
CI-Graph: An efficient approach for Large Scale SLAM

Pedro Piniés, Lina M. Paz, Juan D. Tardós

Abstract— When solving the Simultaneous Localization and
Mapping (SLAM) problem, submapping and graphical methods
have shown to be valuable approaches that provide significant
advantages over the standard EKF solution: they are faster
and can produce more consistent estimates when using local
coordinates. In this paper we present CI-Graph, a submapping
method for SLAM that uses a graph structure to efficiently
solve complex trajectories reducing the computational cost.
Unlike other submapping SLAM approaches, we are able to
transmit and share information through maps in the graph in a
consistent manner by using conditionally independent submaps.
In addition, the current submap always summarizes, without
further computations, all information available making CI-
Graph be an intrinsically “up to date” algorithm. Moreover,
the technique is also efficient in memory requirements since it
does not need to recover the full covariance matrix. To evaluate
CI-Graph performance, the method has been tested using a
synthetic Manhattan world and Victoria Park data set.

I. INTRODUCTION

Essential tasks in mobile robotics strongly rely, not only
on a precise estimation of the robot location, but also, on
an accurate map estimate of the surrounding environment.
Simultaneous Localization and Mapping algorithms (SLAM)
confront both problems in a single estimation process. The
first consistent solution proposed was based on the Extended
Kalman Filter (EKF) [1], [2]. However, an standard imple-
mentation of the algorithm suffers from memory and time
complexities of O(n2) per step, where n is the total number
of features stored in the map. To reduce the computational
cost, new algorithms take profit of the fact that SLAM is a
sparse problem, i.e., from a given robot position only a lim-
ited number of features is visible. If all features were always
visible then no algorithm could overcome the computational
complexity of the EKF solution since the linearized system
to be solved would be completely full.

Submapping strategies have become interesting ap-
proaches since they work in small regions of the environment
reducing the computational cost of EKF and improving
consistency. Under the assumption of white noise and if no
information is shared between maps, submaps are statisti-
cally independent. This allows submaps to be consistently
joined using Map Joining algorithm [3] or equivalent Con-
strained Local Submap Filter (CLSF) [4] with joining cost
O(n2). More recently, Divide and Conquer SLAM [5] has
shown to provide a more efficient strategy to join local maps
with amortized linear cost in exploration, outperforming past
sequential methods. Despite its high scalability, the main

Pedro Piniés, Lina M. Paz, Juan D. Tardós are with the Departamento
de Informática e Ingenieria de Sistemas, Centro Politécnico Superior,
Universidad de Zaragoza, Zaragoza, Spain {ppinies, linapaz,
tardos}@unizar.es

limitations of these techniques are their inability to share
information between maps and a memory cost of O(n2).

There are submapping techniques that work on approxi-
mations trading off precision for complexity properties [6].
Some of these techniques combine submaps with a graph
structure that represents adjacency relations between maps.
In ATLAS [7] and CTS [8] for example, nodes of the graph
correspond to submaps and links between nodes represent
relative locations between adjacent submaps. However, in
order to achieve high efficiency, they do not impose loop
constraints to update the graph estimation. Hierarchical
SLAM [9] outperforms these approaches by introducing an
optimization step along the cycles of the graph. Nevertheless,
it still remains as an approximate algorithm since optimized
information is not transmitted to submaps.

In contrast to EKF-based approaches, there is a family
of algorithms that considers the full SLAM problem in a
Smoothing and Mapping (SAM) sense. Graph SLAM and
Square Root SLAM [10], [11], report that the intrinsic
structure of the problem can be modeled as a sparse graph
(obtained from the sparse information matrix) when the
state vector is augmented with the total trajectory. The main
problem of these techniques is that they continuously grow
with the number of robot poses.

Based on EKF, Graphical SLAM [12], builds a compressed
graph of all robot and features poses as nodes. However,
special cases as loop closings need particular manipulations.
Treemap [13], is based on creating a balanced binary tree
structure of the map. The technique uses a detailed graph
granularity to construct the tree, where leaf nodes represent
each map entity (current robot and feature locations) result-
ing in a very complete but complex graph algorithm.

