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1 Benchmark solution: Monocular EKF-SLAM

This section briefly describes the algorithm used to provide benchmark solutions to the datasets
using monocular and wheel odometry streams. We begin by giving full detail of the algorithm used
in next subsection; and present in the following one results obtained over the outdoor dataset Bo-
visa_2008-10-04. It should be noticed that the algorithm presented is based on novel contributions
developed in the framework of the RAWSEEDS project and that constitute the state of the art in
filtering monocular sequences. Specifically, the algorithm is based on the following publications:
[Civera et al., 2008, Civera et al., 2009, Civera et al., 2010].

1.1 Camera-Centered EKF + 1-Point RANSAC

An illustrative scheme of the algorithm used is shown in algorithm 1, and is fully detailed along
the subsection. The recent key filtering contributions that are combined in this scheme are: first, a
camera-centered representation of the geometric entities in the estimation [Castellanos et al., 2007]
that reduces the linearization error for long exploration trajectories, which will be the case in
the large environments of the dataset. Second; inverse depth parametrization for point features
[Civera et al., 2008] that will allow undelayed point initialization and low-parallax points mapping
improving the accuracy of the estimation. Finally, a 1-Point RANSAC algorithm [Civera et al., 2009,
Civera et al., 2010] will perform efficient outlier rejection based on filtering priors.

In the camera-centered representation, the estimation at every step k is parameterized as a
multidimensional Gaussian xj, ~ N (X, Pj) that includes the location of the world reference frame

x§,; as a non-observable feature and the map y©, both in the current camera reference frame.
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The map y®* is composed of n point features yic which are parametrized using inverse depth

coordinates as detailed in [Civera et al., 2008]:
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Algorithm 1 Camera-Centered EKF + 1-Point RANSAC

INPUT: Xj_1jk—1, Pr_1js—1 {EKF estimate at step k — 1}
th {Threshold for low-innovation points.}
{In this paper, th = 1.0 pizels}
OUTPUT: Xy, Py {EKF estimate at step k}

{A. EKF prediction and individually compatible matches}
[):Ck|k—17 Pi—1] = EKF prediction(Xg—1jx—1, Pr—1jk—1, 1)
[hyjk—1, Skik—1] = measurement_prediction(Xpk—1, Prj—1)

z/C = searchJC,matches(flk‘k_l, Skik—1)

{B. Get a reliable set of low-innovation inliers}
Zlifinliers — [ }
for i = 0 to ny,, do
z; = select_match(z'¢)
x; = EKF _state_update(z;, Xy ;—1) {Notice: only state update; NO covariance update}
h; = predict_all_measurements(x;)
zih = find_matches_below_a_threshold(z'C  hy, th)
if size(z!") > size(z!"~"rs) then

Zli—inliers _ Zgh
end if
end for

{C. Partial EKF update using low-innovation inliers}
X, Prjp) = EKF _update(z'="™s X0 1, Pry_1)

{D. Partial EKF update with high-innovation inliers}
Zhifinliers — [ ]
for every match j above a threshold th do
[h7, S/] = point_j_prediction_and_covariance(x, P, j)
W=z _hi
if 198171 < x2 00, then
ghizinliers — qdd_match_j_to_inliers(z"=mers z7) {If individually compatible, add to in-
liers}
end if
end for
if size(zM~"lers) > () then
(X, Prj] = EKF _update(z" =" Xy, Ppy)
end if

{E. Composition step}
[)Ack“g, Pk:|k] = composition(fck‘k, Pk|k)




Location for the world reference frame with respect to the current camera frame is represented
by its position vector and quaternion orientation

x:(r%’) (3)

The algorithm integrating Extended Kalman Filter and 1-Point RANSAC outlier rejection can
be divided in five stages, which are described below.

1.1.1 EKF Prediction and Individually Compatible Matches

For the prediction step at time k, the world reference frame and feature map are kept in the
reference frame at time k£ — 1 and a new feature that represents the motion of the sensor between
k — 1 and k is added:
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Predicted camera motion will be taken from the odometry measurements in the dataset; and
predicted covariance will be obtained by linearizing the model and adding zero-mean Gaussian
noise.

For each mapped feature }710 k. its correspondence z; will be searched in the 99% probability

region from the predicted Gaussian pdf N/ (flz, Si>
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where h; is the projection model —a pinhole camera with radial distortion as in [Civera et al., 2008]
will be used—; H; is the derivative of the projection model by the state vector and R, is the co-
variance of the measurement noise.

This correspondence set, searched in the 99% probability region for each feature, is said to be
individually compatible: that means, each match is compatible with the a priori model separately.
But that does not imply that the whole set is jointly compatible; that is, compatible with the
prior information when the whole set of matches is considered. There can exist outliers that are
individually compatible —when evaluated separately from other matches— but not jointly compatible
if they are evaluated with other matches. The algorithm described from here will extract from the

initial set of individually compatible matches a jointly compatible set rejecting spurious data (see
Fig. 1).

1.1.2 Selection of Low-Innovation Inliers Using 1-Point RANSAC

The hypothesize-and-verify loop follows here, and it is where the key difference with standard
RANSAC arises. While standard RANSAC needs a certain number of points that depends on
the particular problem to hypothesize a model, having prior knowledge coming from filtering will
permit to propose hypothesis using only 1 data point. The advantage of requiring 1 point resides
on the fact that it is easier to randomly select an spurious-free random sample; reducing then the
number of samples and the associated computational cost.
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Figure 1: Capture of the Monocular SLAM system performing tracking of features on the sequence
(left). A few set of predicted features (magenta) are rejected by 1-Point RANSAC while most of
the features are correctly associated (red). Part of the estimated trajectory (right).

