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a b s t r a c t

Loop closure detection systems for monocular SLAM come in three broad categories: (i) map-to-map,
(ii) image-to-image and (iii) image-to-map. In this paper, we have chosen an implementation of each and
performed experiments allowing the three approaches to be compared. The sequences used include both
indoor and outdoor environments and single and multiple loop trajectories.
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1. Introduction

Loop closure detection is an important problem for any SLAM
system and, since cameras have become a common sensor in
robotics applications, more people are turning towards vision
based methods to achieve it. In this paper, we compare three quite
different approaches to loop closure detection for a monocular
SLAM system. The approaches essentially differ in where the data
association for detecting the loop closure is done — in the metric
map space or in the image space. The three approaches are as
follows:

• Map-to-map — Correspondences are sought between features
in two submaps taking into account both their appearance and
their relative positions. In this paper we look at the method of
Clemente et al. [1], who applied the variable scale geometric
compatibility branch and bound (GCBB) algorithm to loop
closing in monocular SLAM. The method looks for the largest
compatible set of features common to both maps, taking into
account both the appearance of the features and their relative
geometric location.

• Image-to-image — Correspondences are sought between the
latest image from the camera and the previously seen images.
Here, we discuss the method of Cummins et al. [2,4]. Their
method uses the occurrences of image features from a standard
vocabulary to detect that two images are of the same part of the
world. Careful consideration is given to the distinctiveness of
the features — identical but indistinctive observations receive
a low probability of having come from the same place. This is
done to minimise false loop closures.

∗ Corresponding author. Tel.: +44 1865283049.
E-mail address: bpw@robots.ox.ac.uk (B. Williams).

• Image-to-map — Correspondences are sought between the
latest frame from the camera and the features in the map. We
examine the method of Williams et al. [5] who find potential
correspondences tomap features in the current image and then
use Ransacwith a three-point-pose algorithm to determine the
camera pose relative to the map.

First, we describe the underlying monocular SLAM system used
during the experiments. Then,we outline inmore detail the chosen
implementation of each of the different approaches to loop closure.
Results are then given on the performance of each algorithm
at closing loops in three different environments. Then one of
these sequences is used for more extensive experiments to allow
quantitative comparisons to be made between the three methods.

2. The monocular SLAM system

The monocular SLAM system we use is derived from Davison’s
original system [6,7], butwith a few improvements to bring it up to
date. The underlying system is essentially the same as the system
described in [1] but with our own relocalisation module [3] to
recover from situations where the system becomes lost. We have
also added a system to prevent premature loop closure and added
the ability to perform independent map joining. Here we give a
brief description of the system, so details of the loop closing system
can be better understood.

2.1. Map building

The monocular SLAM system tracks the pose of a handheld
camera while simultaneously building a map of point features
in 3D using the EKF. The points are initialised using the inverse
depth parameterisation [8], and they are recognised in subsequent
frames via normalised cross correlation. An image patch is stored
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(a) Local maps obtained with pure
monocular SLAM.

(b) Local maps auto-scaled.

(c) After loop closure. (d) Aerial view of the courtyard.

Fig. 1. Pembroke college sequence: Twelve submaps with a total of 848 features were made during the 70 m trajectory around the courtyard.

when the feature is initialised, but is warped to correspond with
the current camera pose estimate. To speed up the observation
of features, the image is only searched in an ellipse given by the
uncertainty in the camera and feature estimate in a process called
active search. By gating the search in this way the chances of
incorrect data association are reduced. This is further helped by
the use of the joint compatibility branch and bound algorithm
(JCBB) [9] which detects observationswhich are incompatiblewith
the others and rejects them.
Despite the improvement given by active search and JCBB, there

is still a chance of incorrect data association, particularly near loop
closures when the system can believe that distant features are
again visible and attempt tomeasure them. If the system is allowed
to observe these features as usual, it will likely make incorrect
data association due to the large uncertainty in the camera pose
relative to these features. Our approach is to prevent the system
from making these observations and delay the loop closure until
a separate loop close module has detected it (Section 3). To de-
termine which observations to attempt, we make use of the
covisibility data from all the features in the map.
With every set of observations, a tally is updated indicating

which features have been successfully observed together. Using
this information, a simple graph is constructed where a vertex
corresponds to each feature, and the edges indicate those that
have been observed together. This graph provides an easy way of
determining which features are in the local neighbourhood and
which are not. Those which are distant in the graph are not eligible
for observation since their relative position to the local features
is very uncertain and attempting their observation would likely

lead to incorrect data association. Readers should note that another
way of determining feature covisibility in a stochastic map is to
compute the inverse covariance, the information matrix. Features
that have been covisible at some point will have a high value of
co-information.