In this work we are interested in methods that do not use
any approximations. We consider the SLAM problem as a
Gaussian Graph model that evolves over time. We propose
CI-Graph SLAM based on [14], a submapping method that
performs EKF updates efficiently reducing its quadratic cost.
Unlike other non-approximated submapping approaches [3],
[4], CI-Graph SLAM builds a spanning tree of conditionally
independent submaps, that allows us to transmit information
between submaps in a consistent manner. Compared to batch
algorithms [10], [11], CI-Graph does not require to augment
the state vector with the full trajectory. Instead, only robot
poses corresponding to map transitions are considered. In CI-
Graph, the nodes do not represent each element of the map
but the CI-submaps. This results in a graph with high level
abstraction of the map that allows a simpler implementation.

Section II is devoted to review conditionally independent
submaps and describes their advantages. CI-Graph approach

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 3913

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 21, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

is presented in section III. We evaluate the method using a
synthetic Manhattan world and Victoria Park data set. Their
results are described in section IV. In section V we discuss
concerns related to the construction of the map spanning tree.
Finally, we summarize the main advantages of our method
in section VI and draw future lines of work.

II. CONDITIONALLY INDEPENDENT (CI)
SUBMAPS

In submapping algorithms, instead of dealing with a single
total map of an environment, the whole map is divided into
groups of state vector entities (features and/or vehicle poses)
that are processed separately. We call absolute submap,
to a map that is expressed in a global coordinate frame
while a local submap is a submap whose elements are
represented with respect to a local reference frame. Most
recent submapping techniques are based on building local
maps of limited size that are statistically independent [3],
[4], [15], [5]. This requirement imposes important constraints
to the submaps structure. Valuable information present in a
submap cannot be used to improve other submap estimates
since, otherwise, the independence property could not be
preserved. In addition, same environment features observed
in different maps have independent estimations in each map.

Instead of using independent submaps, our CI-Graph
SLAM approach is based on building conditionally indepen-
dent CI-submaps. The previous technique was presented in
[14] and allows CI-submaps to share submap components
and information in a consistent manner. Using absolute
submaps, the final map obtained is the same as with the
classical EKF-SLAM algorithm. If local submaps are used
better consistency properties than the EKF can be achieved.
While techniques based on independent submaps preclude
the use of inertial sensors or sensors that give absolute
measurements such as GPS and compass, our method can
easily use these devices by propagating the information
through CI-submaps without approximations. At the same
time, CI-submaps inherit the computational efficiency of
submapping techniques that, taking into account a subgroup
of the map elements, can work with covariance/information
submatrices of limited size.

The technique presented in [14] is restricted to sequences
of maps forming simple topologies such as single loops.
Even though it has been successfully tested in large envi-
ronments, the generalization to more complex topologies in
which the CI property between maps still hold is not trivial.
The purpose of this paper is to develop a new algorithm that
extents the properties of the CI-submaps to more complicated
trajectories. In order to facilitate the explanation, we will
work for the rest of the paper with absolute submaps, al-
though local submaps can be used as well with the technique.

A. Brief CI-submaps review

Figure 1 shows a Bayesian Network that represents the
stochastic dependencies between a pair of CI-submaps, x1

and x2, that have been built sequentially.

Submap 1 Submap 2

x
A

x
C

x
B

z
b

z
a

Fig. 1. Bayesian Network that describes the probabilistic dependencies
between CI-submaps.

We define the state vectors of the submaps by:

x1 =
[

xA

xC

]
x2 =

[
xB

xC

]
(1)

where xA represents state components that only belong to
the first map, xB is for elements exclusively included in
the second submap and xC represents features and vehicle
states that are shared in common between both. Notice that
common elements xC are replicated in x1 and x2. This
division of the stochastic state variables can be done in
SLAM because it is a sparse problem (features are locally
observable).

