
Stereo CI-Graph SLAM

Benchmark Solutions

Authors: Lina M. Paz, Pedro Piniés,
Dorian Gálvez and Juan D. Tardós

date: end of month 35 (September 2009)

1 Introduction

In this work we describe our multicamera SLAM system which integrates a set of novel technologies
allowing us to gather most of the information available in the images. We consider information
from features both close and far from the cameras Paz et al. [2008]. Given a bunch of cameras and
the rigid transformation between them, 3D information from nearby scene points can be obtained,
at the same time each camera can also provide bearing only information from distant scene points.
Both types of information are relevant to obtain good estimates of the translation and the attitude
of the camera system. The first main contribution of the proposed method is that it can easily
deal with any number of cameras since each camera is treated independently.

The second main contribution is a novel SLAM algorithm that allows us to efficiently build
maps of large environments when the camera system follows complex trajectories. Our algorithm
is able to operate in large environments by decomposing the whole map in local-maps of limited
size. Instead of building independent submaps we build conditionally Independent submaps Piniés
and Tardós [2008], which allow the system to share both camera velocity information and current
feature information during local map initialization. This adds robustness to the system without
sacrificing precision or consistency in any way. Finally, by using the CI-Graph algorithm Piniés
et al. [2009] we can extend the properties of the CI-submaps to more complex robot trajectories
and map topologies.

We validated the approach on the proposed indoor dataset Bicooca 2009-02-25b for bench-
marking which has been described and tested in Deliverable 3.2 of the RAWSEEDS project. Due
to the reported lack of texture in the corresponding dataset validation, we integrate odometry
readings to drive the stereo system in those places where features can not be extracted from the
images.

1.1 CI-Graph Algorithm Description

In order to work with complex topologies, the algorithm proposed is based on building an undi-
rected graph of the CI-submaps. An undirected graph is defined as a pair G = (N , EG) where N
are the nodes of G and EG are its undirected edges. In our graph, N is the set of CI-submaps

mi with i = 1 . . . N . An edge connecting two nodes is created either because the robot makes a
transition between the corresponding submaps or because being the robot in a submap, it observes
a feature that belongs to the other submap.

In addition, the algorithm builds a spanning tree T (N , ET) of the graph G, where ET ⊂ EG. A
spanning tree T of a connected undirected graph G is defined as a subgraph of G which is a tree
(it contains no cycles) and connects all the nodes. Our algorithm ensures that, by construction,
any pair of submaps (mi, mj) that are adjacent in T have a conditionally independent structure,
sharing some vehicle and feature states. Each edge in ET will be labeled with the corresponding
shared states. Given any pair of submaps, mi and mj, there is a unique path in T connecting them.
This path allows us to transmit information from map to map without loosing the conditional
independence property between submaps. In figure 1, spanning tree edges ET will be depicted
using a continuous line while the remaining edges of G, i.e. EG\ET , will be traced with a dashed
line.

Two operational levels can be distinguished in the algorithm. Local operations that are only
applied to the current submap mi, and graph operations that are performed through the graph
involving at least two submaps. Most of the time, the operations carried out when the robot moves
inside a CI-submap are local operations corresponding to standard EKF-SLAM equations. Graph
operations are more sporadic and can be considered as the interface between CI-submaps. In the
following subsections, the graph operations are explained in detail as presented in Algorithm 1.

1.1.1 Starting a new submap

Suppose that robot is in submap mi and we decide to start a new submap mj. The steps followed
in the algorithm are:

• Add mj to N

• Add edge 〈mi, mj〉 to ET

• Copy robot pose and last seen features from mi to mj

In fact, the robot pose is copied twice in submap mj. The first copy will represent the current
robot position which changes as the robot moves through the new map. The second copy will
represent the initial position of the robot when it entered the map. This initial pose remains fixed
as a common element with map mi.

An example can be seen in figure 1. At time k2, submaps m1 and m2 have been already
explored and a new submap is being created m3. Nodes m1 and m2 share in common a robot
position Rk1 and a feature f4. Submap 3 is initialized with robot Rk2 and feature f6 from submap
2.

