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Abstract— The aim of this work is to demonstrate that itis to solve the problem of Simultaneous Localization And
possible to use a single camera to solve the problem of Simul- Mapping and Moving Objects Tracking (SLAMMOT), that
taneous Localization And Mapping in dynamic environments .50 pbe considered the intersection between SLAM and

obtaining, at the same time, the estimation of the moving olgicts . . . . . .
trajectories. Specifically, we show that it is possible to ggnent moving object fracking. The authors investigate theoaijic

the features belonging to independently moving objects fim a  the SLAMMOT problem, demonstrating that it is possible
moving camera using a MonoSLAM algorithm together with  to solve it maintaining separate posteriors for statiorzargt
a Bearing-Only Tracker. The idea is to exchange between two moving objects, and validating the algorithm empirically b

parallel working systems, i.e. the SLAM filter and the bearirg-  5n41y7ing data acquired with a laser rangefinder in realrurba
only tracker, information about the pose of the camera and environment

the motion of the feature to improve the robustness of the 8 . .
SLAM algorithm and maintain a consistent estimation of both A different approach was presented by Bibby and Reid [8],
the pose, the map, and the features trajectories. Experimgain  introducing a technique called SLAMIDE, to combine the
simulated and real environments substantiate that the propsed  |east-squares formulation of SLAM and sliding window opti-
technique is able to maintain consistent estimations in a & jation, together with a generalized expectation maximiz
and robust way suitable for a real-time application, even in fi thod. Their idea is 1o i te both d . d
situations where classical MonoSLAM algorithms are deemed |on_me od. . e'r_' eaisto InCO_rporf_i € 0_ ynam!c_an
to fail. stationary objects into SLAM estimation, without splitin
the problem in two and considering the possibility of a

. INTRODUCTION reversible data association. Simulated experiments demon

The key prerequisite for a complete autonomous navigggrated the.capabilities_of the proposed solution, which is
tion system is a deep understanding of the surrounding Worﬁple to estimate, cons_lstently, the_pose a_nd the map also
as perceived by robot sensors. In Simultaneous Localizati(lf{; presence of dynamic feaiures in a unique framew_ork.
And Mapping (SLAM) literature it is possible to find many owever, as already demonstrated by Wang [7], the idea
solutions using different kind of sensors (i.e. lasers, e, of including all the features in the SLAM state reduces the

sonars) [1], but most of these algorithms assume a Staﬁ@rformance of the filter in terms of speed, highlighting the

environment or filter out the dynamic elements perceived iHrincip_aI drawback of SLAMIDE: the complexity.
the scene [2]. A different approach was proposed by Ess et al. [9],

Although the proposed approaches are effective, they apho presented a mobile system based on a stereo camera

often expensive or complex and not usable for real applicé{\fit;]d;r mﬁgraées dC(t)nt't?ur?utS \gsuill oddomter;[na C(i)r:npu.tfatlon
tions. For this reason, in this paper, we focus on solutio acking-by-detection, 1o track pedesirians in syte

based on a single camera, a small and inexpensive dev ggauent occl_usiqns and_ egomotion_ of the camera Tig- This
that allows to have rich information about the environmen ethod obtains interesting results in very challenging sce

perceived. In the last years we assisted the proliferapn [narios, put it is_not a 93’?9”° SOIUti.On. since it conside_ﬂs on
of systems based on a single camera that are able to sim ﬁdgstrlan/vehlcle_trackmg, gnd It 1s not computayqna_ll
taneously localize themselves in real-time [4], buildifg 3 ga3|ble fora rObO.t'CS appllcat|on._ Moreover, no map 'éftpu'
maps of huge environments [5] and placing virtual elementince the system is based on a visual odometry, thus it is not

in the scene [6]. However, as their precursors, they assurﬁgsfl'bletto_hatve enlough |nfformat|ontabout the enr\]/_lr?nment
again a static environment. o allow trajectory planning for an autonomous vehicle.