In figure 1, we can also observe that the only connection
between the set of nodes (xA, za) and (xB , zb) is through
node xC that, according to Bayesian Network theory [16],
means that both subgraphs are d-separated given xC . This
in turn implies that the components of the submaps are
Conditionally Independent (CI) when xC is known:

p(xA|xB ,xC , za, zb) = p(xA|xC , za)
p(xB |xA,xC , za, zb) = p(xB |xC , zb) (2)

It is precisely by means of the common elements between
maps and the CI Property that we can easily transmit
information between map pairs at any time with no approx-
imations. Suppose now that during the sequential creation
of submaps x1 and x2, the first submap x1 was built
using observations za whereas for x2, in addition to za

measurements, new observations zb were taken into account.
Assuming Gaussian distributions for the map states we have:

p(xA,xC |za) ∼ N
([

x̂Aa

x̂Ca

]
,

[
PAa

PACa

PCAa
PCa

])
(3)

p(xC ,xB |za, zb) ∼ N
([

x̂Cab

x̂Bab

]
,

[
PCab

PCBab

PBCab
PBab

])
(4)

where the lowercase subindexes in the estimates xBab
and

xCab
reveal that both sets of observations za and zb have

been used in the estimation process.
Notice that map x1 is ’out of date’ with respect to map

x2 since the influence of new observations zb is not included
in the estimate. In order to update submap x1 information
from x2 has to be transmitted. The operation of transmitting

3914

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 21, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

information is called back-propagation where ’back’ means
propagation from the updated to the out of date map. To
update submap x1 we only need to recalculate the state
vector and covariance matrix of those elements related to
xA. The back-propagation equations are given by:

K = PACaP−1
Ca

= PACab
P−1

Cab
(5)

PACab
= KPCab

(6)

PAab
= PAa

+ K(PCAab
− PCAa

) (7)

x̂Aab
= x̂Aa

+ K(x̂Cab
− x̂Ca

) (8)

Observe that to update the first submap we only need the
mean and covariance of the common elements x̂Cab

and
PCab

from the second submap. We can also calculate the
correlation between non-common elements of both maps xA

and xB by:
PABab

= KPCBab
(9)

III. CI-GRAPH ALGORITHM DESCRIPTION

In order to work with complex topologies, the algorithm
proposed is based on building an undirected graph of the
CI-submaps. An undirected graph is defined as a pair G =
(N , EG) where N are the nodes of G and EG are its
undirected edges [17]. In our graph, N is the set of CI-
submaps mi with i = 1 . . . N . An edge connecting two
nodes is created either because the robot makes a transition
between the corresponding submaps or because being the
robot in a submap, it observes a feature that belongs to the
other submap.

In addition, the algorithm builds a spanning tree T (N , ET)
of the graph G, where ET ⊂ EG . A spanning tree T of
a connected undirected graph G is defined as a subgraph
of G which is a tree (it contains no cycles) and connects
all the nodes. Our algorithm ensures that, by construction,
any pair of submaps (mi, mj) that are adjacent in T have
a conditionally independent structure as shown in figure
1, sharing some vehicle and feature states. Each edge in
ET will be labeled with the corresponding shared states.
Given any pair of submaps, mi and mj , there is a unique
path in T connecting them. This path allows us to transmit
information from map to map without loosing the conditional
independence property between submaps. In all graph figures
of the paper, spanning tree edges ET will be depicted using a
continuous line while the remaining edges of G, i.e. EG\ET ,
will be traced with a dashed line.

Two operational levels can be distinguished in the algo-
rithm. Local operations that are only applied to the current
submap mi, and graph operations that are performed through
the graph involving at least two submaps. Most of the time,
the operations carried out when the robot moves inside a CI-
submap are local operations corresponding to standard EKF-
SLAM equations. Graph operations are more sporadic and
can be considered as the interface between CI-submaps. In
the following subsections, the graph operations are explained
in detail as presented in Algorithm 1.