2.2. Larger maps

Due to the accumulation of linearisation errors in the EKF
algorithm as well as the increase in update time, we limit our
system to quite small local maps (around 70 features). To map
larger regions, the Hierarchical SLAM [10] technique is used. This
allows the system to map an environment by building a series of
submaps, each of which is small enough to allow the system to
be run in real-time as well as reducing linearisation errors. This
method was already applied to monocular SLAM in [1] but here
we show it working in more complex environments with multiple
loops.
As each new submap is created, the origin of its base reference

frame is stored in the state vector of the submap from which
branched off. This transformation is then used to determine the
relative position of the two submaps. However, for monocular
SLAM, this transformation must also include the scale difference
which is determined as follows. Each new submap is created with
new features initialised at the location of some of the features
in the previous map. The geometry of these common features in
each submap is used to determine the relative scale. Since the
features were newly initialised, information is not shared between
the submaps and they remain independent. This scale correction
can be seen in Fig. 1(a) and (b).
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The set of submaps can be represented as a graph where edges
contain the similarity transform giving the relative orientation
between submaps. As in the Atlas system [11], the entire map
can be represented relative to the current submap. To do this, the
transformations are composed along a tree built using Dijkstra’s
algorithm and the uncertainties of the relative transformations. If
the camera begins to revisit the neighbouring submap in the graph,
this is detected by projecting the features from the neighbouring
submap into the current image. If a greater number of features
should be visible from the neighbouring submap than the current
submap then the transition is made. To retain the independence
between the submaps, the relocalisation algorithm is used to
determine the pose and uncertainty of the camera relative to the
new map before resuming tracking.
When loop closure is detected, the similarity transform be-

tween the two submaps is determined and a new edge is added
to the graph allowing the system to fully traverse the loop. How-
ever, though the transformations between submaps will be good
locally, cycles in the graph allow the map estimate to be improved
for the purposes of global reasoning.
The Hierarchical SLAM system allows the global map estimate

to be refined by imposing the constraint that the composition
of all the transformations around each loop in the map should
equal the identity. The best global estimate can then be found
using non-linear optimisation techniques. This process can be
delayed until a global map is required and it must be reestimated
if submaps within the loop are revisited causing updates in the
relative transformations.
The result of this optimisation process can be seen for a single

loop in Fig. 1 or in a more complex multi-loop environments in
Fig. 4.

3. Detecting loop closure

In order to close loops in a map, the system must recognise
when it has returned to a previously mapped region of the world.
Essentially, at this point two regions in the map are found to
be the same region in the world even though their position is
incompatible given the uncertainty estimate in the map — the
classic loop closure problem. The system must then be able to
calculate the transformation needed to align these two regions to
‘close the loop’. Since an incorrect loop closure can be disastrous for
most SLAM systems, a good loop closure detection system should
give very few (ideally zero) false positives while still detecting
many of the true positives.
In the following sections, we describe three methods for

detecting loop closure based onquite different approaches.Wewill
later test the performance of all three algorithms.

3.1. Map-to-map matching: Clemente et al.

Clemente et al. [1] presented a method to close loops in
monocular SLAMmaps based on finding correspondences between
common features in different submaps. The algorithm used is
a variable scale version of the original geometric compatibility
branch and bound algorithm (GCBB) [12]. The system uses both
similarity in visual appearance (unary constraints) and relative
distances between features (binary constraints) to find the largest
compatible set of common features between two submaps. Once
a consistent set has been found, the relative scale, rotation,
and translation needed to align the two submaps can easily be
determined.
The system was shown to work in [1] where it found a set of

five common features between the first and last submaps in a large
loop.

