10(b)).

In Figure 11, we have the plots of the error in pose

estimation, respectively for x, y and θ, during the robot path.

The path is a simple circle with the camera always looking

outside, i.e., toward the borders of the environment. As it

can be easily noticed the variance of the robot pose estimate

(the blue lines are placed at ±3σ) is underestimated for the

UID parametrization; this is not the case for the Inverse

Scaling parametrization. The underestimation leads to filter

inconsistency.

Finally, we present a real application of our system in

(a) (b)

Fig. 10. (a) Initialization: in blue the particles representing the uncertainty
coded with Inverse Scaling, in red a cartesian (x,y) Gaussian representation
of the uncertainty coded by using the Jacobian uncertainty propagation
(notice that there is no red in y beyond 5m, for the sake of those looking
at a grey-level version of the picture). (b): after 500 steps. Notice that the
distributions reached equivalence to normality.

Fig. 12. Map reconstruction using Inverse Scaling parametrization in a
real indoor environment. Images are from the video attached to the paper.

a real indoor context. Data association is here based on

patch correlation. Also, not all the detectable features are

used, a sub-sampling scheme is adopted to reduce their

number. In Figure 12 there are some frames taken using

a 320x240 B/W camera at 30Hz, from the video attached

to this paper. The camera was hand held and moved. The

figure shows the results of the estimation process using the

proposed monocular approach: the top-left image shows the

camera image (here we have in red the prediction for the

features, and in blue the matched ones); the top-right image

presents the estimated map, from the top, with the uncertainty

ellipsoids, the bottom-left shows the camera position with

its uncertainty ellipsoid, and the bottom-right features the

camera trajectory, from the top.

V. CONCLUSIONS AND DISCUSSION

In this paper we introduced a new parametrization, called

inverse scaling, for monocular SLAM based on EKF filter.

Compared with the UID solution [3], our approach allows to

improve the accuracy of the uncertainty modeling, simplifies
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Fig. 11. Error in robot localization (x,y,θ): (left) using UID parametrization, (right) using Inverse Scaling parametrization. In red the error w.r.t. the
ground truth, in blue ±3σ

the measurement equation, and reduces its non-linearity.

It might be argued that inverse scaling parametrization

is somehow over-parameterized (and this apply even more

for the UID parametrization) since we use 4 parameters

to represent a 3D point that could be represented with the

classical 3 Euclidean coordinates. Our claim is that, by using

the extra parameter and representing the point in the space of

homogeneous coordinates, we achieve the following goals:

• make the measurement equation linear (or close to

linear) as previously shown (see Section II);

• properly initialize a new feature with only a single view

of it (see Section III-A);

• compute the uncertainty on this feature tacking into

account both the image and the projection uncertainty.

• represent the uncertainty of this features, skewed in the

Euclidean space, as Gaussian in the space of homoge-

neous coordinates (see Section IV);

• achieve all these claims using only 4 parameters (instead

of the 6 UID parameters).

Lastly, our parametrization makes feature initialization and

measurement linear or close to linear also w.r.t. the projection

parameters; therefore it is possible to consider the projection

uncertainty in both the measurement and the initialization

(see Section III-A).

We validated our claims both mathematically, extending

the study done by Civera et al. [7], and experimentally,

using both a simulated framework, to allow comparison with

ground truth and a real setup.
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