Algorithm 1 : CI-Graph SLAM

z0,R0 = getObservations
m0 = initMap(z0,R0)
[G, T] = initGraph(m0) {G(N = m0, EG = ∅)}
i = 0 {i for current submap}
for k = 1 to steps do

uk−1,Qk−1 = getOdometry
mi = ekfPrediction(mi,uk−1,Qk−1)
zk,Rk = getObservations
DAk = dataAssociation(mi, zk,Rk)
if revisiting mj then
{Subsection III-C}
for 〈mk,ml〉 in path(mi,mj) do

backPropagation(mk,ml)
copyRobot(mk,ml)

end for
addEdge(〈mi,mj〉, EG\ET)
i = j {Map change}

else if newMap mj then
{Subsection III-A}
addNode(mj ,N)
addEdge(〈mi,mj〉, ET)
copyRobot(mi,mj)
copyActiveFeat(mi,mj)
i = j {Map change}

end if
if reobserved f �∈mi & f ∈mj then
{Subsection III-B}
for 〈mk,ml〉 in path(mj ,mi) do

copyFeat(f ,mk,ml)
end for
addEdge(〈mj ,mi〉, EG\ET)

end if
mi = ekfUpdate(mi, zk,Rk,DAk)
mi = addNewFeatures(mi, zk,Rk,DAk)

end for
{Subsection III-D}
updateAllMaps(mi, T) {Updates T starting from mi}

A. Starting a new submap

Suppose that robot is in submap mi and we decide to start
a new submap mj . The steps followed in the algorithm are:

• Add mj to N
• Add edge 〈mi, mj〉 to ET
• Copy robot pose and last seen features from mi to mj

In fact, the robot pose is copied twice in submap mj .
The first copy will represent the current robot position which
changes as the robot moves through the new map. The second
copy will represent the initial position of the robot when it
entered the map. This initial pose remains fixed as a common
element with map mi.

An example can be seen in figure 2. At time k2, submaps
m1 and m2 have been already explored and a new submap
is being created m3. Nodes m1 and m2 share in common a
robot position Rk1 and a feature f4. Submap 3 is initialized

3915

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 21, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

f1

f2
f3

f4

f5

f6

f7

f8

f9

1 1 12 2 2

33 4

map1 map2 map1 map2 map3

t = k - 13 t = k 4
f1

f2
f3

f4

f5

f6

f7

f8

f9

t = k 2
f1

f2
f3

f4

f5

f6

f7

f8

f9

3

map3 map1 map2 map3 map4

Fig. 2. Example using CI-Graph SLAM. The figure is divided in three rows that show information about the state of a simulated experiment at three
different instants of time (columns). In the first row, the map of the simulated environment with the current robot position is shown. In the second row, the
graph of relations between submaps will be created according to the state of the estimation. In the last row we will show the state vectors of the estimated
submaps at different moments of time.

with robot Rk2 and feature f6 from submap 2.

B. Re-observing a feature from a different map

This situation occurs when the robot is at submap mi and
observes for the first time a feature that is already included
in a previous submap mj . The process followed is:

• Copy the feature from mj to mi along all nodes of the
path in T

• Add 〈mj , mi〉 to EG\ET
If 〈mk, ml〉 ∈ T represents an edge in the path, to

copy the feature from mk to ml, the feature is first updated
with the information contained in ml using back-propagation
equations (5-8) and the correlations with the elements of ml

are calculated with equation (9).
Figure 2 at time k3 − 1 shows an example of this case.

Feature f3 that belongs to submap m1 is measured by the
robot when it is traversing submap m3. Since edge 〈m1,

m3〉 �∈ T , f3 is transmitted along the path 〈m1, m2〉, 〈m2,
m3〉 that connects both nodes. Observe that the feature is
replicated in all intermediate nodes. Finally, edge 〈m1, m3〉
is included in EG\ET .