3.2. Image-to-image matching: Cummins et al.

Cummins et al. [2] have developed a method to detect loop
closures based on recognising the visual appearance of previously
seen places. Thematching is performed by detecting in each image
the presence or absence of features from a visual vocabulary [13]
based on SURF features [14], which is learned off-line from training
data. Note that the training data consists of generic images not
collected in the environment where loop closure detection is
performed. The system takes into account the probabilities of
features appearing together, and is able towork out the probability
that two images show the same region of the world. This method
does not depend on a metric map being created since it only
compares images directly. However, it can be used with a metric
map if the camera pose relative to such a map can be found for
each image as well as the relative pose between two images for
the loop closure. Much work has been done on this problem in the
field of computer vision [15].

3.3. Image-to-map matching: Williams et al.

In [5] a loop closure detection method is proposed which
is based on a relocalisation technique used to recover from
tracking failures [3]. This relocalisation module determines the
pose of the camera relative to a map of point features by finding
correspondences between the image and the features in the map.
The pose is then determined from the correspondences using
Ransac and the three-point-pose algorithm [16].
The relocalisation module is able to run faster than the frame

rate through the use of a fast matching algorithm [3] based on
the randomised fern classifier [17]. While the features are being
tracked, each successful observation is used to train the classifier.
This classifier is fast but it has a high false positive rate. Incorrect
classifications are handled using Ransac.
To detect loop closures, the system uses the module to

attempt relocalisation in distant regions of the map according to
either the feature covisibilities or, if submapping is used, then
in other submaps. When a relocalisation is successful, it gives a
correspondence between the current pose being tracked, and the
pose given by the relocalisation elsewhere in the map. This gives
the translation and rotation needed to align the two regions, but
a single pose is not enough to determine the scale difference.
To achieve this, the camera is tracked for some time in both
regions (while freezing one of the maps so information is not
counted twice), and this common trajectory can be used to find
the transformation between the two regions including the relative
scale difference (Fig. 5).

4. Results

The loop closure detection techniques were tested on three
different image sequences. One of these sequences was then
chosen for more extensive quantitative testing of each algorithm
using a second lap of the same loop. First we will discuss the
general performance of the algorithms in the three sequences
before presenting the quantitative results withmore discussion on
the process of detecting loop closure with each algorithm.

4.1. General performance

We have used the monocular SLAM system to build a map of
three different environments. Due to the size of the environments,
the system builds a series of submaps as the camera is moved
facing the wall. Each new submap is begun by initialising new
features in the same image locations as those just observed as the
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(a) Aerial view of the courtyard. (b) Before loop closure. (c) After loop closure.

Fig. 2. Keble college sequence: Twenty eight submaps with a total of 1983 features were made during the 230 m trajectory around the courtyard. Ellipses indicate 1σ
uncertainty bounds for the origin of the base reference frame for each submap.

last submap finished. These common features can then be used to
fix the relative scale between submaps as shown in Fig. 1.
Even after the scale between submaps has been corrected, the

maps still exhibit a common problem, that although the camera
has returned to the same region in the world, this is not reflected
in the map. A loop closure detection system is needed to recognise
that the system has traversed a loop so the map can be corrected
accordingly. We have used all three algorithms to try to detect the
loop closures in each sequence.

4.1.1. Keble College sequence
The first sequence we tested is the one used by Clemente et al.

in [1] where the map-to-map method was originally proposed for
a monocular SLAM. In this sequence, the camera moves around
a courtyard in Keble College, Oxford. The map built using this
sequence can be seen in Fig. 2. As already shown in [1], the map-
to-map method can find the correspondence between the first
and last submaps in this sequence. We then tested the other two
methods on this sequence and they both successfully detected the
loop closure event.
Robust loop closure detection in repetitive environments is a

well known problem. In several locations in this sequence, two
distinct regions of the world are very similar in both appearance
and geometry. An example of this is shown in Fig. 6 where the
majority of the scene is almost identical but the structure to
either side of the archway is different. The image-to-imagemethod
uses temporal information from recent keyframes to build up
confidence in a loop closure. Without this temporal prior, taking
into account this single image, a loop closure is hypothesised
between these two images. The image-to-map method can also be
made to hypothesise a loop closure here if the thresholds on the
number of inliers for Ransac are reduced so that it is able to ignore
the conflicting information to the sides of the archway. Commonly
suggested techniques to avoid these false loop closures are to use
more observations as is donehere, or to gate using theMahalanobis
distance in the global metric map.