Another key aspect for the efficiency of the algorithm is that only a state vector update with
one match is needed to compute an hypothesis, which is computationally cheap compared with
the quadratic complexity of the whole EKF covariance update. This means that the hypoth-
esis generation process will have in general a negligible cost compared with the standard EKF
operations.

Following with the algorithm; support given by the matches for each hypothesis is computed
simply counting the number of data points inside a heuristic threshold. Threshold should be chosen
close to the measurement noise, which is what was done in this paper setting the value to 1 pixel.

1.1.3 Partial Update with Low-Innovation Inliers

Most supported hypothesis among the randomly constructed in previous step is selected. As
threshold was chosen to be close to the measurement noise, all the matches z; inside can be consid-
ered to be inliers having low innovation z"~™!s  The rest of the high-innovation measurements
will be either high-innovation inliers, corresponding to either close points affected by translation
or recently initialized points, or outliers.

A partial update of the covariance using this low innovation inliers will reduce most of the
correlated priors in the Gaussian prediction. It is important to notice here that, while JCBB uses
correlations between parameters to reject outliers, the approach of this paper first remove most
of these correlations. After this removal, checking individual compatibility is enough to discard
outliers.

1.1.4 Partial Update with High-Innovation Inliers

Individually compatible matches after the first partial update will be finally classified as inliers.
Computation done in the first update serves as the starting point for the second partial update
using rescued high-innovation inlier measurements. As in the first partial update, standard EKF
update formulation will be applied.



It is important to remark here that, if it is true that dividing the covariance update step
into two parts will introduce a extra computational overhead with respect to the case of a global
update, such overhead will be of little importance compared with other computations of the filter
—particularly covariance update, which is the most expensive computation.

1.1.5 Composition

After the update, a final composition step will be necessary in order to transform all the geometric
entities in the filter from previous camera reference frame to the current one.The rigid transforma-
tion between the previous frame of reference and the current one is removed from the estimation.
The resulting state vector is:

xr = | %G (7)

where )Acg[f, %k and y°¢ have been computed by composition with the motion between frames
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The final covariance is computed using the Jacobian of the composition equation J¢, ¢, :
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1.2 Results using Bovisa_2008-10-04 dataset
1.2.1 Methodology

In order to compare with RTK GPS, the trajectory provided by the filtering has to be previously
aligned applying a rotation transformation over it
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Translation offset t¢; will be taken from the first GPS measurement, while rotation R} will
be obtained by minimizing the distance between the two trajectories —whole GPS and filtered
trajectories— allowing a rotation motion.

Finally, the error of each camera position in the reconstructed path is computed as the Euclidean
distance between each point of the estimated camera path and GPS path, both in the W reference,

€k = \/(rgi - rgpsk)T (rg‘i - rZ‘VPSk)' (13)
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Figure 2: Raw odometry measurements (thin red) and GPS ground truth (thick blue). Errors of
raw odometry are caused by early drift typical from proprioceptive sensors.

1.2.2 Monocular SLAM Results

The dataset chosen to provide a benchmark solution is Bovisa_2008-10-04. The length of the
estimated trajectory is about 1310 meters long and was covered by RAWSEEDS mobile robot in
30 minutes being then the length of the sequence 54000 frames. Trajectory obtained from the
combination of raw odometry and monocular information explained above is shown in figure 4;
together with GPS ground truth for comparison. Maximum and mean error compared against
GPS ground truth are 23.6 and 9.8 meters respectively.

Next figures are devoted to highlight the main inconveniences of raw odometry and monocular
camera alone; and how the combination of the two sensors is able to overcome the drawbacks that
both of them show separately. Figure 2 shows raw odometry lectures as a red thin line and GPS
ground truth with a blue thick line for comparison. It can be observed that early drift appears
and plotted trajectory is rather far from the ground truth value.

Figure 3 shows pure monocular estimation in thin red and GPS measurements in thick green.
Observing carefully this plot, it can be observed that monocular camera is able to very accu-
rately estimate orientation; but the unobservability of the scale produces drift in this parameter
for the number of tracked features considered (25). Tracking a larger number of features as in
[Civera et al., 2009] will reduce this scale drift, but real-time capabilities of the algorithm would
be lost. Also, global scale is not recovered: in figure 3, scale had to be adjusted to a factor of 2.7
via a minimization process.

Finally, figure 4 details the estimated trajectory that can be achieved from the combination of
the two sensors. It can be seen that problems commented in two previous figures disappear. An
accurate estimation is achieved for a trajectory of 1.3 kilometers.

Figure 5 shows the histogram of the errors for the sequence. The number of tracked features
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Figure 3: Pure monocular estimation (thin red) tracking 25 features and GPS ground truth (thick
blue). Errors in this case are caused by scale drift, which is unobservable by a monocular camera.
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Figure 4: Monocular SLAM estimation from the combination of monocular camera plus wheel
odometry (thin red) and GPS trajectory (thick blue).
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Figure 5: Histogram of the Monocular SLAM errors compared with GPS ground truth.

1-Point RANSAC,; 25 features per frame
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Figure 6: Histogram of the computational cost for 1-Point RANSAC when 25 image features are
tracked.

per frame was kept in 25 for this experiment.
The processing time per frame for this experiment can be observed in figure 6 in the form of
an histogram. It can be noticed that, although the proposed algorithm still does not entirely run



at real time at 30 frames per second, it is really close: 70% of the frames are already under 33
miliseconds.
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