C. Revisiting a previous submap

When the algorithm detects that the robot revisits an
already traversed area mj , the transition from the current
submap mi to mj is as follows:

• Update all nodes in the path from mi to mj

• Copy the current robot pose along all nodes of the path
• Add 〈mi, mj〉 to EG\ET
As in the previous subsection, to update submaps in

the path we use the back-propagation equations (5-8) and
to copy the current robot pose, correlations with submaps
elements are calculated with equation (9).

3916

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 21, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

Figure 2 at time k4 shows an example of this operation.
When the robot makes a transition between submaps m4 and
m1, current robot position Rk4 is replicated along all nodes
that are in the path, i.e., along m3, m2 and m1. Finally, edge
〈m4, m1〉 is added to EG\ET and submap m1 becomes the
current map.

D. Updating all maps from the current submap

Using the Graph operations just described, we can assure
that the current submap is always updated with all available
information. In addition, the CI property between submaps
is preserved. An interesting property of the back-propagation
equations is that they can be applied at any moment. They
work correctly even if we back-propagate twice the same
information: the terms inside the parentheses in equations
(7,8) will be zero and the maps will remain unchanged.
This allows us to schedule the back-propagation in moments
with low CPU loads, or when graph operations are required.
If the whole map has to be updated, the back-propagation
equations are recursively applied starting from the current
node and following the spanning tree T .

IV. EXPERIMENTS AND RESULTS

CI-Graph SLAM has been tested using a simulated envi-
ronment that emules a Manhattan World, as the one proposed
in [11], with 2420 point features lying on the walls of a
11 × 11 matrix of building blocks. For this 2D example,
the total space is divided in submaps using a grid cell.
When the robot crosses the border between two cells for
the first time a new submap is initialized. If the arriving
cell has already been traversed we consider that a previous
submap is revisited. The actual size of each submap, is
not limited to the number of features content in a cell
but to the number of features that are observed from it.
For more general situations, 3D environments with complex
topologies and different kind of sensors such as cameras,
the decision to start a new submap can be based on the
maximum number of features allowed in a a map, to limit
computational complexity, or on a maximum value for the
uncertainty of the robot position, to improve the consistency
of the result.

In the Manhattan environment, the vehicle performs a
randomly chosen trajectory of 1600 steps of 1m. Fig. 3 top,
shows a smaller 5× 5 example to give the reader an idea of
the experiment. Each time the vehicle reaches a block corner
(circles), a control input is applied randomly. This kind of
motions allows the robot to perform any trajectory: the robot
can move from one map to its neighbor and performs any
large loops. The motion model noises are assumed to be
gaussian with respectively σxy = 0.05m and σθ = 0.3deg
standard deviations in position and orientation. As the robot
moves, the graph of CI-submaps is created on the fly. Fig.
3 bottom, shows an example of the resulting spanning tree
with nodes numerated in the order they were created.

In this simulated experiment, Monte Carlo runs are par-
ticularly suitable to evaluate the CI-Graph SLAM efficiency.

0 10 20 30 40 50

0

10

20

30

40

50

x position (m)

y
po

si
tio

n
(m

)

 1 2

 3 4

 5 6 7

 8 9

10 11 12

1314

1516

17 18

19

2021

22 23

2425

26

27 28

29

30

31

32

33

34

3536

Fig. 3. CI-Graph SLAM execution on a Simulated environment of a 5×5
matrix of building blocks of a Manhattan World (top). The environment is
divided up into 36 submaps (nodes) using a cell grid. The darker-red line
represents the estimated trajectory. Ellipses also shows the estimated feature
uncertainties. The final CI-Graph contains direct links (continuos lines) that
forms the spanning tree between nodes (bottom). Indirect links are shown
in dashed lines such that their represents mutual information seen between
adjacent nodes. Thus, there exist a path formed by direct links through
which the information can be transmitted.

We ran 300 samples of our algorithm implemented in MAT-
LAB on a Pentium IV at 2.8GHz. Note that each sample
represents a different random trajectory and so, a different
spanning tree. For the same reason, the number of total
mapped features varies although the environment remains
unmodified. Fig. 4 shows the mean running time per step.
We can see that, for this kind of environment, the algorithm
presents a close to linear running time.