4.1.2. Pembroke College sequence
The next sequence also records the trajectory of the camera as

it moves around a university courtyard. In the Pembroke College
sequence though, two laps were recorded. Later we will use this
second lap to test the three algorithms more thoroughly.
The map created for this sequence can be seen in Fig. 1. Both

the image-to-image and the image-to-map methods were very
successful in this sequence. The map-to-map method did not
reliably detect the loop closure event since during some runs
through the sequence the SLAM system did not initialise enough
common features in the same locations when reobserving the start
of the loop. The results for this sequence will be discussed more
extensively in Section 4.2.

10m

Fig. 3. Library sequence: This diagram shows the room used for the library
sequence. The camera starts at ⊕ and follows the trajectory around a multi-loop
path through the library to ⊗. The arrows indicate the direction the camera faces
which is roughly perpendicular to the direction of motion. Four example frames
are given for the sequence indicating the range of appearance of the scene. This
sequence demonstrates the systems ability to retraverse previous submaps and
close multiple loops. The results for this sequence are shown in Fig. 4.

4.1.3. Library sequence
The final sequence was taken inside a library with a trajectory

that included multiple loops as shown in Fig. 3. The map created
by the SLAM system for this sequence is shown in Fig. 4. This
sequence required the more complex submapping framework
outlined earlier. After closing the first loop, the system retraverses
several old submaps before branching off a new series of submaps
as it moves around the second loop. Though both loop closures
are performed online and the new edge is added to the graph
immediately, the global map is only optimised afterwards. This is
performed in Matlab and took 1.5 s for ten iterations. In practice,
the global map is only needed for global problems like path
planning along a novel route.
Again, the image-to-image and the image-to-map algorithms

were able to easily detect the loop closure events in this sequence
while the map-to-map method had difficulty. Due to the rich
texture of the bookshelves in the library, there were many
potential places for the tracking system to place map features.

Please cite this article in press as: B. Williams, et al., A comparison of loop closing techniques in monocular SLAM, Robotics and Autonomous Systems (2009),
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(a) Before loop closure optimisation. (b) After loop closure optimisation.

Fig. 4. Library sequence: Twenty submaps were created as the system built a map of the library shown in Fig. 3. Ellipses indicate 1σ uncertainty bounds for the origin of
the base reference frame for each submap. The graph connecting submaps is shown in black with thick edges indicating links made using loop closure detection. The scale
of the two submaps in the lower part of the figure was not well estimated due to the camera undergoing mostly rotation with little translation at this part of the sequence.

Fig. 5. Image-to-map loop closure for the Pembroke College sequence. While
tracking in the twelfth submap (left), the system relocalises in the first submap
(right). The transformations between the two supmaps is found by first aligning
the common trajectories, and then enforcing the constraint that the two sets of
corresponding camera poses (linked by straight lines) are equal.

This made it quite unlikely that they would be placed in the same
location when the camera revisits a place making it impossible for
the map-to-map method to succeed.

4.2. Extensive testing

We have evaluated the performance of the algorithms further
by checking their susceptibility to false positives and their run
time. These tests are performed using the Pembroke College
sequence.