1.1.2 Re-observing a feature from a different map

This situation occurs when the robot is at submap mi and observes for the first time a feature
that is already included in a previous submap mj. The process followed is:

• Copy the feature from mj to mi along all nodes of the path in T

• Add 〈mj, mi〉 to EG\ET

f1

f2

f3

f4

f5

f6

f7

f8

f9

1 1 12 2 2

33 4

map1 map2 map1 map2 map3

t = k - 13 t = k 4
f1

f2
f3

f4

f5

f6

f7

f8

f9

t = k 2
f1

f2

f3

f4

f5

f6

f7

f8

f9

3

map3 map1 map2 map3 map4

Figure 1: Example using CI-Graph SLAM. The figure is divided in three rows that show informa-
tion about the state of a simulated experiment at three different instants of time (columns). In the
first row, the map of the simulated environment with the current robot position is shown. In the
second row, the graph of relations between submaps will be created according to the state of the
estimation. In the last row we will show the state vectors of the estimated submaps at different
moments of time.

Algorithm 1 : CI-Graph SLAM

z0,R0 = getObservations
m0 = initMap(z0,R0)
[G, T] = initGraph(m0) {G(N = m0, EG = ∅)}
i = 0 {i for current submap}
for k = 1 to steps do

uk−1,Qk−1 = getOdometry
mi = ekfPrediction(mi,uk−1,Qk−1)
zk,Rk = getObservations
DAk = dataAssociation(mi, zk,Rk)
if revisiting mj then
{Subsection 1.1.3}
for 〈mk,ml〉 in path(mi,mj) do

backPropagation(mk,ml)
copyRobot(mk,ml)

end for
addEdge(〈mi,mj〉, EG\ET)
i = j {Map change}

else if newMap mj then
{Subsection 1.1.1}
addNode(mj,N)
addEdge(〈mi,mj〉, ET)
copyRobot(mi,mj)
copyActiveFeat(mi,mj)
i = j {Map change}

end if
if reobserved f 6∈ mi & f ∈ mj then
{Subsection 1.1.2}
for 〈mk,ml〉 in path(mj,mi) do

copyFeat(f ,mk,ml)
end for
addEdge(〈mj,mi〉, EG\ET)

end if
mi = ekfUpdate(mi, zk,Rk,DAk)
mi = addNewFeatures(mi, zk,Rk,DAk)

end for
{Subsection 1.1.4}
updateAllMaps(mi, T) {Updates T starting from mi}

If 〈mk, ml〉 ∈ T represents an edge in the path, to copy the feature from mk to ml, the feature
is first updated with the information contained in ml using back-propagation equations and the
correlations with the elements of ml are also calculated Piniés and Tardós [2008].

Figure 1 at time k3 − 1 shows an example of this case. Feature f3 that belongs to submap
m1 is measured by the robot when it is traversing submap m3. Since edge 〈m1, m3〉 6∈ T , f3

is transmitted along the path 〈m1, m2〉, 〈m2, m3〉 that connects both nodes. Observe that the
feature is replicated in all intermediate nodes. Finally, edge 〈m1, m3〉 is included in EG\ET .

1.1.3 Revisiting a previous submap

When the algorithm detects that the robot revisits an already traversed area mj, the transition
from the current submap mi to mj is as follows:

• Update all nodes in the path from mi to mj

• Copy the current robot pose along all nodes of the path

• Add 〈mi, mj〉 to EG\ET
As in the previous subsection, to update submaps in the path we use the back-propagation

equations and to copy the current robot pose, correlations with submaps elements are calculated
as well.

Figure 1 at time k4 shows an example of this operation. When the robot makes a transition
between submaps m4 and m1, current robot position Rk4 is replicated along all nodes that are in
the path, i.e., along m3, m2 and m1. Finally, edge 〈m4, m1〉 is added to EG\ET and submap m1

becomes the current map.

1.1.4 Updating all maps from the current submap

Using the Graph operations just described, we can assure that the current submap is always
updated with all available information. In addition, the CI property between submaps is preserved.
An interesting property of the back-propagation equations is that they can be applied at any
moment. They work correctly even if we back-propagate twice the same information. This allows
us to schedule the back-propagation in moments with low CPU loads, or when graph operations
are required. If the whole map has to be updated, the back-propagation equations are recursively
applied starting from the current node and following the spanning tree T .