We have also tested CI-Graph SLAM on Victoria Park
data set as it is considered a benchmark for most of
the relevant approaches previously mentioned in section I.
Additionally, Victoria Park data set suits well due to its
complex trajectory topology. As in the Manhattan World
we use a grid cell to divide the space in submaps. Fig. 5

3917

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 21, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

 1 2

 3 4 5

 6 7

 8 9

10 11 12 13

14

15

16

17

1819

20

21

22

23 24

25 26

27

28 29

3031

32

33 34

35 36

 1 2

 3 4 5

 6 7

 8 9

10 11 12 13

14

15

16

 −CI-Graph trajectory
 −CI-Graph Feature
 uncertainties

 −CI-Graph trajectory
 −CI-Graph Feature
 uncertainties

Fig. 5. CI-Graph SLAM execution on Victoria Park data set. The robot traverses local regions across the environment (left). During exploration, only the
last submap is updated with all information available (top). At the same time, the spanning tree is being created with darker node as the current visited
submap (right). The final result is obtained after building 36 nodes (submaps) using 30m of resolution in x − y dimensions for our cell-grid (bottom).
The accompanying video video CIGraph xvid.mpg (high quality version available http://webdiis.unizar.es/∼ppinies/video CIGraph xvid.avi) shows
a slow execution of CI-Graph SLAM.

top, shows a partial result when the vehicle explores the en-
vironment with known data association. The accompanying
video video CIGraph xvid.avi shows an execution in
slow motion to visualize the CI-submaps building process.
At the same time, it is posible to see that information is
transmitted through direct links of the spanning tree when a
node is discovered or when any two nodes share information.
In addition, we ran EKF SLAM for comparison purposes.
Figure 7 top, shows the running time per step, pointing out
a constant behavior for the CI-Graph approach. Small peaks
in the plot (up to 0.16sec) represents the steps in which
CI-Graph performs propagation. At final step, CI-Graph
computes all optimum submaps propagating the information
in 0.12sec, one third of the time required for EKF SLAM

(0.37sec). The map obtained is exactly the same as EKF
SLAM with an absolute error difference of order 10−10

between vector estimates and of order 10−11 between esti-
mated diagonal covariances. The differences are mainly due
to numerical errors rather than estimation errors. The total
cost plot in fig. 7 bottom, shows evidence about the efficient
performance of CI-Graph SLAM as it is 6.5 times faster
than standard EKF SLAM. From fig. 7 top, we could point
out a constant behavior of the time per step. However it is
difficult to establish this as an insight since the environment
presents a disperse feature distribution. The accompanying
video video CIGraph EKF xvid.avi shows both algo-
rithm executions with same data association both running
at their corresponding execution times. A convex hull is

3918

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 21, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

steps

Ti
m

e
(s

ec
)

CI−Graph SLAM

Fig. 4. Average running time per step for 300 random runs in 11 × 11
Manhattan World experiment. The environment is mapped with total size
in a interval of n = 947 to n = 2199 point features. Also, for each run,
the submap size does not exceeds 200 features in average.

drawn around the current submap considering its vehicle and
features estimates while submaps already built are drawn in
soft color to see the covered total map. The final updated
result coincides with the final EKF map. Google Earh tool
is used to show map precision on a real image of the
environment (see fig. 6).

V. DISCUSSION

The price paid to maintain the conditional independence
between submaps is some overhead in the size of the maps.
We call overhead to all those elements of a submap that can-
not be observed from it, i.e., robot positions corresponding to
the transitions between submaps and features included in the
current submap because its node is in a path in T between
two nodes that share the features. For example, in figure
2 at t = k4, robot position Rk4 is an overhead element for
submaps 2 and 3. However features f3 and f4 are considered
as intrinsic features of submaps 1, 2 and 3 since they can
be observed from them. To reduce the overhead due to the
robot positions, relocation methods could be applied once the
submaps are well estimated. Regarding replicated features,
the overhead is clearly dependent on the spanning tree used
to transmit information through the graph.