4.2.1. Map-to-map matching: Clemente et al.
On some runs of the sequence, when the system comes to close

a loop using the map-to-mapmethod, it is able to successfully find
common features between the two maps as shown in Fig. 7(a).
Unfortunately, during the loop closure, there is no guarantee that
the system will have initialised features in exactly the same place
in the twooverlapping submaps. In fact, in our experiments to date,
we have found submapswith sufficient common features to detect
the loop closure in this way to be rare. Fig. 11(a) shows an example
of the same frame being tracked in two different submaps. Despite
the large number of features visible, only two features are common
to both maps. This is not enough to determine the transformation
between the submaps.
Even getting a corresponding set of features does not guarantee

a true correspondence between the two submaps. Fig. 7(b) shows
that the GCBB algorithm also found sets of five ‘‘common’’ features
between eight other pairs of submaps. We were unable to find a

Fig. 6. Despite these two regions of the world having both similar appearance and
structure, they belong to different parts of Keble College courtyard. A loop closure
detection system should indicate a match and a higher level system should then be
used to mark it as false using either the uncertainties in the global metric map or
more observations before and after the archway.

threshold able to reliably distinguish between true positives and
false positives for the maps created by our SLAM system.
During our tests, the variable scale GCBB algorithm took around

100ms1 to compare two submaps.When the SLAM system finishes
one submap, there is easily time to compare this submap to all
previous submaps before the next one is completed.

4.2.2. Image-to-image matching: Cummins et al.
The image-to-image matching method of Cummins et al. is

designed to work with non-overlapping key frames. When run on
a robot, the odometry is used to trigger key frame capture.Without
odometry, we simply used every 40th frame of the video to test the
system. Ideally though, an automatic key frame detector should be
used.
The loop closure detection system determines for each of these

input images if it is a new place or a loop closure. On the Pembroke
College sequence, the algorithm correctly gave a high probability
that each image was a new place until the camera had traversed
the loop and returned to the start of the loop. At this point, the
system gave a high probability (99.9%) that the most recent image
corresponded to an image at the start of the sequence (Fig. 8(a)).
To test the reliability of the loop closure detection, we

computed loop closures for every frame from a second lap of the
Pembroke courtyard, against the set of images from the first lap.
This simulates the ‘kidnapped robot situation’, a sudden transition
from the end of the first loop to a random part of the courtyard.
This tests if the algorithmwould be able to detect a loop closure at
each position. The results are shown in Fig. 8(b) where frames that
matched an image in the previous loop are marked. A threshold

1 Tests were done on a Dual Core 3 GHz machine.
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(a)Map-to-map matching: Loop closure detected using the method of
Clemente et al. [1]. The system finds a set of five features consistent in
both geometry and appearance between the first and last submaps. It is
only successful if the SLAM system has initialised common features in
the two submaps. In another run of the same sequence, the loop
closure was missed (Fig. 11(a)).

(b)Map-to-map reliability:Matching was
attempted between every pair of
non-consecutive submaps. Shown here are the
eight false positives sets with five
correspondences.

Fig. 7. The performance of the map-to-map method in the Pembroke College sequence.

was chosen that removes all false positives to allow comparison
with the image-to-map method. The system found matches that
met this probability threshold in 8% of attempts indicating that
the system would be able to close the loop at these positions. The
precision–recall curve in Fig. 10 shows the effect of the probability
threshold on the reliability of the system.
On each image, the algorithm takes on average 283 ms to run.

Much of this time (73 ms) is taken up by SURF feature detection.
This method relies on this descriptor which is richer yet slower
than the randomised fern classifier. The overall speed is slower
than the frame rate, however, the loop closing algorithm does not
need to be run on every frame.

4.2.3. Image-to-map matching: Williams et al.
For each frame, there is usually enough remaining time after

tracking to attempt relocalisation in one other submap. The
system cycles through submaps until a relocalisation is successful,
indicating a loop closure. For the Pembroke College sequence, the
system successfully detected the loop closure as the features in
the original map came back into view (Fig. 9(a)). Note that for this
method, no common features are neededbetween submaps as they
are for the map-to-map method.
The reliability of this loop closure method was tested using the

same ‘kidnapped robot’ situation we used to test the image-to-
image method. The system was allowed to continue searching for
loop closures as the camera continued around the courtyard for
a second lap. For the test, the system attempts relocalisation in
every submap for every frame. The results of this test can be seen
in Fig. 9(b).
The method takes 10–15 ms to find potential matches to map

features in each image. The remaining time is used to run Ransac
on thematches to determine the pose. This is usually found within
a few milliseconds if a valid pose exists for those matches. This is
fast enough to allow the algorithm to run on a single submap after
the system has finished tracking in each frame.