1.2 Working with several cameras

In order to allow the system to easily scale with the number of cameras, each camera is treated
independently in the algorithm. The only interaction between cameras is when a new feature is
initialized. The feature is first initialized in one of the cameras. Since no depth information is
available, this feature is included in the state vector using inverse depth parametrization Civera
et al. [2008]. Using the known relative transformation between cameras, the recently introduced
feature is predicted and searched in the images of the other cameras and correspondingly updated
when found. The rigid transformation between the cameras allows us to obtain the depth infor-
mation of nearby features. For the rest of the steps of the SLAM algorithm, each camera predicts
and updates features in the map independently. In addition, to improve the computational cost of
the algorithm, inverse depth features are transformed to 3D cartesian parametrization according
to the parallax index explained in Civera et al. [2007].

1.3 Appearance-based loop closing

In order to close loops in the trajectory, a visual procedure is used. This method consists of
three stages: first, one image per second is acquired from the stereo camera and converted into an
appearance-based representation; then, it is checked if the current scene was seen before, so that a
loop is detected, and finally, the loop is closed by obtaining a transformation between the robot’s
poses by solving a perspective-n-point problem.

1.3.1 Appearance-based representation

An appearance-based representation of an image is obtained by using a visual bag of words Sivic
and Zisserman [2003]. This is a technique that represents an image by using a numeric vector
created from the local features this contains. We use SURF points Bay et al. [2008] as image
features. A SURF feature is a point in the image associated to a real 64-dimensional descriptor
which summarizes the distribution of the intensity content within the point neighbourhood.

The bag of words technique consists of clustering the image descriptor space (the 64-dimensional
SURF space, in our case) into a fixed number C of clusters. The centers of the resulting clusters
are named visual words; after clustering, a visual vocabulary is obtained. Now, a set of image
features can be represented in the visual vocabulary by means of a vector v of length C. For that,
each feature is associated to its closest visual word; then, each component vi is set to a value in
accordance with the relevance of the i-th word in the vocabulary and the given set, or 0 if that
word is not associated to any of the image descriptors. In general, the more a word appears in
the data used to create the visual vocabulary, the lower its relevance is. The vector v is the bag of
words representation of the given set of image descriptors. This way, the appearance of an image
can be simply described by a numeric vector.

This method is very suitable for managing big amounts of images; moreover, Nister and Stewe-
nius [2006] presents a hierarchical version which improves efficiency. In this version, the descriptor
space clustering is done hierarchically, obtaining a visual vocabulary arranged in a tree structure,
with a branching factor k and L depth levels. This way, the comparisons for converting an image
descriptor into a visual word only need to be done in a branch and not in the whole discretized
space, shrinking the search complexity logarithmically.

We use a hierarchical vocabulary with k = 9, L = 6 and the kmeans++ algorithm Arthur and
Vassilvitskii [2007] as clustering function. This vocabulary was created from a set of 1300 images
obtained from the Mixed / Bovisa 2008-09-01 Static dataset. These images represent indoor and
outdoor scenes, so that the vocabulary is generic enough to be used with any other dataset.

1.3.2 Loop detection

The loop detection procedure runs independently of the rest of the system, at a frequency of 1Hz.
In order to detect a loop, one stereo pair is acquired at time t. The image from the left camera is
converted into its vector representation, named vt. This vector is compared with the set of all the
vectors of the images obtained before, W , to check if any of them is similar enough to consider
both scenes the same. If there is a satisfactory match with some vector wt′ ∈ W acquired at
time t′ ≤ t − c, a loop may be found. To confirm it, there must be consistency with the images
previously matched. The constant c is the time interval that must pass to consider an already
seen scene as revisited; it is set to 20 seconds. Finally, the current vector vt is added to the list of
already visited scene vectors W .

To make vector similarity comparisons faster, an inverted file is maintained. This file keeps a
record of in which vectors each visual word is present. This way, when the vector vt is going to
be compared with vectors from W , comparisons are only made with those vectors wt′ ∈ W which
have at least one visual word in common with vt. When the vector vt is added to W , the inverted
file is updated by including vt in the lists of the visual words it contains.