Figure 8 on the left shows a graph with six submaps and its
corresponding spanning tree represented with a continuous
line linking nodes 5 − 4 − 1 − 2 − 3 − 6. Suppose now
that we are in submap 5 and we observe a feature in
submap 6 closing the loop. In order to maintain the CI
property between submaps, instead of directly closing the
loop introducing a continuous link between nodes 5 and
6 we indirectly close the loop by replicating the observed
feature along the submaps in the path between both nodes, as
was explained in subsection III-B. This has the drawback of
increasing the size of all the intermediate submaps increasing
the computational cost. A better alternative would be to
change the spanning tree to one with shorter loops as the

Fig. 6. Final Map obtained after running CI-Graph SLAM on Victoria
Park data set. The map is projected using google Earth tool together with
GPS data (white points).

example shown in Fig. 8 right. The new spanning tree has
better properties because common elements between nodes
linked with a dashed edge are only locally replicated. For
example, common information between nodes 3 and 6 is just
replicated in nodes 4 and 5. Therefore, in order to reduce
the overhead, it is more convenient to generate a spanning
tree with small loops between nodes connected with dashed
edges. It is important to point out that the estimated solution
obtained with any of the possible spanning trees is exactly
the same and, in case of using absolute submaps, identical
to the solution obtained with the EKF. The only difference
is that the overhead introduced by the replicated features can
be reduced and therefore we can improve the computational
behavior of the algorithm. A method to find a good spanning
tree for a given SLAM graph or how to online change a given
spanning tree to a better one is left as future work.

VI. CONCLUSIONS

In this paper we have presented CI-Graph, an extension
of the CI-submaps that allows us to efficiently solve com-
plex map/trajectory topologies reducing the computational
cost without approximations. CI-Graph models the SLAM
process as a Gaussian Graph that evolves over time. Nodes of
the graph correspond to CI-submaps and links between nodes
reveal submap relations due to either robot transitions or co-
visible features. This results in a high level abstraction graph
that allows a simple implementation. By building a spanning
tree of the graph we have shown that information can be
shared and transmitted from map to map without loosing the
conditional independence property between submaps.

3919

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 21, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

 Update
Time

steps

tim
e

(s
ec

)

EKF SLAM
CI−Graph SLAM

500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

300

350

400

450

500

steps

tim
e

(s
ec

)

EKF SLAM
CI−Graph SLAM

Fig. 7. CI-Graph SLAM vs. EKF SLAM running times.
Time per step (top). Last time value corresponds to the time
due to updating all submaps. Total execution time of EKF
SLAM vs. CI-Graph SLAM(bottom). The accompanying video
video CIGraph EKF xvid.mpg (high quality version available in
http://webdiis.unizar.es/∼ppinies/video CIGraph EKF xvid.avi) shows
that CI-Graph SLAM outperforms 6.5 times EKF SLAM. Additionally,
CI-Graph only requires one third of the time required for EKF SLAM to
compute the optimum map.

1

2 3

4 5

6

1

2 3

4 5

6

Fig. 8. A bad (left) and a good (right) spanning trees for the same graph.

One of the advantages of using CI-Graph with respect to
other approaches, is its ability to reduce memory require-
ments when exploring an environment as it does not need to
maintain all covariance matrix entries (correlation terms in
EKF SLAM). We have also shown empirically the efficiency
of CI-Graph SLAM to perform updates. In the presented
experiments, we have obtained a cost per step close to linear
time in the worst case. However, mathematical proofs about
computational cost bounds will be analyzed in future work. A
strategy to choose a good spanning tree to efficiently transmit
information will also be addressed in future research.

CI-submaps have already shown to be very suitable for
applications that involve the use of cameras in large envi-
ronments. Sharing well localized features and camera states
between CI-submaps gives much better results than starting
each new submap from scratch. In future work we expect to
proof that CI-Graph is a very powerful technique to solve
Visual SLAM in large and complex environments.