In this paper we want to demonstrate that it is possible to .An a.pproach requiring less compl_JtatlonaI resources, but
relax the world motionless hypothesis, proposing a methosciIII using a stereo camera, was introduced by Sola et
' . [10], who described a system based on a framework called

to estimate online the 6 DoF of a camera and the 3D ma@z .
ICamSLAM, that combines the advantages of the monoc-

in presence of generic dynamic objects. . . -
. o ular reconstruction with the advantages of stereo visian. |
A first remarkable work on this direction was done by,

: is proposal, Sola tries to solve the SLAMMOT problem
Wang et al. [7], who proposed a mathematical frameworltgstimating, at the same time, the position of the robot, the
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sorrenti}@isco.unimb.it . _ _ the tracking one, adopting a camera-centric representatio

M. Matteucci, R. Rigamonti and D. Migliore are with Politec- . . . .

of the world and using a different filter for each moving

nico di Milano, via Ponzio 34/5, 20133, Milano, ltglyatteucci, ) g™ h ) ) i
mgliore}@let.polim.it object, dropping in this way objects crosscorrelationshwit



Prediction

Y

dynamic, avoiding in this way inconsistencies in the SLAM
process.
The system we propose relies on two main assumptions.

Since we do not have any odometry measurement (i.e., we
do not have an IMU), we need an absolute reference to
7 understand how the camera and the feature are moving.
Therefore, before perceiving dynamic features, we il
the SLAM filter with a set of static features in known position
(to estimate the scale), obtaining a first estimation of the
camera pose w.r.t. the world frame. Moreover, to ensure con-
sistent estimation and correct features classificationndur
the whole execution of this system, it is important to have in
the image and in the SLAM filter state enough static features
to maintain an estimation of the absolute reference frame.
Under these assumptions, that could be easily relaxed
by the use of an Inertial Measurement Unit (IMU), new
features are initialized in the Shadow filter only. To avdid t
Fig. 1. Schema of the proposed SLAMBOT system. On the left aeh  corryption of the SLAM filter, these features are retaineit in
the SLAM filter that, as explained in [11], estimates the campose and the S . L .
position of the static elements in the scene by means of tHe fikdiction, until it is not possible to mark them as static, in which case
data association and update steps. The last pose estimatére ISLAM  they are passed to the SLAM filter, or dynamic, in which
filter is then used by the the Shadow filter to identify dynaife&tures and ¢gge they are kept in the Shadow filter and tracked along
estimate their trajectories. Once a feature is classifiesta®, it is added .
to the SLAM filter. their movements.
The MonoSLAM algorithm used in this work is the same
proposed by Marzorati et al. [11], thus we avoid to explain
the robot’s pose. here how this algorithm works, focusing, instead, on the
In this paper, starting from the Sola idea, a viable sofutiodescription of the Shadow Filter side of the system and its
to the online monocular SLAM with moving objects trackinginteraction with the SLAM filter. However, it is simple to
is proposed. The goal of our method is to obtain a consistefgtice that the method proposed is independent of the SLAM
map of the static environment, discriminating betweericstatalgorithm used, since the only information exchanged age th
and dynamic objects and being able at the meantime €&mera pose and the feature positions.

roxim he traj ri f the moving f res.
approximate the trajectories of the moving features IIl. DYNAMIC FEATURES TRACKING

As explained before, we propose to use a Bearing Only
Tracker, the “Shadow Filter”, to estimate and classify then

Simultaneous estimation of pose and map based on th&ytures perceived. Once we know the camera pose from the
analysis of images perceived by a moving observer is n@jj AM filter, to estimate the position and the velocity of a

contains dynamic elements that might affect the consigtengnaracterized by the following state:

of the estimates, leading to failure in the traditional SLAM

algorithm. In the monocular case, this hindrance is wordene

by the reconstruction procedure that is often unable toctlete

the dynamic behavior of a feature because of the high initial c T

uncertainty associated with it [4]. wherex* = (vy,yy, 2r, wy)" are the feature homogeneous
A possible solution was proposed by Wang et al. [7], undeoordinates at timé w.r.t. the camera framé’, andvy: =

the assumption that moving objects do not carry informatiof?’s.  vs, vs.)" is its velocity w.r.t. the feature framej.