5. Discussion

The results of our quantitative testing of the three methods
using the second lap of the Pembroke College sequence are shown
in Fig. 10. The salient points that should be taken from this are:

• To create the curve for the image-to-mapmethod,we varied the
threshold on the fraction of successful landmark observations
after a potential relocalisation. All other parameters were left at
their default values. In practice, we require 50% of observations
to succeed giving the 20% recall at 100% precision quoted in this
paper.

• The curve for the image-to-image method is more complete
since a single threshold (the match probability) can be varied
to achieve a larger range of recall. The performance is similar to
the image-to-map method with only a few extra false positives
detected with high probability.

• The curve for the map-to-map method has fewer points. The
threshold varied here is the number of landmarks in the
compatible set. The twelve submaps built in the second lap
were matched to the twelve from the first lap. In this run, a
single true positive was found with a seven common features.
For all lower thresholds many false positives were also found
leading to a steep drop in precision.

We would not want the reader to infer too much from these
numerical results. The actual numbers found would depend on the
precise sequence used and the characteristics of the environment,
but the general trends in the graph are representative of our
overall findings. Of most importance are the relative performance,
benefits, and failure modes of each algorithm. These aspects are
now discussed more qualitatively.
We found the map-to-map matching technique of Clemente

et al. is successful when a sufficient number of common features
exists between two submaps. For instance, it reliably detect the
overlap between consecutive submaps where common features
are intentionally added to determine the relative scale. However,
in general it is unsuitable for the sparse maps created by the
monocular SLAM system. These maps are designed to be good
enough to track the camera but otherwise as sparse as possible to
allow faster updates. Perhaps a map-to-map based method would
be more suitable if the maps contained higher level information or
thereweremore consistency onwhichpotential features are added
to the map.
The image-to-image matching technique of Cummins et al.

works well since it can be tuned to remove all false positive
while still detecting 8% of true positives for the Pembroke College
sequence. As the probability threshold is lowered, the first few
false positives could easily be removed with a simple essential

Please cite this article in press as: B. Williams, et al., A comparison of loop closing techniques in monocular SLAM, Robotics and Autonomous Systems (2009),
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(a) Image-to-image matching: Loop closure detected using the method of Cummins et al. [2] in the Pembroke College sequence. The
system detects visual words in each image and the co-occurrence of these words is used to calculate the probability of loop closure. The
system finds a high probability that the most recent image matches one seen earlier in the sequence. Visual words detected in the two
images are indicated in light (green) if they match in the other image and dark (red) if they do not. Note that interest point geometry is
not considered.

(b) Image-to-image reliability: A second lap
of the Pembroke College sequence was used to
test the reliability of the image-to-image method.
Correspondences were found between every
frame in a second lap and every 40th frame in
the first lap. With a threshold chosen to remove
all false positives the system was successful in 8%
of attempts. Gaps are in regions of the world with
lots of foliage (where the image-to-map method
also struggles).

Fig. 8. The performance of the image-to-image method in the Pembroke College sequence. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

matrix test for geometric compatibility. This can be seen for the
falsematchwith highest probability in Fig. 11(b).With this test, the
performance of the image-to-image method would be equivalent
to the image-to-map method. The fact that the image-to-image
method does not rely on a good metric map existing can also be
an advantage. This makes the systemmore flexible and allows it to
work in a greater variety of applications. Finally, themethod scales
well to very large environments and has been shown to work on
datasets of several kilometers [18].

The best performance here was found using the image-to-map
matching technique of Williams et al. with a true positive rate
of 20% for the Pembroke College sequence. The image-to-map
method is able to prune more false positives than the image-to-
image method by making use of the geometry information of the
features detected in the image since these features have already
been mapped by the SLAM system. It is fast enough to detect loop
closure while tracking but it requires a large amount of memory
for the randomised fern classifier (1.25 MB per map feature).