VII. ACKNOWLEDGMENTS

This research has been funded in part by the European
Union under project RAWSEEDS FP6-IST-045144 and the
Dirección General de Investigación of Spain under project
SLAM6DOF DPI2006-13578.

REFERENCES

[1] R. Smith, M. Self, and P. Cheeseman, “A stochastic map for uncertain
spatial relationships,” in Robotics Research, The Fourth Int. Sympo-
sium, O. Faugeras and G. Giralt, Eds. The MIT Press, 1988, pp.
467–474.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and
mapping: part I,” IEEE Robotics & Automation Magazine, vol. 13,
no. 2, pp. 99–110, 2006.

[3] J. D. Tardós, J. Neira, P. M. Newman, and J. J. Leonard, “Robust
mapping and localization in indoor environments using sonar data,”
Int. J. Robotics Research, vol. 21, no. 4, pp. 311–330, 2002.

[4] S. B. Williams, G. Dissanayake, and H. Durrant-Whyte, “An efficient
approach to the simultaneous localisation and mapping problem,” in
Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, Washington
DC, 2002, pp. 406–411.

[5] L. M. Paz, J. D. Tardós, and J. Neira, “Divide and Conquer:
EKF SLAM in O(n),” Aceepted in Transactions on Robotics
(in Print), vol. 24, no. 5, October 2008. [Online]. Available:
http://webdiis.unizar.es/ lpaz/publications archivos/papers/dcslam.pdf

[6] J. J. Leonard and H. J. S. Feder, “A computationally efficient method
for large-scale concurrent mapping and localization,” in Robotics
Research: The Ninth International Symposium, D. Koditschek and
J. Hollerbach, Eds. Snowbird, Utah: Springer Verlag, 2000, pp. 169–
176.

[7] M. Bosse, P. M. Newman, J. J. Leonard, M. Soika, W. Feiten, and
S. Teller, “An atlas framework for scalable mapping,” in Proc. IEEE
Int. Conf. Robotics and Automation, Taipei, Taiwan, 2003, pp. 1899–
1906.

[8] J. Leonard and P. Newman, “Consistent, convergent and constant-time
SLAM,” in Int. Joint Conf. Artificial Intelligence, Acapulco, Mexico,
August 2003.

[9] C. Estrada, J. Neira, and J. D. Tardós, “Hierarchical SLAM: real-
time accurate mapping of large environments,” IEEE Trans. Robotics,
vol. 21, no. 4, pp. 588–596, August 2005.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, September 2005.

[11] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous local-
ization and mapping via square root information smoothing,” Int. J.
Robotics Research, vol. 25, no. 12, December 2006.

[12] J. Folkesson and H. Christensen, “Graphical SLAM for outdoor
applications,” Journal of Field Robotics, vol. 23, no. 1, pp. 51–70,
2006.

[13] U. Frese, “Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping,” Autonomous Robots, vol. 21, no. 2, pp.
103–122, September 2006.

[14] P. Piniés and J. D. Tardós, “Large Scale SLAM Building
Conditionally Independent Local Maps: Application to Monocular
Vision,” Accepted in Transactions on Robotics (in print)., vol. 24,
no. 5, October 2008. [Online]. Available: http://webdiis.unizar.es/ jd-
tardos/papers/2008 IEEE TRO Pinies Tardos.pdf

[15] S. Huang, Z. Wang, and G. Dissanayake, “Sparse Local Submap
Joining Filters for building large-scale maps,” Accepted for publication
in IEEE Transactions on Robotics, 2008.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[17] T. H. Cormen, C. Leiserson, and R. L. Rivest, Introduction to Algo-
rithms, 2nd ed., T. M. Press, Ed., Cambridge, Massashusetts, 2001.

3920

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on September 21, 2009 at 07:51 from IEEE Xplore. Restrictions apply.