about the map and the robot pose: he did not considerAt each step we have to maintain the reference of the

them as references for localization because of their imttereShadow filter always w.r.t. the camera frame, thus we need

instability [10]. Exploiting this insight, we decided tolgp !0 roto-translate the feature position and rotate the vigloc

the estimation process over two filters reciprocally relatevector before the update step. Assuming constant velocity,

(see Figure 1): the SLAM filter based on monocular camefé€e can write the motion equation as:

(MonoSLAM), that uses static features to estimate map and l Cri1 ] l Crs1
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camera pose, and the tracker, named in this paper “Shadow, ,, = ?};fl Xo, OXp @ (ka+1At)

Filter”, that, by knowing the camera pose, deals with the Fri1
moving features in the environment. The role of the Shadow  Char _ )

Filter is twofold: on one side, it tracks the behavior of theVhere: x¢, ™" is the roto-translation between the camera
moving features, on the other, it retains the new featurd®sesCy and Cy11, x5 is the feature position w.rt. the

detected by the camera until it can tag them as static 6rmera pose at time, vi*  is the velocity of the feature



at time k + 1 w.r.t. the feature framéd, v§: the velocity camera poses. If these intersections are not the same during
of the feature at time: w.r.t. the feature frame, x?m the camera motion or it does not exist, then the feature can

is the rotation from the frame reference at tirheto the be classified as dynamic.

frame reference at timé - 1 and @ is the transformation However, in real world, where the moving sensor returns
composition operator. Notice that the state of the featuténcertain bearing-only measurements, the previous task is
is somehow represented in a mixed frame of reference ot trivial to solve, since the presence of the uncertainty
simplify the motion model: its position is in the cameracould affect all the geometric reasoning. To take into aatou
frame, while its velocity is in the feature frame (i.e., thethe uncertainty associated with each measurement and each

camera reference translated in the feature point). estimate, we need to introduce a probabilistic framewoak th
The measurement equation in homogeneous coordina@$Wws us to check the relationships between the viewing ray
can be written as: in an uncertain world: Uncertain Projective Geometry [15].
Iy psing thig framework we can_describe, combing, and
hy, = h;: _ ngk, 3) gstlmate various types of _geo_metrlc e_Iements;_ (3D points, 3_D
hky k lines and 3D planes) maintaing the information about their
? uncertainty. By the use of Uncertain Projective Geometry,
whereM is the calibration matrix: these elements are represented using homogeneous vectors
feo 0 cey (using the Pluicker coordinates for lines) with their cdsmace
M = 0 fe, ccy |, (4) matrices, and simple bilinear expressions to represent joi
0 0 1 and intersection operators are used. This result can be

tained by using two construction matric&3(-) (for 3D
es) andII(-) (for 3D points and 3D planes).
To join two 3D pointsX = (X1,Yy, 21, Wi)T, Y =
hy = { hie, } [ P, [Tk } i (5) (Xo,Ys, Zo,Wo)T into a 3D line L expressed in Pliicker
hy, Bk, [ k. coordinates [15], we can write:
For the experiments shown in this paper we used a camera
with a wide-angle lens, to improve the performance of single
camera SLAM [12], thus the measurement equation shouftking
be modified accordingly to take into account the radial
distortion, as exposed in [11]. Finally, to estimate itmely
the current positiohof the feature, we just need to compute 0 Wi 0 -
the Jacobian of these models and apply the classical steps Qi(X) — IX NIY - 0 0 Wi -z
the Extedend Kalman Filter. oY 0 -z N 0
This approach allows us to have an approximated estima- Z 0 —X 0
tion of the feature pose and, in this way, make inference X 0 0

and the pixel coordinates on the image plane can be simq
obtained as !

L=XAY =IX)Y, (6)

Wi 0 0 -Xi

. @)
about its movements. Again we can join a 3D poinK = (X1, Y1, Z1, W1)T with
A. Detecting moving features a 3D lineL = (Ly, Lo, L3, Ly, L5, Lg) into a 3D planeA:

To guarantee the correct functioning of the SLAM algo- A=XAL=0(L)X ®)
rithm, we need to classify new features as dynamic or static ’
before using them to estimate the camera pose and the map. 0 Ly —Lo —14
The first time we perceive a feature, we do not know where (L) = OXANOL | =Lz 0 Ly —Ls
it is located in the 3D scene, thus we initialize it with a T9xX Ly —1I4 0 —Lg
huge uncertainty in the depth. In the next frame, once the Ly Ly Lg 0
feature is associated with a measurement and then updated, 9)

its position changes, moving along the projection ray anihese construction matrices are useful tools to derive new
possibly causing the estimate of false motion. For thisaras geometric entities from known ones, e.g. a 3D line from
we can not rely the velocities estimated in the Shadow Filtéwo 3D points, a 3D point from the intersection of two 3D
and we need a more robust classifier. lines, etc.; at the same time, being bilinear equationsethe
Referring to the viewing ray as a straight line and to th@perators directly represent the Jacobian of the trangtorm
position from where the feature was viewed the first timetjion which is used for the uncertainty propagation in the
we can make a geometric reasoning, based on an appro&emstruction process.
that resembles the epipolar constraint. The basic idea is toA new entity z can be estimated from two entitiesand
check continuously the intersections between three vigwiry, with a simple matrix multiplication:

rays belonging to the same feature viewed in three different
z=[f(z,y) =Ulx)y =V(y)z, (10)
INotice that this filter can estimate the trajectories of thavimg points . -
up to a scale factor [13], however it is possible to overcohig drawback where U(x) and V(y) ar_e’ at the same t_lme’ the t_)'l'near
initializing the correct scale in the first frame, as showed1i4]. operators and the Jacobian of thandy entity respectively.



Assuming the entities to be uncertain, the p&irs>,,) and

(y, Xyy), and possibly the covariancés,, betweenz and l
y, are required for computing the error propagation as: ' T
(Z, Zzz) — (11) ‘ Camera

(vem oo (3 5 )| bl )

Ty vy

and in case of independence between x and y we obtain:
(2:822) = (U(@)y, U() Sy, UT (2) + V(1) S0V () - (12)

To check the geometric relationship between two geometric
entities it is then possible to use a statistical test on tke d
tance vectot defined using the previous bilinear equation. In

particular a relation can be assumed to hold if the hypaghesfig. 2. In this image we show the trajectory of the camera (#eg) and
of the feature (in red), simulated to test the capabilitiethe Shadow filter.
Hy:d= U(;p)y = V(y)x =0 (13) Inblue itis possible to see the accuracy of the estimatedipogthe small

image represents the projection of the same scene on the até)pl

cannot be rejected. Notice that the hypotheSis can be

rejected with a significance level of if Ertor estimates for X.Y and Z
101
T=d"Syd>cn=Xi_an (4 L
’ s oF
To perform the test, we need to fix the probabilitythat sf
we rejectH, although it is actually true and this situation 0 100 200 30 400 S0 GO 700 GO0 900 1000
is called Type-I error. The probability is usually a small 02p
number such as% or 5% and it is called significance level of g UL
the test. The critical valuey such thatP(T" > ey |Hp) = « s e
is given by the(1 — «)-quantile of they? distribution. It is B T S S e
crucial to note that a successful hypothesis Tést ¢ does Time

not validate thatf is true, it merely states that there is not

enough evidence to rejeéi,. h s
. . . . . " /M/\/\/
The covariance matrix. of d is given by first order ~" T N
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Sag = U(2)Sy, UT (@) + V() Sea VT (1)

In general¥,, may be singular, ifd is an X 1 vector,r  Fig. 3. Consistency test for the Shadow filter. In the plots shew
is is the degree of freedom of the relatidhandr < n. the estimation error (in green) for the, y, » coordinates of the feature

The singularity Causes a problem, as we have to invert UEEPECtey. 1 s peser g fhssnor r e coants e
covariance matrix. But, at least for projective relatiahsan  emains consistent.
be guaranteed that the rank Bfj; is not less than (see
Heuel [15] for more details).
unfeasible for accurate tracking. This drawback is prialtyp
IV. EXPERIMENTAL RESULTS due to consecutive violations of the observability coraig.