The resemblance between two vectors is scored when they are compared. This score grows as
the similarity between the two images is higher. Given two image vectors vt and wt′ ∈ W , the score
of its match is related to the normalized distance between the two vectors Nister and Stewenius

Figure 2: Indices of images matched by the loop detection algorithm (dots), and undetected loops
(crosses).

[2006]:

s(vt, wt′) = 1 −
|| vt

|| vt ||
− wt′

|| wt′ ||
||

2
(1)

We use the L1-norm to compute this score, so that it is defined between 0 (completely different
words) and 1 (perfect match). Vectors from matches < vt, wt′ > whose score is above a threshold
λ = 0.037 are likely to come from images that represent the same scene, so they are considered
loop candidates. The rest of the matches are discarded.

We impose a temporal constraint to reliably detect loops and to avoid mismatches. A loop in
a place visited at time t and t′0 is detected if there is a match < vt, wt′0

>, as well as previous
matches < vt−1, wt′1

>, ..., < vt−N+1, wt′N−1
> such that max(|t′0 − t′1|, . . . , |t′N−2 − t′N−1|) ≤ 2

seconds. The constant N is the minimum time duration of the loop trajectory to be found, and is
set to 3 seconds.

Figure 2 shows the images from the left hand side of the stereo camera matched by the loop
detection algorithm on the Indoor / Bicocca 2009-02-25b dataset. Each group of close dots repre-
sents each one of the five loops detected in the whole trajectory. Figure 3 shows two of the images
matched in the first loop. There is a sixth loop in this dataset, marked with a cross in the graph,
which cannot be detected. This is due to a limitation of this appearance-based approach: it cannot
handle places seen from very different points of view. Figure 4 illustrates this difficulty with the
non-matched images from the missed loop.

(a) Input image (7786) (b) Matched image (6136)

Figure 3: Example of a successful loop detection

(a) Input image (15192) (b) Expected match (12810)

Figure 4: The appearance-based approach cannot detect a loop with these images, acquired in
very close positions but from different points of view.

1.3.3 Loop closing

Once a loop is detected at time t and we know that the current place was previously visited at
time t′, the loop is closed by finding a transformation between the current robot’s pose and the
one at time t′.

For that, the two images from the current stereo pair, I1
t and I2

t , and one of the images from
the stereo pair acquired at t′, It′ , are searched for SURF features. Those features which are not
present in the three images are removed. The rest of the features are be reconstructed in the
3D space by using stereo triangulation and their pixel coordinates in I1

t and I2
t . This way, we

obtain the set of points in the space in the current camera reference, Ct. Given those points
and their projections in It′ , we can find the transformation CtTCt′ by solving the perspective-
n-point (PnP) problem Moreno-Noguer et al. [2007]. This problem consists of estimating the
pose of a calibrated camera from n 3D-to-2D point correspondences. After obtaining CtTCt′ , the
constant transformation between the robot and the stereo camera can be applied to find the final
transformation between robot’s poses at t and t′, and successfully close the loop.

RIGHT Image

100 200 300 400 500 600

100

200

300

400

LEFT Image

100 200 300 400 500 600

TOP Image

100 200 300 400 500 600

100

200

300

400

Bicocca 2009−02−25b

Step = 12014, Observations m = 15

100

200

300

400

Figure 5: SLAM system performing trinocular tracking (top). Top and lateral views of the local
submap reconstruction (bottom).

1.4 Stereo SLAM results

In order to obtain a benchmark solution we ran our Stereo CI-Graph SLAM system on dataset
Biccoca 2009-02-25b. The dataset consists of 26335 trinocular image frames collected during 30
minutes at 15 FPS. Figure 5 shows an example of the system performance when building a local
map along the library. We can see how features in the map are predicted and search over right,
left and top images in order to update the state vector. A reconstruction is also shown both in
top and lateral view for the resulting submap.