Please cite this article in press as: B. Williams, et al., A comparison of loop closing techniques in monocular SLAM, Robotics and Autonomous Systems (2009),
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Table 1
A summary of the pros and cons of each of the three loop closure detection methods.

Method Pros Cons

Map-to-Map Finds alignment when common features exist. Sufficient common features are unlikely.
False positives have similar number of ‘common’ features.

Image-to-Image Detects true loop closures throughout the environment when tuned for 100%
precision.

Offline learning of good vocabulary required.

Does not require metric map. Does not make use of geometric information.
Scales well to large environments. Does not give metric transformation directly.

Image-to-Map Detects true loop closures throughout the environment when tuned for 100%
precision.

Requires good metric map.

Online training for map feature appearance. Very memory intensive.
Relative transformation between submaps with scale is computed from trajectory.

(a) Image-to-map matching: Loop closure detected using the method of Williams et al. [3]. While
tracking in the last submap, the system finds a camera pose consistent with the features in the first
submap. The common trajectory is used to determine the relative rotation translation and scale
needed to align the submaps.

(b) Image-to-map reliability: Relocalisation was
attempted on every frame of a second lap. The light dots
show the camera poses recovered relative to the map and
trajectory created on the first lap (black). This indicates
that loop close would be successful for these frames.
Successful in 20% of frames. No false positives.

Fig. 9. The performance of the image-to-map method in the Pembroke College sequence.
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Fig. 10. The performance of the three loop closure detectionmethodswas assessed
by testing the ability to recognise loop closure at each position of the second lap of
the Pembroke College sequence. The map-to-map method suffers due to the lack
of common features in submaps built of the same region of the courtyard. The
image-to-map and image-to-image method both perform very well but the image-
to-imagemethod has slightlymore false positives. Many of these could be ruled out
with geometric constraints in the visual word correspondences.

This limits its use to environments not much larger than those
considered here. It is this classifier though that the system relies on
for fast training and recognition of the map features in each image.
Perhaps even better performance could be achieved through

a hybrid system combining the benefits of the image-to-image

and the image-to-mapmethods. The loop closure detection system
developed by Eade and Drummond [19] does just this. They first
use a bag of visual words approach to establish which submap is in
view. This stage is similar to the image-to-image method tested
in this paper. Then, local landmarks are identified in the image
and the camera pose relative to the landmarks is determined in
a similar way to the image-to-map method. This global to local
approach harnesses the strengths of each method.

6. Conclusion

We have tested three quite different approaches to detecting
loop closure for monocular SLAM systems. Experiments were
performed in both indoor and outdoor environments using the
Hierarchcal SLAM technique to build a sequence of submaps
(Table 1).
We found themap-to-mapmatching technique to be unsuitable

for monocular SLAM because the sparse maps contain too little
information to reliably detect true correspondences while ruling
out false ones.
The image-to-image method was shown to work well. How-

ever, to use this method for correcting a metric map, the relative
pose and scale between corresponding images would need to be
determined. The method would benefit from making some use of
the relative positions of the detected visual words to remove some
obvious false positives.
The image-to-mapmethodworkswell and returned the highest

number of true positives with no false positives. This is achieved
by taking as much information as possible into account when
detecting the loop closures. Unfortunately, this method does not
scalewell to larger environments like the image-to-imagemethod.

Please cite this article in press as: B. Williams, et al., A comparison of loop closing techniques in monocular SLAM, Robotics and Autonomous Systems (2009),
doi:10.1016/j.robot.2009.06.010
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(a)Map-to-map method: False negative in the
Pembroke College sequence. Shown are features in the
first and last submap for the same frame. Only two of
the features are actually common to both submaps
making it impossible for the map-to-map method to
detect the loop close. Two maps made of the same part
of the world do not necessarily have any common
features.

(b) Image-to-image method: False positive with
matching probability of 99.9935% in the Pembroke
College sequence. The detected visual words are
indicated in each image with light (green) circles if they
match the other image and dark (red) circles if they do
not. This false positive could easily be discarded if the
geometric information were used for the detected
visual words.

Fig. 11. Failure modes for the loop closure detection systems. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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