In this section we want to test the capabilities of outn fact the displacements between two consecutive steps
system, verifying the result of dynamic classification amel t are so small to cause the partial unobservability of the
consistence of the estimated position and map. Beforegryimomogenous part of the feature and a consequent increase
the algorithm with real data, we verified the consistencef the uncertainty associated to the depth component. This
of the Shadow filter, testing it in a simulated frameworksimple analysis gives us information about the quality and
in which a moving camera was put inside an environmerthe accuracy of the estimates, but also provides an imgortan
where another dynamic element is moving in the scene (s@®sight: the observability condition can be easily viothte
Figure 2 for a reference). At each time the correct camemn online MonoSLAM application.
position is passed to the Shadow filter and the trajectory Although we can not localize accurately the moving
of the feature is estimated. As it is possible to notice fronobject, the consistency of the filter demonstrates the ilid
Figure 3, the estimate remains consistent during the whotd the reasoning based on the uncertainty geometry approach
process. The uncertainty associated to the depth cooedinétotice that the errors is always included in th8c uncer-

(in the case of the experiment this can be identified witkainty interval) and it proves that, taking into account the
the X coordinate) is higher than the uncertainties associategtimate uncertainty, we can robustly classify a feature as
to the other coordinates, making the Shadow filter estimatagatic or dynamic.
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Fig. 4. Static/Dynamic classifier results. In the first rovisipossible to see an example of dynamic (in green), statibl(ie) classification. The features
in the Shadow filter that are waiting for a classification dreveed in red. In the last row we can see a feature erroneoiaggified as moving. This kind
of error is expected since the classification is based on bapitistic test with a threshold ¢f5%.

This statement can be validated by testing the classifiéne resulting map obtained introducing the Shadow filter. It
algorithm on real datasets. In Figure 4 it is possible t@s also possible to see how a traditional SLAM filter, that
see two examples representing both a correct and a wrodges not identify and exclude from estimation the dynamic
classification. We have tested the algorithm using many refdatures, introduces a set of errors that lead to failure. If
datasets and we noticed that, if the feature is correctlye correctly identify the dynamic features, we can avoid
matched, the algorithm always distinguish between movin initialize them inside the SLAM filter, maintaining the
and static features. Sometimes it is possible to have & statame accuracy of a SLAM system operating in a purely-
feature classified as dynamic (see again Figure 4(c) 4(dptatic environment. In Figure 6 it is possible to see the
but it never happened to confuse a moving feature as statiesults obtained using the real dataset. Despite the presen
Albeit the probabilistic test has an expected failure rdte af dynamic features that could affect the SLAM algorithm,
the 5%, this contingency happened rarely in our experimenthe estimated map remains consistent and, when the camera
(see again Figure 4(c) 4(d) for an example) and, since it dopsrceives again the checkerboard, the features are rérethtc
not corrupt the SLAM filter, it can be tolerated. correctly, closing the loop.

Finally we were interested in verifying that our system V. CONCLUSIONS AND FUTURE WORKS

is able to improve the estimates quality when there are In this paper we have proposed a novel solution for the
dynamic features in the environment. For this purpose wgroblem of Simultaneous Localization, Mapping and Moving
set up a simulated 3D environment characterized by featur@bject Tracking, when using a single camera as a sensor.
both static and dynamic. Data association was performd&@ avoid errors in the SLAM estimates, we demonstrated
manually to avoid possible errors due to mismatches antat it is possible to identify online the static and dynamic
to evaluate the quality of the pose and of the estimated mdgatures, using an approach based on the Uncertain Geometry
against a ground truth. In Figure 5 it is possible to see theroposed by Heuel [15], that allows to detect the moving
improvements carried by the use of the Shadow Filter. In thieatures with a simple statistical test. The experimental
first plot (Figure 5(a)) it is possible to see the map resgltinresults confirmed the capabilities of this approach that can
from the use of the classic MonoSLAM algorithm using onlybe used online in real application and, potentially, with
the static features. In Figure 5(b) it is shown the resulisgis any MonoSLAM algorithm with performances that allow
always the classic MonoSLAM, but this time introducingonline execution, since it does not require any particular
the dynamic elements, and in the last image (Figure 5(ciodification of the original SLAM algorithm.
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Fig. 5. In this image we show the estimated map when we have arIZ]
environment containing moving feature, using the MonoSLAKbposed
in [11] (b) and using the MonoSLAMBOT approach (c). This fesian : : p P
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