Figure 6 shows the results obtained after running our loop closing approach. Pairings between
past and current images are highlighted with red points and green crosses respectively on the
odometry path. In order to overcome the lack of texture in critical parts of environment, the
odometry readings were used along with the CI-Graph method over the full path. A total map of
the dataset is shown in figure 7 where each local submap is represented in absolute coordinates
before applying the loop closing constraints. The estimated trajectory is also presented in Figure
8.

We compared our estimation with the provided Ground Truth solution when this was available
(see Fig. 10 and Fig. 9). Figure 11 shows the Absolute Trajectory Error (ATE) evaluation where
our Stereo SLAM produces an error of 1.38119m in position and 0.04012rad in orientation with a

−60 −40 −20 0 20 40 60 80 100 120

−60

−40

−20

0

20

40

60

80

Loop Closing Matches

X position (m)

Y
 p

o
si

ti
o

n
 (

m
)

77866136

7876 6286

10651
8266

10936

8551
11476

1981

13231

3871

20281

256

20311

286

24901

19651
2530620086

 Present image
 Past Image
 Odometry

Figure 6: Obtained loop closing matches. Results are shown along the odometry path

maximum error of 1.92394m and 0.14556rad correspondingly. The error distribution is shown in
Figure 13 considering a 3σ error bound for the uncertainty. In addition the Relative Pose Error
(RPE) was computed producing a Mean Square Error of 3.5468m2 in translation and 0.6002rad2

in orientation (see Fig. 12).

Figure 7: Map result with Trinocular sequence and odometry on Bicocca 2009-02-25b.

References

Arthur, D. and Vassilvitskii, S. [2007], k-means++: the advantages of careful seeding, in ‘SODA
’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms’,
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 1027–1035.

Bay, H., Ess, A., Tuytelaars, T. and Gool, L. V. [2008], ‘Surf: Speeded up robust features’,
Computer Vision and Image Understanding (CVIU) 110(3), 346–359.

Civera, J., Davison, A. J. and Montiel, J. M. M. [2007], Inverse depth to depth conversion for
monocular SLAM, in ‘IEEE International Conference on Robotics and Automation, 2007’,
pp. 2778–2783.

Civera, J., Davison, A. J. and Montiel, J. M. M. [2008], ‘Inverse depth parametrization for monoc-
ular SLAM’, IEEE Transactions on Robotics 24(5), 932–945.

Moreno-Noguer, F., Lepetit, V. and Fua, P. [2007], ‘Accurate non-iterative o(n) solution to the
pnp problem’, Computer Vision, IEEE International Conference on 0, 1–8.

Nister, D. and Stewenius, H. [2006], Scalable recognition with a vocabulary tree, in ‘Computer

−60 −40 −20 0 20 40 60 80 100 120

−60

−40

−20

0

20

40

60

80

X position (m)

Y
 p

os
iti

on
 (

m
)

Stereo SLAM

Odometry

Figure 8: Estimated trajectory with Stereo SLAM

Figure 9: Comparison between Ground Truth Position and Stereo SLAM before closing the loop.
The comparison has been done when Ground Truth is available.

Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on’, Vol. 2, pp. 2161–
2168.

Figure 10: Full estimated trajectory and Ground Truth.

Figure 11: Position and Angular Root Square Error in the available samples.

Paz, L. M., Piniés, P., Tardós, J. D. and Neira, J. [2008], ‘Large Scale 6DOF SLAM with Stereo
in Hand’, Transactions on Robotics 24(5), 946–957.

Piniés, P., Paz, L. M. and Tardós, J. D. [2009], ‘CI-Graph: an efficient approach for Large Scale
SLAM ’, Proc. of the IEEE Int. Conf. Robotics and Automation (ICRA’09) pp. 3913–3920.

Piniés, P. and Tardós, J. D. [2008], ‘Large Scale SLAM Building Conditionally Independent Local

Figure 12: Position and Angular Root Square Error in the available samples.

Figure 13: Error Distribution.

Maps: Application to Monocular Vision’, Transactions on Robotics 24(5), 1094–1106.

Sivic, J. and Zisserman, A. [2003], Video Google: A text retrieval approach to object matching in
videos, in ‘Proceedings of the International Conference on Computer Vision’, Vol. 2, pp. 1470–
1477.

